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TktA  TkiB TktA cgeggalccttatiteticag ttcagecag-3"  P3 5'-cgeggatccatgte-
" TktA Phe ctcacgtaaagaget-3' P4 5'-acatgcatgcttacageagtte tittgetit-
B PpsA  TkiA gc-3' PCR E. coli K-12 DNA
DAHP ©  PEP ppsA thtA
E4P  DAHP
1.2.2 24
PEP 1.2.3 DNA Sanger
FAP PEP ABI100
DAHP ppsA 1.2.4 ppsA [ thtA
17 pBV220-pps A pBV220-tktA PPT-1 PPT-1 PTP-1
psA thtA PTP- ]I DH5a
PCR
18 PTS 19 20 I.B
37°C 3% ~ 5%
Phe 10mL 30°C ODgy, =0.5~0.6 42C
4.5h
1 1.2.5 SDS-PAGE 12000g 20min 2
1.1 SDS 10min 5%
1.1.1 1 10% R250
1.2.6 PpsA  TktA 1.2.4
1 4°C 5000g
Table 1 Strains and plasmids 20min 100mmol/L Tris-HCI pH
Strains and plasmids Characters Source and reference 7.4 50mmol/L. Gly-gly pH 8.5 5mmol/L MgCl,
Strains 0.5mmol/L TPP 1mmol/L DTT 2
Escherichia coli K-12 Donor of genome ATCC 30 x 4s
Escherichia coli DH5a Recipient strain ATCC 200W 4°C SOOOg 20min
Plasmids
p(;E:i E(:sy AP" cloning vector Promega 1.2.7 Ppsh - Thid 17
pBV220 AP expressing vector Reference 21 25 Ppstt - Thid
DBV220- s AP Thie work 1.2.8 DAHP 26 DAHP
pBV220- tht A AP" tht A This work 1.2.6 PpsA Thaa
PPT- | AP ppsA thtA cis-promoter This work lmL 0.25mL 0. 025mol/L
PPT-1I AP" ppsA tht A trans-promoter This work 45min 0.5ml 0.2%
PIP- | AP" tht A ppsA cis-promoter This work 2min 2mL 0.3%
PIP- I AP" 1kt A ppsA trans-promoter This work Smin 40°C
549nm
1.1.2 dNTP TagDNA
EcoRI BamHI Sphl Bgl Il TaKa-
Ra TPP Merck 6- Sigma
Sigma EA4P Sigma Marker Sig- 2.1 ppsA  tktA PCR
ma 1.2.1 E . coliK-12 DNA ppsA
1.2 tht A PCR 2.4kb  2.0kb
1.2.1 PCR Niersbach ®  Blattner pGEM-T Easy
ppsA  thtA DNA 1

P1  5'-ccggaaticatgtccaacaatggetegic-3" P2 5'-
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tht A 1992bp ppsA EcoR 1
BamH]1 thtA  BamH [ Sph 1 pGEM-T
Easy pBV220

DH5a PpsA  TktA

thtA

L ppsA

2 ppsA iktA
Fig.2  Construction of recombinant plasmids of ppsA

and thtA co-expression
PCR polymerase chain reaction pGEM-T-E-P  pGEM-T Easy vector
with ppsA  pGEM-T-E-T pGEM-T Easy vector with thtA E EcoR |
Ba BamH | Blu Blunting de dephosphorylation S Sph I Bg Bgl
Il pBV220-ppsA pBV220 vector with ppsA pBV220-thtA pBV220
vector with thtA PPT-1 pBV220 vector with ppsA and thtA cis-pro-
moter PPT-II pBV220 vector with ppsA and thtA trans-promoter

1 ppsA  thtA  pGEME-T Easy
Fig.1 Digestion of pGEME-T Easy vector with ppsA or tht A
1 4. XHind[ll marker 23130 9416 6557 4361 2322 2027bp
2. Double digestion of pGEM-T Easy vector with ppsA by EcoR I and

BamH | . PTP-1 pBV220 vector with thtA and ppsA cis-promoter PTP- [l
3. Double digestion of pGEM-T Easy vector with thtA by Sph I and pBV220 vector with th A and ppsA  trans-promoter
BamH |
kD 1 2 3 4 M kD 5 6 7 8 9 kD
- o \
w——97.4 e P
i W_ vy
—_ - ! - e i — 73
73 . v o — 662 al B
' ; q
s . ER
e . . . = 4 I
Bks. 9
3 ppsA ithtA
Fig.3 SDS-PAGE analysis for the single-and co-expression of ppsA and/or thtA in E. coli
M. Protein marker 1.host DH5a 2. DHS5a/pbv220 3.DHS5a/pbv220-ppsA 4 and 6. DHS5a/pbv220-tkt A
5. DH5«/ PPT-1 7. DH5«/ PPT-1I 8. DH5«/ PTP- I 9. DH5«/ PTP- [l
Assay for PpsA Assay for TktA
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hal > e >
T o T =
Strains Strains
4A  PpsA 4B TktA
Fig.4A  Assay for PpsA Fig.4B  Assay for TktA
Standard curve slope=0.2887 R* =0.9963 Standard curve slope=0.0045 R? =0.9943
2.2 ppsA  tktA ppsA pBV220-kiA PPT-1 PPT-Il PTP-1 PTP-[I
2 pBV220 DH5«a SDS-PAGE
2.3 SDS-PAGE  ppsA  thtA 3 pBV220-pps A pBV220-tht A
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PPT-1 PPT-1I PTP-1 PTP-II 84kD
73kD
2.4 ppsA  thtA
1.2.6 1.2.7 PpsA  TktA
1
pBV220-pps A PpsA
10.8
9.14.02.1 5.3 4A pBV220-
tht A TktA 3.9
4.44.43.9
4.5 4B
2.5 DAHP
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Fig.5 Assay for DAHP
All the hosts are DHSa DH5a DH5a/pbv220 as controls.
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Co-expressions of Phosphoenolpyruvate Synthetase A ppsA and
Transketolase A tktA Genes of Escherichia coli

LI Yong-Hui LIU Yun WANG Shi-Chun TONG Zhao-Yang XU Qi-Shou”
Institute of Radiation Medicine Academy of Military Medicine Science Beijing 100850 China

Abstract Metabolic engineering is the analysis of metabolic pathway and designing rational genetic modification to optimize cel-
lular properties by using principle of molecular biology . Aromatic metabolites such as tryptophan phenylalanine and tyrosine are
essential amino acids for human and animals. In addition phenylalanine is used in aspartame production. Escherichia coli and
many other microoganism synthesize aromatic amino acids through the condensation reaction between phospho-enolpyruvate PEP

and erythrose-4-phosphate FAP  to form 3-deoxy-D-arabinoheptulosonate 7-phosphate DAHP . But many enzymes compete for
intracellular PEP  especially the phosphotransferase system which is responsible for glucose transport in E. coli . This system
uses PEP as a phosphate donor and converts it to pyruvate which is less likely to recycle back to PEP. To channel more carbon
flux into the aromatic pathway one has to overcome pathways competing for PEP. ppsA and thtA are the key genes in central
metabolism of aromatic amino acids biosynthesis. ppsA encoding phosphoenolpyrucate synthetase A PpsA  which catalyzes pyru-
vate into PEP  tht A encoding transketolase A which plays a major role in erythrose-4-phosphate FAP  production of pentose
pathway. We amplified ppsA and tkt A from E . coli K-12 by PCR and constructed recombinant plasmids of them in pBV220 vec-

tor containing Pg P; promoter. Because of each gene carrying P; promoter four productions of ligation were obtained. The mono-

clonal host containing recombinant plasmids was routinely grown in Luria-Bertani LB medium added Ampicillin at 37°C over-

night and then inoculated in LB Ap" medium by 3% ~ 5% inglasks:onpairotanysshakerna 3026 zinduced ab 4226 for 4. 5,
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hours when ODgy, =0.4 cells were obtained by centrifugation at 10000 r/min at 4°C . The results of SDS-PAGE demonstrated
that the bands at 84kD and 73kD were more intensive than the same ones of the controls. The specific activity of PpsA in crude
extracts was increased by 10.8-fold and TktA by 3.9-fold. When both genes were co-expressed in E. coli the activity of
PpsA varied from 2.1 ~ 9.1 fold comparing to control but the activity of TktA was relatively stable 3.9 ~4.5 fold . Whatever
the two genes were expressed respectively or cooperatively both could promote the production of DAHP  the first intermediate of
the common aromatic pathway but co-expression was more effective on forming DAHP. The results demonstrate that co-expres-
sion of ppsA and tht A can improve the production of DAHP to near theoretical yield. This report details a different strategy based
on co-expression of two genes in one vector in vivo to release the burden and paves the way for construction of genetic engineering

bacteria for further research.

Key words aromatic amino acids  ppsA  tktA metabolic engineering co-expression
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