碳酸钙促进丙酮酸发酵过程中 α -酮戊二酸的形成

刘立明12 李 寅12 堵国成2 陈 坚12*

(1) 江南大学工业生物技术教育部重点实验室? 生物工程学院环境生物技术室,无锡 214036)

摘 要 在多重维生素营养缺陷型菌株光滑球拟酵母 CCTCC M202019 发酵生产丙酮酸的摇瓶和发酵罐实验中发现 $C_{\rm aCO_3}$ 的添加对发酵液中 α -酮戊二酸 α -KG)的积累有重要影响。在维生素浓度不变且供氧充分的前提下 延迟 $C_{\rm aCO_3}$ 添加时间可明显抑制 α -KG 的产生 ,并提高丙酮酸与 α -KG 的碳摩尔比 $C_{\rm PYR}/C_{\alpha$ -KG),而增加培养基中的 $C_{\rm aCO_3}$ 浓度会导致 α -KG 积累的增加。用不同物质调节发酵液中 α -KG 的碳摩尔比 α -KG 积累的增加。用不同物质调节发酵液中 α -KG 的积累是主要作用 α -KG 积累的增加。用不同物质调节发酵液中 α -KG 的积累是有协同效应。维持培养基中 α -CO α -X 浓度不变 ,改变培养基中硫胺素的浓度 对 α -KG 的积累 特别是对 α -KG 的积累具有协同效应。维持培养基中生物素的浓度 ,则导致 α -KG 的浓度不断上升且 α -KG 的积累 特别是对 α -KG 的积内丙酮酸羧化酶的活性最高可提高 40%,而丙酮酸脱氢酶系的活性没有明显变化。结果表明,丙酮酸发酵过程中 α -KG 的形成是由于 α -CO α -CD 促进了丙酮酸羧化反应,其中 α -Ca²⁺ 可显著提高丙酮酸羧化酶的活性,而 α -CO α -CD 可可能作为丙酮酸羧化反应的底物。

关键词 光滑球拟酵母 α-酮戊二酸 碳酸钙 丙酮酸羧化酶 丙酮酸 发酵 中图分类号 TO921 文献标识码 A 文章编号 1000-3061(2003)06-0745-05

利用光滑球拟酵母(Torulopsis glabrata)的多重 维生素营养缺陷型菌株发酵生产丙酮酸时 观察到 摇瓶发酵中的丙酮酸产量总是低于小型发酵罐的产 量1-2]。进一步研究发现,摇瓶培养时发酵液中 α-酮戊二酸 α-KG)的浓度较高,但在发酵罐培养中 α-KG却几乎不积累或很少积累。摇瓶培养时产生高 浓度的 α-KG 意味着三羧酸(TCA)循环通量较高,但 T. glabrata 中丙酮酸进入 TCA 循环的主要途径有 两条 (1)由丙酮酸脱氢酶系(PDH,以硫胺素为辅因 子 控制的丙酮酸氧化脱羧途径 (2)由丙酮酸羧化 酶 PC,以生物素为辅因子)控制的丙酮酸羧化途 径。由于 PDH 和 PC 的活性分别受培养基中硫胺素 和生物素浓度控制,当培养基中维生素的浓度不变 时 这两条途径的活性应当不会因为所采用反应器 的不同而改变。既然如此,为什么摇瓶培养时菌株 会产生较高浓度的 α -KG?

为了回答这一问题,作者在摇瓶条件下,研究了不同硫胺素、生物素和碳酸钙浓度对 T. glabrata CCTCC M202019 积累 α -KG 的影响。进而利用完全

相同的培养基 ,在发酵罐中考察不同调节 pH 的物质对 α -KG 的产生及丙酮酸羧化酶和丙酮酸脱氢酶系活性的影响 ,初步揭示了 α -KG 的形成机制。由于在多种有机酸发酵中都存在摇瓶产量低于发酵罐产量的现象 ,本研究结果有可能为解释这一现象提供一个新的思路。

1 材料与方法

1.1 菌种

光滑球拟酵母(T. glabrata) CCTCC M202019 ,烟酸、生物素、硫胺素、盐酸吡哆醇 4 种维生素营养缺陷型菌株 ,且丙酮酸脱羧酶活性组成型降低 ,为本研究室选育菌株^[3]。

- 1.2 培养基和培养方法 参见文献 3]。
- 1.3 分析方法
- **1.3.1** 葡萄糖的测定 3 *5*-二硝基水杨酸法⁴]。
- **1.3.2** 丙酮酸和 α-酮戊二酸的测定 :采用高压液相 色谱 (HPLC)测定^[3,5]。

收稿日期 2003-04-29 / 修回日期 2003-07-15。

基金项目 江苏省自然科学基金项目(No.BK2002072) 江苏省" 九五 "工业重大科技攻关项目(No.BG98015-3)。

色谱条件为: StableBondC₁₈ 反相柱 ,柱温: 28℃, 检测器: UV 210 nm ,流动相: 0.1% H₃ PO₄ ,流速: 1.0 mL/min ,进样体积: 10 μL。

1.3.3 丙酮酸羧化酶和丙酮酸脱氢酶活性的测定:根据文献 6.7 进行。将在 30 个下培养了 24 h 的细胞用无菌水离心洗涤 3 次,然后悬浮在 pH 为 7.5 的 0.1 mol/L 的磷酸钾缓冲液中,用玻璃珠于 4 个下振荡 5 min,使细胞在悬浮液中混合均匀,于 4 个超声波破碎 2 min,工作强度为 30%,工作 1 s 间隔 0.5 s;随后在 4 个、10000 r/min 下离心 3 min,除去细胞碎片 取上清液测定。

丙酮酸羧化酶(PC)活性的测定:反应混合物中含有:pH 7.8 的 PBS 缓冲液 0.56~mL、蒸馏水 1.7~mL、0.5~mol/L NaHCO3 溶液 0.4~mL、0.1~mol/L MgCl2 溶液 0.2~mL、1.0~mmol/L 的乙酰辅酶 A 溶液 0.4~mL、0.1~mol/L 5 5-二硫代二苯基安息香酸的乙醇溶液 0.1~mL 1000~u/mL 的柠檬酸合成酶 0.02~mL 0.1~mol/L 的 ATP 溶液 0.2~mL 细胞抽提物 0.2~mL 将上述混合液于 30° C 下保温 10~min。添加 0.2~mL 0.1 mol/L 的丙酮酸启动反应,反应 60~s 后添加 0.3~mL 的 1~mol/L 的 KOH 终止反应,然后用分光光度计在 415~nm 下检测草酰乙酸的生成量。根据标准曲线计算出丙酮酸羧化酶的活性。1~个酶活单位表示为 1~min 内该酶催化产物生成的微摩尔数。

丙酮酸脱氢酶系(PDH)活性的测定:反应混合物中含有:pH 7.8 磷酸钾缓冲液 1.0 mL、2.5 mmol/L、NAD 0.2 mL、0.2 mmol/L 焦磷酸硫胺素 0.2 mL、0.1 mmol/L 乙酰辅酶 A 0.4 mL、0.3 mmol/L 二硫苏

1.3.4 细胞干重(DCW)和蛋白质含量的测定:分别参见文献3 和文献8]。

2 结果与讨论

2.1 摇瓶与发酵罐生产丙酮酸的对比实验

在发酵罐中对培养基进行灭菌,接种混匀后,将 30~mL 已接种的培养基无菌转移至已灭菌的 500~mL 三角瓶中进行摇瓶培养,以考察培养基组成完全相同的情况下发酵罐和摇瓶培养的差异。如表 1~ft 所示,当摇瓶和发酵罐中不调节 pH 时,细胞生长微弱,丙酮酸积累也很少。在摇瓶中用 $CaCO_3$ 作为缓冲剂时 细胞正常生长,丙酮酸大量积累,但同时也产生了较高浓度(6.8~g/L)的 α -KG。在发酵罐培养中,如果用 NaOH 调节 pH ,发酵液中 α -KG 浓度很低。但如果改用 $CaCO_3$ 调节 pH ,发酵液中 α -KG 的浓度则比用 NaOH 调节 pH 时增加了 8~ft 倍。在发酵罐和摇瓶培养中,用 $CaCO_3$ 调节 pH 时的 C_{PYR}/C_{KG} 值相近 表明 $CaCO_3$ 的添加对发酵液中 α -KG 的积累有重要影响。

表 1 摇瓶和发酵罐上发酵的对照 Table 1 Fermentation of pyruvate and α -KG and $C_{\text{PYR}}/C_{\text{KG}}$ in fermentor and flask cultures

	DCW(g/L)	Consumption of glucose/(g/L)	Formation of pyruvate/(g/L)	Formation of α-KG/(g/L)	$C_{ m PYR}/C_{ m KG}^{ m a}$
Flask (No CaCO ₃)	2.8	5.6	2.3	0	∞
Flask (CaCO ₃)	10.9	84.8	37.8	6.8	6.96
Fermentor (pH not controlled)	4.9	14.3	5.1	0	∞
Fermentor (pH controlled by NaOH)	14.8	90.7	69.4	1.3	67.2
Fermentor (pH controlled by $CaCO_3$)	16.7	89.7	62.3	11.5	6.84

a: $C_{\rm PYR}/C_{\rm KG}$ represents the ratio of carbon molecules in pyruvate and α -ketoglutarate.

2.2 CaCO₃ 添加时间和浓度对 α-KG 产生的影响

 C_{aCO_3} 添加时间可明显抑制 α -KG 的产生并提高 $C_{\text{PYR}}/C_{\text{KG}}$ 值(图 1) 而增加培养基中的 C_{aCO_3} 浓度会导致 α -KG 的积累增加(表 2)。这些结果表明 C_{aCO_3} 作用能以某种流式 如激活派 PDH 或 PC_{aCO_3} 使丙酮

酸进入 TCA 循环的通量增加。

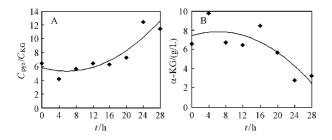
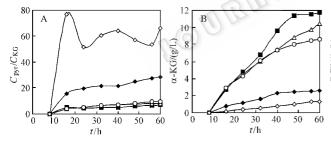



图 1 CaCO₃(40 g/L)添加时间对 α-KG 生成的影响 Fig. 1 Effect of feeding time of CaCO₃ (40 g/L) on pyruvate production

表 2 不同装液量下 CaCO₃ 质量浓度对丙酮酸发酵的影响 Table 2 Effects of CaCO₃ concentrations on pyruvate production in different fermentation

Volume	30 mL			50 mL	
CaCO ₃ /(g/L)	0	20	40	20	40
Final pH	2.1	3.9	5.1	3.9	5.0
DCW/(g/L)	3.8	12.1	17.3	13.4	15.3
Pyruvate/(g/L)	1.2	27.2	37.9	25.9	31.2
α -KG/(g/L)	0	3.6	15.8	3.2	9.9
Residual glucose/(g/L	95.7	31.3	9.7	19.8	8.5
$C_{ m PYR}/C_{ m c-KG}$	∞	9.78	3.1	10.48	4.08

2.3 Ca²⁺、CO₃²⁻对 α-KG 的影响

发酵液中 $CaCO_3$ 的存在促进了 α -KG 的积累 但具体是 Ca^{2+} 还是 CO_3^{2-} 或者是两者共同促进了 α -KG 的积累呢?为了解释这一问题 ,作者设计了 5 种方法来自动控制 7 L 发酵罐(装液量 4 L)发酵过程的 pH (1)流加 5 mol/L 的 NaOH (2)流加 2.5 mol/L 的 Na_2CO_3 (3)流加 $CaCO_3$ 悬浊液(150 g $CaCO_3/100$ mL 水) (4)在发酵开始后流加浓度为 40% 的 $CaCl_2$ 浓缩液(流加速度 25 mL/h ,共流加 8 h ,使发酵液中 $CaCl_2$ 终浓度达到 20 g/L),同时流加 5 mol/L 的 NaOH (5)在发酵开始后流加浓度为 40% 的 $CaCl_2$ 浓缩液(流加方法同(4)),同时用 2.5 mol/L 的 Na_2CO_3 调节 pH。 5 种情况下的发酵过程曲线如图 2 所示。

从图 χ A)可知 ,当用 NaOH 对发酵过程的 pH 进行调节时 , C_{PYR}/C_{G-KG} 值可保持在 $50 \sim 60$ 之间 ;用 NaCO₃ 调节 pH 时 ,发酵过程中的 C_{PYR}/C_{G-KG} 值下降 到 $20 \sim 30$ 。当用 CaCO₃ 调节 pH 时 ,或者当发酵液中有大量 CaCl₂ 存在、再用 NaOH 或 NaCO₃ 调节 pH 时 发酵过程中的 C_{PYR}/C_{G-KG} 值均低于 10。结合图 2 (B)可以认为 , Ca^{2+} 和 CO_3^{2} 都促进了 α -KG 的积累 ,其中 Ca^{2+} 对 α -KG 积累起主要促进作用。

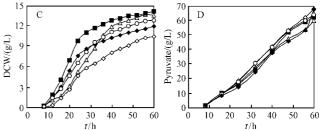


图 2 不同物质调节 pH 时对 α -KG 产生的影响

Fig. 2 Effects of different pH buffers on α-KG production

♦ Na₂CO₃; ■ CaCO₃; △ CaCl₂ + Na₂CO₃; ○ CaCl₂ + NaOH; ◇ NaOH

此外,在图 2(C)中发现,与用 NaOH 调节 pH 的发酵过程相比,当培养基中有大量 Ca^{2+} 存在时,细胞生长较快 最终细胞浓度也较高。这可能是因为 Ca^{2+} 作为细胞内的第二信使 91 ,能够加速细胞的生长;此外,有 Ca^{2+} 存在时 α -KG 浓度较高,为合成更多细胞物质提供了可能,导致最终细胞量有所提高。

研究还发现用不同物质调节 pH 时对丙酮酸的积累速度和产量也有影响。如图 2(D)所示,当有 Ca^{2+} 存在时,由于细胞生长较快,丙酮酸积累速度也较快,但丙酮酸的产量有所下降。同时由于 α -KG 的产生,丙酮酸对葡萄糖得率有所下降(数据未给出)。

2.4 硫胺素和生物素浓度对 α-KG 生成的影响

在菌株 T. glabrata CCTCC M202019 中 ,PDH 和 PC 是控制丙酮酸降解进入 TCA 循环的两个重要酶 (系) 图 3) ,其活性的高低决定了进入 TCA 循环碳流的多少。由于该菌株自身不能合成硫胺素(B_1)和 生物素(Bio),因此该菌株胞内的 PDH 和 PC 活性可分别被培养基中的 B_1 和 Bio 浓度所控制。为了考察具体是哪个酶(系)影响 α -KG 的产生,作者在 $CaCO_3$ 添加浓度为 40 g/L 的前提下,研究了不同 B_1 和 Bio 浓度对 α -KG 积累的影响。结果发现,改变培 α -P国科学院微生物研究所期刊联合编辑部 http://journals. im. ac. cr

养基中 B_1 的浓度 ,对 α -KG 的积累、特别是对 $C_{PYR}/C_{\alpha-KG}$ 值没有影响(图 4A)。 而增加培养基中 Bio 的浓度 则导致 α -KG 的浓度不断上升且 $C_{PYR}/C_{\alpha-KG}$ 值不断下降(图 4B)。 由于 Bio 是 PC 的辅因子 ,据此可以认为 α -KG 的产生是由 PC 活性变化而引起的。

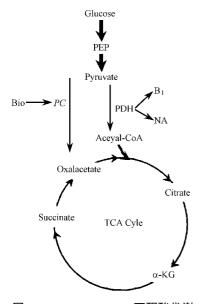


图 3 Torulopsis glabrata 丙酮酸代谢

Fig. 3 Pyruvate metabolism in T. glabrata

 $\boldsymbol{B}_{\!1}$. Thiamin ; NA . Nicotine acid ; Bio . Biotin ;

PC. Pyruvate carboxylase; PDH. Pyruvate dehydrogenase complex

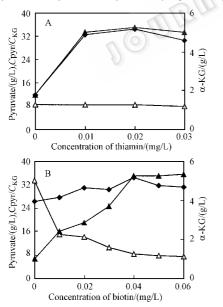


图 4 硫胺素、生物素浓度对 α-KG 积累的影响

Fig. 4 Effects of biotin and thiamin concentrations on α -KG production

The biotin and thiamine concentrations were fixed at 0.04 mg/L and 0.015 mg/L , respectively , in the experiments shown in Fig. 4A and Fig. 4B

lacktriangle PYR; \triangle $C_{\text{PYR}}/C_{\text{KG}}$; lacktriangle α -KG

2.5 采用不同调节 **pH** 物质对 **PDC** 和 **PDH** 活性的 影响

维持培养基中维生素质量浓度不变,在发酵进行到细胞对数生长期时(20 h),测定采用不同物质调节发酵液中pH时细胞内 PC 和 PDH 活性的变化。结果发现(图 5),当有 Ca^{2+} 存在时,胞内 PC 的活性最高可提高 40%,而 PDH 的活性没有明显变化。表明 Ca^{2+} 可提高 PC 的活性,从而使丙酮酸通过丙酮酸羧化途径进入 TCA 循环的通量增加。由于 α -KG 脱氢酶亦以 B_1 为辅因子,在 B_1 限制的条件下, α -KG 脱氢酶活性也很低,由此导致发酵液中 α -KG 大量积累。已有研究发现 Ca^{2+} 能够加速肝细胞线粒体中的丙酮酸羧化反应 Ca^{2+} 能够加速肝细胞线粒体中的丙酮酸羧化反应 Ca^{2+} 激活,为深入研究 Ca^{2+} 在微生物中的生理作用提供了一个重要证据。

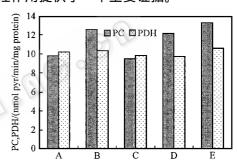


图 5 不同调节 $_{
m pH}$ 的物质对 $_{
m PC}$ 和 $_{
m PDH}$ 活性的影响

Fig. 5 Effects of different pH buffers on the activities of PC and PDH in T. glabrataA. NaOH; B. NaOH + CaCl₂; C. Na₂CO₃;
D. Na₂CO₃ + CaCl₂; E. CaCO₃

REFERENCES(参考文献)

- [1] Miyata R , Yonehara T. Improvement of fermentative production of pyruvate from glucose by *Torulopsis glabrata* IFO 0005. *J Ferment Bioeng* , 1996 , 82:475 – 479
- [2] Li Y , Chen J , Lun S Y et al. Efficient pyruvate production by a multi-vitamin auxotroph of *Torulopsis glabrata*: key role and optimization of vitamin levels. *Appl Microbiol Biotechnol* , 2001 , 55: 680 – 685
- [3] LIULM(刘立明), LIY(李寅), DUG(堵国成) et al. Breeding of high-pyruvate-producing Torulopsis glabrata with acetate as supplement carbon source. Industrial Microbiology(工业微生物), 2002, 32(3):10-14
- [4] Miller G L. Dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem., 1960, 31:426-428
- [5] Schreier H J, Smith T M, Bernlohr R W. Regulation of nitrogen catabolic enzymes in *Bacillus* spp. *J Bacteriol*, 1982, 151(2):971 –975
- © 中国科学院微生物研究解期刊联合编辑部 production of apparatic acide by

- yeast. Baiosaiensu to Indasutori (in Japanese), 1994, 52:567 570
- [7] Dunn M F, Encarnacion G, Araiza G et al. Pyruvate carboxylase from Rhizobiumetli: mutant characterization, nucleotide sequence, and physiological role. J Bacteriol, 1996, 178:5960-5970
- [8] NING Z X(宁正祥). Handbook of analysis of food component. Beijing: Chinese Light Industrial Press(中国轻工业出版社), 1998
- [9] LU ((卢青), LIU J I(刘冀珑), CHEN D Y(陈大元). The calcium signal of cytoplast. *Chemistry of Life*(生命的化学), 1999, 19(2):78-82
- [10] Walajtys-Rhode E , Zapatero J , Moehren G *et al* . The role of the matrix calcium level in the enhancement of mitochondrial pyruvate carboxylation by glucagon pretreatment. *J Biol Chem* , 1992 , **267**(1): 370-379

CaCO₃ Stimulates α-ketoglutarate Accumulation During Pyruvate Fermentation by *Torulopsis glabrata*

LIU Li-Ming^{1 2} LI Yin^{1 2} DU Guo-Cheng¹ CHEN Jian^{1 2 *}

¹(Key Lab of Industrial Biotechnolog of Ministry of Education ,Southern Yangtze University , Wuxi 214036 , China)

²(Environmental Biotechnology lab , School of Biotechnology , Southern Yangtze University , Wuxi 214036 , China)

Abstract A large amount of α-ketoglutarate (α-KG)(6.8 g/L) was accumulated in flask culture when CaCO₃ was used as a buffering agent in the production of pyruvate by multi-vitamin auxotrophic yeast Torulopsis glabrata CCTCC M202019. In a 5 L jar-fermentor, less α -KG(1.3 g/L) was produced when NaOH was used to adjust the pH, while more α -KG(11.5 g/L) detected when $CaCO_3$ was used as the buffer. In the latter case , the molar carbon ratio of pyruvate to α -KG($C_{PYR}/C_{\alpha\text{-KG}}$) was similar to that obtained in flask culture, suggesting the accumulation of α -ketoglutarate was related to the addition of CaCO₃. Furthermore, it was found that : (1) delaying the addition time of CaCO₃ decreased the α -ketoglutarate formation but increased $C_{\text{PYR}}/C_{\alpha\text{-KG}}$; and (2) under vitamin limitation conditions increasing the concentration of CaCO₃ led to an increased α-KG accumulation at the expenses of pyruvate. To study which ions in CaCO₃ was responsible for the accumulation of α -KC, the effects of different pH buffers on the α -KG accumulation were studied. The level of α -KG was found to correlate with the levels of both Ca^{2+} and CO₃²⁻, with Ca²⁺ played a dominant role and CO₃²⁻ played a minor role. To find out which pathway was responsible for the accumulation of α -KG , the effects of biotin and thiamine on α -KG accumulation was investigated. The increase in biotin concentration led to an increase in α -KG accumulation and a decrease in $C_{\rm PYR}/C_{\alpha\text{-KG}}$, while the levels of α -KG and $C_{\rm PYR}/C_{\alpha\text{-KG}}$ were not affected by thiamine concentration. The activity of pyruvate carboxylase was increased as much as 40% when the medium was supplemented with Ca^{2+} . On the other hand , the activity of the pyruvate dehydrogenase complex was unaffected by the presence of Ca^{2+} . To conclude , the higher level of α -KG was caused by higher activity of pyruvate carboxylase stimulated by Ca^{2+} , with CO₃²⁻ served as the substrate of the reaction.

Key words Torulopsis glabrata , α-ketoglutarate , CaCO₃ , pyruvate carboxylase , pyruvate , production

Received: 04-29-2003

This work was supported by a grant from the Natural Science Foundation of Jiangsu Province (No. BK2002072) and the Key Technologies R & D Program of Jiangsu Province of the 9th Five-Year Plan Period (No. BG98015-3).

^{*} Corresponding author. Tel: 86-510-5885727; Fax: 86-510-5888301; E-mail: jchen@sytu.edu.cn