# NRDRiso 酶 cDNA 的序列测定及生物信息学分析

### 杜 晶<sup>1,2\*</sup> 刘戈飞<sup>2</sup> 王桂玲<sup>2</sup> 徐晓琳<sup>2</sup> 王 博<sup>2</sup> 朱 莉<sup>2</sup>

'(沈阳医学院生化教研室,沈阳 110034)
<sup>2</sup>(中国医科大学细胞生物学教研室,沈阳 110001)

摘要通过鉴定分析人肝组织中辅酶 II 依赖性视黄醇脱氢酶不同剪接体全长 cDNA 核苷酸序列与氨基酸序列的结构特征,为今后进一步研究体内维甲酸的代谢情况奠定基础。根据人、小鼠 NRDR 编码区的一致性序列,设计一对引物,应用 RT-PCR 方法从人肝组织中得到一条 377bp 的新的 cDNA 片段。采用 RACE 法得到了 NRDR 新亚型 cDNA,并以生物信息学软件分析其生物学特征。测序得知该 cDNA 长为 1003bp,以 NADP-dependent retinol dehydrogenase/reductase short isoform(NRDRiso) 登录 GenBank。其读码框为 525bp, 拟编码 174 个氨基酸的蛋白。

关键词 NRDRiso, cDNA 序列测定,选择性剪接,生物信息学 中图分类号 Q254 文献标识码 A 文章编号 1000-3061(2004)04-0520-06

维生素 A 已被证明具有许多重要的生理功能, 如 :调控特定上皮细胞的分化,对视觉、生长、繁殖的 影响及抗感染作用等<sup>[12]</sup>。而诸多的研究表明,维生 素 A 的这些作用大都是通过其活性代谢产物全反 式维甲酸( all-trans retinoic acid )来完成的。全反式 维甲酸( 以后均称维甲酸 )作为配体通过与靶细胞内 的受体( 类固醇/维甲类化合物/甲状腺素/维生素 D/ 孤儿受体超家族 )结合来调控某些基因的表达从而 发挥其生物学作用<sup>[3,4]</sup>。维甲酸在胚胎发育中的重 要作用,在实验室中调节许多肿瘤细胞向正常细胞 分化的作用及其在临床治疗急性早幼粒细胞所取得 的效果使其受到了广泛的瞩目<sup>[5-7]</sup>。

维甲酸在体内主要是由维生素 A(Vitamin A)亦称视黄醇(Retinol)经两步氧化而得,中间产物为视 黄醛(Retinal),由视黄醇生成视黄醛的反应是双向 可逆性反应,由视黄醛生成维甲酸反应是单向非可 逆反应。研究证明,维甲酸的体内生物合成过程较 为复杂,每一步都可能有多种酶参与其合成,或者说 在不同的组织由不同的酶执行功能<sup>[8-13]</sup>。参与维甲 酸第一步代谢的酶类有乙醇脱氢酶(alcohol dehydrogenase, ADH)与短链脱氢酶/还原酶(short-chain dehydrogenase/reductase ,SDR)家族成员<sup>[14]</sup>。

黄东阳等<sup>151</sup>于 1997 年在兔肝细胞质溶胶(cy-tosol)中发现并纯化了一种新的催化视黄醇和视黄

醛可逆的氧化/还原反应的脱氢酶(NADP-dependent retinol dehydrogenase/reductase, NRDR)。NRDR 对视 黄醇有很高的底物特异性与亲和性,酶活性也远大 于报道的 ADH 与目前已知的 SDR 类,其活性在其 他哺乳动物肝中也普遍存在,但以兔肝脏为最高。 兔、小鼠与人的 NRDR cDNA 全长相近,约为 1300bp 编码 260 个氨基酸,已相继被 GenBank 接受 [BAB18777] BAB18776 BAB18775]。

我们在扩增人肝细胞 NRDR 编码区部分序列 时,发现了它的短的剪接体 利用 RACE 法成功地进 行了全长 cDNA 序列测定。本文介绍了序列测定的 全过程,并对其 cDNA、氨基酸序列进行生物信息学 分析。

## 1 材料与方法

#### 1.1 材料

 1.1.1 组织来源:人肝组织由中国医科大学附属第 一医院普外科提供,新鲜肝组织于冰上取回,立即贮 存于 – 70℃冰箱中。

**1.1.2** 菌种和质粒 :JM109 感受态细胞 ,pGEM-T 质 粒购自 Promega 公司。

**1.1.3** 试剂 :RNA 提取采用 RNeasy Mini Kit, 逆转录 酶采用 Ominiscript Reverse Transcriptase, 质粒提取采 用 QIAprep Miniprep Kit, 以上均购自 QIAGEN 公司;

收稿日期 2003-11-19,修回日期 2004-04-16。

<sup>\*</sup> 通讯作者。 Tel: 86-21-62934830 ;E-mail: dujing1106@sohu.com ©中国科学院微生物研究所期刊联合编辑部 http://journals.im.ac.cn

胶回收试剂盒购自 Watson 公司(上海华舜);Oligo dT (15)购自 Promega 公司;Taq DNA 聚合酶;合成引物; 3'RACE;5'RACE 试剂盒均购自 TaKaRa 公司(大 连);T4 连接酶购自 Promega 公司。

1.1.4 培养基:LB:1%胰蛋白胨,0.5%酵母粉, 0.5%氯化钠;LBA:1%胰蛋白胨,0.5%酵母粉, 0.5%氯化钠,1.5%~1.8%琼脂粉。

1.2 方法

1.2.1 总 RNA 提取及纯度鉴定:总 RNA 提取按 QIAGEN 公司 RNeasy Mini Kit 操作完成,在紫外分光 光度计(岛津 UV 610)上对所提总 RNA 进行纯度鉴 定和定量。

**1.2.2** cDNA 合成:按 Ominiscript Reverse Transcription Kit 进行。取2.3µg 总 RNA 在 Ominiscript Reverse Transcriptase 作用下被逆转录为 cDNA。

1.2.3 PCR 扩增特异的全长 cDNA 片段:根据人、 小鼠依赖 NADPH 的视黄醇脱氢酶的一致性序列,设 计一对引物, Primer 1:5'-tccaccgacgggatcggctt-3', Primer 2:5'-atgccagcacaatectetggct-3',PCR 条件 94℃, 1min;94℃,30s,55℃,30s,72℃,30s,30 个循环; 72℃,5min。PCR 扩增得到两条分别为 635bp 及 377bp 的片段,通过联网到 NCBI 调用 Blast 服务器进 行分析显示 377 bp 的 DNA 序列与 NRDR 编码区 cDNA的前后序列完全一致,中间缺失 258bp 碱基序 列。根据此序列设计特异引物,采用 TaKaRa 公司 (大连)3'RACE 5'RACE 试剂盒通过 RACE 法获得全 长 cDNA 片段。

3'RACE:采用 TaKaRa 公司(大连)3'RACE 试剂盒。 以试剂盒提供的 Oligo dT-3sites Adaptor primer 5'-ctgatetagaggtaceggateetttt.....tttttt-3'引物进行逆转录,条 件为:30℃,10min,50℃,20min,95℃,5min,5℃, 5min,一个循环,然后以两条序列共同的 291bp 部分 为模板,设计引物,Primer 3:5'-cetagteteeaatgetgetg-3',与试剂盒提供的 3sites Adaptor primer,序列为 5'etgatetagaggtaceggatee-3',进行 PCR。条件为 94℃, 1min;94℃,30s,55℃,30s,72℃,30s,30 个循环; 72℃ 5min,以此获得 3'末端。

5'RACE:采用 TaKaRa 公司(大连)5'RACE 试剂盒。 首先,以 377bp 和 635bp 片段缺失部交界区设计 5' 磷酸化 RT 引物进行逆转录,序列为 5'-P tecagagettgtc-3' 条件为:30℃,10min,50℃,45min,80℃,2min,

一个循环;然后降解杂交 RNA;接着进行连接反应,使 cDNA环化或形成串联体;最后进行 PCR反应,采 用巢式 PCR,设计两对引物,Primer 4:5'-getgetgteaaecctttctt-3', Primer 5 5'-tccatgaagcttcacagccgt -3', Primer 6:5'-aggttaggcgagccagaggat-3', Primer 7:5'-cttccggctgctgacgaccac-3', 两轮 PCR 反应条件相同,均为94℃, 1min;94℃,30s,55℃,30s,72℃,30s,30 个循环; 72℃ 5min,以此获得5'末端。

1.2.4 pGEM-T 重组体的构建及 DNA 片段克隆:将 RACE 法扩增得到的产物经 1.5% 琼脂糖凝胶电泳, 用 Watson 公司(上海华舜)胶回收试剂盒回收胶中 DNA 片段,采用 T/A 克隆法将其克隆至 pGEM-T 质 粒载体,转化入 JM109 感受态大肠杆菌,在含氨苄青 霉素的 LB 平皿上随机挑选白色菌落进行菌落 PCR 鉴定结果,LB 培养基中扩大培养,用 QIAprep Miniprep Kit 提取质粒, Eco R I 酶切进一步鉴定是否插入 了相应 DNA 片段并测序。

**1.2.5** 序列测定及分析: 质粒 DNA 测序由 TaKaRa 公司(大连)完成,序列分析工具采用 NCBI Blast, Jellyfish, Prosite 等软件。

2 结果 🕥

2.1 人肝组织总 RNA 纯度

 $A_{260}/A_{280} = 1.927$ 

2.2 全长 cDNA 片段扩增

根据人、小鼠依赖 NADPH 的视黄醇脱氢酶的一 致性序列,设计一对引物,PCR 扩增得到两个 PCR 产物,大小分别为 377bp 和 635bp 左右。测序结果 表明 635bp 左右序列与人的依赖 NADPH 的视黄醇 脱氢酶的部分 cDNA 序列完全一致,而 377bp 片段 与 NRDR 编码区部分 cDNA 的前后序列完全一致, 中间缺失 258bp 碱基序列,以缺失部交界区片段为 模板设计特异引物,经 3'RACE 5'RACE 法扩增分别 得到 650bp 和 300bp 左右的片段。

2.3 全长 cDNA 序列获得

经测序表明用 3'RACE 方法得到 663bp 的产物, 采用 5'RACE 方法获得了长为 315bp 5'末端。

综合上述人肝脏 RT-PCR、3'RACE 与 5'RACE 法 扩增所得序列,得到了一个全长为 1003 bp 的 cDNA 序列。

2.4 基因序列分析结果

**2.4.1** cDNA 序列分析:

ORF 分析:经 Blast 比较得知该序列为一新的 cDNA 序列 联网到 NCBI 的 ORF finder 服务器对此 序列进行可读框架分析,结果发现其可读框架位于 第6-584bp或60-584bp位之间,但进一步分析发 观第60bp;位的起始密码附近碱基符合。Kozak,序列。 而第6位起始密码序列不符合,因此,确认该 cDNA 序列起始密码位于 60bp 处,终止密码位于 584bp 处由 525bp 的读码框,419bp 的 3'端非翻译区和 59bp 的 5'端非翻译区组成,编码 174 个氨基酸。其 聚腺苷酸化信号 AATAAA 位于终止密码子下游 372bp 处,poly A 位于 986bp 处,其上游未发现启动 子序列 TATA 盒等。

基因名称确定 经与 GenBank 数据库比较,其与依赖 NADPH 的视黄醇脱氢酶/还原酶(NADPH-dependent retinol dehydrogenase/reductase,NRDR,长度为 1325bp) 基因高度同源,是从人肝组织中发现的一个新的 cDNA 序列,命名为 NADP-dependent retinol dehydrogenase /reductase short isoform(NRDRiso),并已登录 Gen-Bank(AY071856)。

2.4.2 推测的蛋白质序列分析:

基本性质分析:ProtParam tool 推测该基因编码 的蛋白(下文简称 NRDRiso )由 174 个氨基酸组成, 等电点为 5.24, 分子量为 18.6kD。Blast 分析表明, 人 NDRDiso 与人过氧化物酶体短链乙醇脱氢酶 (peroxisomal short-chain alcohol dehydrogenase, SCAD-SRL)的序列一致性为 59%,相似性为 63%,与牛 NRDR 的序列一致性为 52%,相似性为 62%,与兔 NRDR 的序列一致性为 41% 相似性为 46% 与小鼠 NRDR 的序列一致性为 48%,相似性为 55%,与猪 carbonyl reductase/NADP-retinol dehydrogenase 的序列 一致性为 54% ,相似性为 67% ,与大鼠 carbonyl reductase/NADP-retinol dehydrogenase 的序列一致性为 53% 相似性为 67%。另外 ,与人 HEP27 蛋白的序 列相似性为 61% ,与小鼠 SCAD 的相似性为 31% ,与 大鼠 2 A-dienoyl-CoA reductase (NADPH)的相似性为 30% ,与拟南芥菜 3-oxoacyl[ acyl-carrier-protein ] reductase 的相似性为 30%,与线虫 hypothetical protein F36H9.3 的相似性为 51%, 与果蝇 3-hydroxyacyl-CoA dehydrogenase type [] ( Type [] HADH ) ( Scully protein)的相似性为 27%,与大肠杆菌 probable 3-oxoacyl[acyl-carrier-protein] reductase 的相似性为 32%, 与酵母 SPORULATION PROTEIN SPS19 的相似性为 28%.

功能位点分析:采用 PROSITE 数据库分析 NRDRiso 的结构位点,结果发现其含有多个蛋白激 酶 C( PKC ),酪氨酸激酶 II( CK2 )的磷酸化位点,同 时含有多个脂肪酸酰基化( MYRISTYL )位点,另外在 该蛋白 C-末端含有过氧化物酶体 C-末端靶信号序 列 SRI(图1)。



Fig.1 Motif analysis

NRDRiso contains protein kinase C ( PKC ) phosphorylation sites at positions  $7 \sim 9$   $44 \sim 46$  and  $132 \sim 134$ , and casein kinase II (  $CK_2$  ) phosphorylation sites at positions  $7 \sim 10$ ,  $107 \sim 110$  and  $128 \sim 131$ , and fatty acylation sites at positions  $25 \sim 30$ ,  $62 \sim 67$  and  $168 \sim 173$ . In addition , NRDRiso contains peroxisome targeting signal sequence ( SRL ) at its C-terminus.

结构功能域的确定:用 SMART 服务器分析 NRDRiso蛋白质序列的结构功能域,我们发现在第 13~120 位之间含有一个典型的 adh-short (pfam00106)结构域图2)





Fig. 2 Domain analysis

NRDRiso contains a classical adh-short ( pfam0016 ) domain between nucleotide 13 and 120. This domain belongs to SDR superfamily.

序列多重对齐分析:为了进一步研究 NRDRiso 蛋白在序列上的同源性,我们用人 NRDRiso 蛋白质 序列联网查询了其相似序列,并进行了序列多重对 比分析,以确定其可能的功能保守区。这些参与分 析的序列包括人 NRDR(GenBank 接受号 BAB18775),大鼠 NRDR(GenBank 接受号 BAB78529),小鼠 NRDR(GenBank 接受号 BAB18776),兔 NRDR(GenBank 接受号 BAB18777), 牛 NRDR(GenBank 接受号 AAL93248),猪 NRDR (GenBank 接受号 BAB78528)。用 Jellyfish 软件进行 蛋白质序列的多重对齐结果见图 3。

结果发现,所有参与对比的序列 C-末端几乎均 含有过氧化物酶体 C-末端靶信号序列 SRI(peroxisomal targeting signal,PTS1)<sup>161</sup>,且在 20 – 27 位氨基酸 处均含有 SDR 超家族的模序结构(TAXXXGXG),另 外 除 NRDRiso 外,其它各 NRDR 在 164 – 168 位氨 基酸处均含有 SDR 超家族的另一模序结构(YXX-SK)。

2.4.3 基因组结构分析:

染色体定位分析:基于电子基因定位技术对人 NBDRiso进石染色体定位;编首先将该序列进行基因。

|                | 1          | 11                | 21                  | 31                   | 41                 | 51                  | 61           |
|----------------|------------|-------------------|---------------------|----------------------|--------------------|---------------------|--------------|
| kum NRDRiso    | MASSIMTRI  | RDPLANKVAL        | VTASTDGLGFA         | TARRIADUGA           | ORVVVSSRAGE        | NYDO AVATLO         | GEGLSVTGTWC  |
| has NROR Pr    | MASSGMTR   | BDFLAHEVAL        | VTASTDGIGEA         | TARRIADOGA           | HVVVSSRED          | NVDUAVATLO          | GEGLSVTGTVC  |
| Rat NRDR Pr    | MASSGETR   | NPLANKVAL         | VTASTDGLGLA         | TARBLACOGA           | OWYRSSBROG         | DIVERAVATLE         | GEGLEVTGYVC  |
| Incluse NRDR   | MASSGLTRI  | NPL DREVAL        | VTASTDGIGEA         | TARELATOGA           | HYVYSSEKO          | NYDBAYATLO          | GEGLEVIGIVC  |
| malokrit NEOR  | MASSGMTRI  | RUFLANKVAL        | VTASTOGIC           | LARRIADUGA           | OVVESSER           | INVERAVANLE         | REGISTICT    |
| Bos NRDR       | MASCOMARI  | NFLOKKVAL         | VTASTDGEGE          | TARRLADOGA           | OWWYSSREQ          | NVDRAVATLK          | GEGLSVTGTVC  |
| Sus NRDR       | MASTORES   | REFLENEVAL        | VTASTIGIGI A        | TARRI.AQDGA          | HVVMSSERD          | WYDRIVATLO          | GROUND TOTAL |
| Consensus      | massg tri  | r plankval        | vtastdgigfe         | aierrlaqdge          | hvvvs sr kqq       | anvdr avatl q       | geglsvtgtvc  |
|                | 71         | 81                | 91                  | 101                  | 111                | 121                 | 131          |
| hum NRDRiso    | HYGKAEDRI  | eri.Vatavri.      | hggedilvsna         | AVNEFFOST            | DYTEEVWDK-         |                     |              |
| Ison NEOR Pr-  | HVGRAEDR   | ERL.VATAVKL       | HCGTDILVIN          | AVRPFFGSTR           | <b>DYTEEVWD</b> KI | LDINVKA AL          | MTKAVVPEMER  |
| Rat NEDR Pr-   | HVGKAEDR   | EXI.VNMALKL       | HOGTDILWSNA         | AVMPFFGNLN           | DVTEEVWARS         | L INV ASAN          | MIRAVVPAMEE  |
| nouse NRDR     | HVGKABBRI  | EKLIT TALER       | HQGIDILVSBA         | <b>AVNPPPGNL</b>     | <b>DVTEEVNDK</b>   | IL INVIATAN         | MIKAVVPEMEK  |
| rabbit NRDR    | HVGEARDE   | ERLVATAL          | HOGIDILVSNA         | AVNPFFGKLN           | <b>DVTEEVNDK</b>   | LDINVKAMAL          | mtkavvpemek  |
| Dos NROR       | HVGKAEDB   | ERLVATAVEL        | носурттали          | AVSPPPGSLN           | OVPEEVYDK3         | LDWNVKATAL          | LTKAVVPEMAR  |
| Sus NRDR       | HVGKAEDRI  | ERLVAMAVHL        | HOGYDILWSHA         | AVNPFFGHT            | DATEEVWDKJ         | IYNYKAT VI.         | MTKAVVPEMEK  |
| Consensus      | hvgkaedr   | erlvetevkl:       | hggi dilvsna        | aavnpffg 1m          | ndvteevwdk         | l invka al          | mtkavvpemek  |
|                | 141        | 151               | 161                 | 171                  | 181                | 191                 | 201          |
| haan NRDRiso   |            |                   |                     |                      |                    |                     | LWMDKE       |
| hum NRDR Pr    | ruugosvvi  | VESIAAFSPS        | Por FYNYSKI         | allertk: La          | <b>LIELAPRHIE</b>  | /NULLAPOLI KT       | SFSRALWADKE  |
| Rat NROR Pr    | RGGGSVVI   | VSSVAGEVLE        | PSLGPYNVSKI         | CALLGLTKN A          | ABLAPENIR'         | /MCLAPGLIKT         | HESSVINKERA  |
| IDUSS NRDR     | ROOGSVVI   | V SVAGFTRF        | PSLOPYNVSKI         | ALLOLTKN             | ARLAPICNIR         | MULAFGLIKT          | RESSVLVEREA  |
| rabbit NRDR    | RGGGSVVI   | VASIAAFHPP        | ooloopy nveiki      | falwsltkølj          | LELAAQHIR          | NCLAPGLIKI          | SPSKALWEDKA  |
| Bos NROR       | RGGGSZVI   | VSSTAA¥SPF        | PSLGPYNVSKI         | ALLGLTENLA           | LELAESNYRY         | NCLAFGLINT          | SESEVIWEDPA  |
| SUS NRDR       | ROOPSSVEEL | VSSVGATHPP        | PHLGPYNVSKI         | CALLISL'T MNL P      | VELAPENTES         | /NCLAFGLINT         | *FSQVLWMDRA  |
| Consensus      | " CEESVVI  | vss aaf pf        | p lepynyski         | tallgl thnl a        | a elap nire        | mel <b>apglik</b> t | fs vlw dka   |
|                | 211        | 221               | 231                 | 241                  | 251                | 261                 | 271          |
| haan NRDRisso  | REESMART   | LRI RRLIGEPE      | DCAGLVSFLC:         | edasy i <b>t</b> set | CVVVG-HOTESI       | 8.L.                |              |
| hann NRDR Pr-  | KEESMRET.  | LRIBELGEPE        | DCAGIVSFLC:         | edasvitget           | (VVVQCCTES)        | <b>К</b> Т.         |              |
| Rat NEOR Pr    | REEMIKET   | <b>BOIRRLORPE</b> | DCVGIVSPLCS         | edasyihce1           | (VVVOGGTPSI        | AL.                 |              |
| nousa NRDR     | RENFIKEA   | OIRRIGHPE         | DCAGIVSFLCS         | SEDASYINGE1          | evvviskagtesi      | RL.                 |              |
| maloiot t NRDR | ORKELLOR   | LRIKELSKEE        | REAGEVERIES         | SEDASYITSEI          | EVVVAGGARSE        | <b>K</b> I.         |              |
| Bos NEDR       | ROESIKAT   | FOIRESKPE         | <b>B</b> CAGIVSPLC: | REDASYITGET          | (VVV) 3GELSI       | a.                  |              |
| Sus NRDR       | REYMKES    | LRIRRLOWPE        | DCAGIVSFLCS         | SEDASYITGET          | evvvsogtast        | ۹L.                 |              |
| Consensus      | ree iket   | lrirrl gkpa       | desgivsfler         | codazyitget          | LVVVEEELPSI        | -1                  |              |

图 3 推测的 NRDRiso 及其同源蛋白一级结构比较

Fig. 3 Primary structure comparisons of putative NRDRiso and its homologous protein The proteins compared include human NRDRiso , human NRDR , rat NRDR , mouse NRDR , rabbit NRDR , bovine NRDR (Bos NRDR ) and pig NRDR (Sus NRDR ). All the proteins contain SDR motif TAXXXCXC at position  $20 \sim 27$ , and YXXSK motif except NRDRiso

组数据库的同源性检索,提示该基因定位于人 14 号 染色体,并显示编号为 NT 025892.9 的 Contig 序列对 应其基因组序列,随后观察其基因结构,连接 14 号 染色体的匹配位点,获得了该基因的准确定位,该基 因定位于 14q11.2。

采用基于 UniGene 方式进行电子定位的结果与 其完全一致。RH 定位结果同样支持上述结果(定 位 向 量 为:0210202110 2210111010 0100100000 0111110101 1001110101 1010010210 0111110102 0011110R02 1001010011 001)

基因组结构确定 法于 Blast 软件对人 NRDRiso 的基 因序列和相应的基因组序列进行分析 ,发现NRDRiso 全长 cDNA 序列位于基因组 14 号染色体 humNRDR 基因组( LOCUS NT-025892 )序列上 ,humNRDR 基因 组序列为 52638 bp ,含有 8 个外显子和 7 个内含子 , 所有的内含子/外显子边界均符合典型的 GT/AG 剪 切模式。进一步研究发现人 humNRDR 基因第一外 显子 的上游启动子区域为 79bp , GC 比例为 62.03% ,但是其中未发现 CAAT 或 TATA 调节元件。

### 3 讨论

根据人、小鼠依赖 NADPH 的视黄醇脱氢酶基因的高度保守区设计出一对引物,用 RT-PCR 方法从 人肝组织 cDNA 中扩增出 cDNA 的中间段,然后再根 据中间段序列设计特异性引物分别进行 3'和 5' RACE 得到 cDNA 片段 ,全长为 1003bp ,推测其编码 的蛋白由 174 个氨基酸组成。

对推测的蛋白质序列进行生物信息学分析表 明,该序列与人、小鼠、大鼠、牛、猪等依赖 NADPH 的 视黄醇脱氢酶具有高度的同源性 序列多重对齐分 析表明上述参与比对的序列均含有过氧化物酶体 C-末端靶信号序列 SRL(peroxisomal targeting signal, PTS1),提示推测的依赖 NADPH 的视黄醇脱氢酶剪 接体应该定位于过氧化物酶体。其次,参与对比序 列均含有 SDR 超家族的模序结构。典型的 SDR 超 家族多含有两个高度保守的模序,一是二核苷酸结 合模序 TGXXXGXG,此序列位于 SDR 酶的氨基末 端,参与结合辅酶 NAD(H)或 NADP(H),上述对比 序列均含此模序结构,只不过其中 TG 由 TA 取代, 但此种氨基酸的替代是保守的,并不影响 Rossman 折叠<sup>[17]</sup>;第二个保守模序是 YXXSK,该模序可能是 SDR 族酶的活性部位,可能与酶的催化活性有关,多 数参比序列均含此模序,但人的新克隆 NRDRiso 全 长 cDNA 序列推测的氨基酸序列无此模序,而底物 结合袋(Pocket)的氨基酸的变化或缺失可能会导致 底物特异性发生变化 ,从而决定底物是视黄醇类或 其它<sup>[18]</sup>。因此,上述对比分析提示 NRDRiso 蛋白可 。能是sSDR 超家族成员 但是否具有依赖 NADPH 的。 视黄醇脱氢酶活性还不确定。另外,功能位点分析 表明人 NRDRiso 蛋白含有多个蛋白激酶 ((PKC))酪 氨酸激酶 [](CK2)的磷酸化位点,同时含有多个脂 肪酸酰基化位点,结构功能域分析表明 NRDRiso 在 第13~120位之间含有一典型的 adh-short 结构域。

进一步对此全长 cDNA 序列进行人类基因组 Blast 发现该 cDNA 序列位于 14 号染色体 humNRDR 基因组结构上。NRDRiso 全长 cDNA 经与人类基因 组 Blast 比对表明编码区含有 5 个外显子,与含 8 个 外显子的 humNRDR 全长 cDNA 编码区序列相比, humNRDR 编码区在 355 – 612bp 处比 NRDRiso 多 258 个 bp,且在 355 – 612bp 处比 NRDRiso 多 358 个 bp,且在 355 – 612bp 处比 NRDRiso 多编码 86 个氨基酸,分析以上 2 个序列发现,符合真核生物内 含子/外显子的剪切位点特征,NRDRiso 序列可由 humNRDR 进一步切去连续的 3 个外显子(第 4 *5 ,6* 外显子)及相应内含子而来,这说明在 humNRDR 基 因转录选择性剪接时,除了内含子被切除外,外显子 也发生了选择性剪接。

目前人类基因组草图已基本完成,人类约有 32 000个编码蛋白质的基因,只是线虫或果蝇的2 倍<sup>19]</sup>。人类是怎样完成其复杂的生物功能?越来 越多的证据表明选择性剪接在扩大蛋白的多样性中) 发挥重要作用,并且有助于解释基因数目与生物复 杂程度两者的不一致性。选择性剪接能够从一个基 因产生多个转录本,从而产生远多于基因数目的蛋 白 完成机体的复杂功能及精细调节。根据 ESTs 分 析 在人类 32 000 个基因中大约有 40% 的基因有选 择性剪接的形式 选择性剪接有重要的生物学意义。 现在人们已知道许多基因的前体 mRNA 可能有几百 种 几千种或上万种选择性剪接形式 这些剪接形式 产生的蛋白是功能相关的。相互协调的多个 mRNA 前体的选择性剪接,是基因表达如神经系统的分化 和细胞凋亡的重要组成部分,机体必须对选择性的 剪接位点在时空上进行精细调节。选择性剪接在增 加蛋白多态性和基因在不同时空表达发挥不同的功 能中发挥重要功能。

对于选择性剪接的研究长期以来一直作为分子 生物学方面具有较高价值的领域看待,但与主要领 域如新基因的发现或转录调节的研究相比受到了相 对少的关注,自 1977 年发现腺病毒 hexon 基因的外 显子和内含子<sup>[20]</sup>,Walter Gilbert 提出外显子的不同 组成能剪接在一起("选择性剪接")从而产生一个基 因的不同 mRNA 同工型后<sup>[21]</sup>,到目前为止分子生物 学家仅鉴定了几百种具有选择性剪接的基因,而且 多数通过生物信息学方法,通过得到的 EST 序列进 行电子 PCR 拼接得到,生物实验证实选择性剪接形 式存在及揭示其功能的更是寥寥无几,因此,通过大 量实验证实选择性剪接的形式,功能鉴定以及选择 性剪接的调节是今后研究的主要方向。由此可见, 对我们克隆的 NRDRiso 的全长 cDNA 与依赖 NADPH 的视黄醇脱氢酶/还原酶基因选择性剪接形式及调 节的研究,必将对多组织完整基因组序列选择性剪 接提供重要的生物实验信息,并且有助于阐明细胞、 组织和发育的不同阶段基因等表达的调节和生命本 质。

此外 我们在以人、小鼠依赖 NADPH 的视黄醇 脱氢酶基因(NRDR)的高度保守区设计引物扩增新 的 DNA 片段的同时,用该引物在人、小鼠及兔肝的 依赖 NADPH 的视黄醇脱氢酶基因中也找到了约 300bp的高度保守区,以此片段设计引物在大鼠及 牛肝中同样获得了 300bp 左右的片段,此依赖 NAD-PH 的视黄醇脱氢酶(NRDR)在多种哺乳动物组织基 因中有高度保守序列 ,表明其可能在多种动物体内 维甲酸的合成方面具有基本的、重要的生理功能。 另外, NRDRiso 蛋白与果蝇 3-hydroxyacyl-CoA dehydrogenase type II ( Type II HADH ) ( Scully protein ), 低等生物拟南芥菜 3-oxoacyl[ acyl-carrier-protein ] reductase 线虫 hypothetical protein F36H9.3 ,大肠杆菌 probable 3-oxoacyl-[ acyl-carrier-protein ] reductase ,酵母 SPORULATION PROTEIN SPS19 比对同源性也很高, 表明此酶在基因演变过程中具有相对保守性。因此 对 NRDR 和 NRDRiso 酶现有已知序列结构和功能的 关系进行深入研究 进一步挖掘新的功能 :另外继续 寻找新的有价值的成分,必将会为体内维甲酸的合 成过程提供新的视点。

#### REFERENCES(参考文献)

- [1] Moore T. Vitamin A. Elsevier , New York , 1957
- [2] Wolf G. Multiple functions of vitamin A. Phyisool Rev ,1984 , 64 873 - 937
- [3] Sucov HM, Evans RM. Retinoic acid and retinoic acid receptors in development. *Mol Neurobiol*, 1995, 10:169-184
- [4] Chambon P. A decade of molecular biology of retinoic acid receptors. FASEB J ,1996, 10 940 – 954
- [5] Maden M. Vitamin A in embryonic development. Nutr Rev ,1994 ,52: S3 - S12
- [6] Morriss-Kay GM, Sokolova N. Embryonic development and pattern formation. FASEB J, 1996, 10 961 – 968
- [7] Semba RD. The role of vitamin A and related retinoids in immune
- © 中国與磁源微型物研究用98刊频合编辑部8 http://journals.im.ac.cn

4期

- [9] Napoli JL, Posch KC, Burns BD. Microsomal retinal synthesis : retinol vs. holo-CRBP as substrate and evaluation of NADP, NAD and NAD-PH as cofactors. *Biochim Biophys Acta*, 1992, 1120:183 – 186
- [10] Chai XY, Boerman MHEM, Zhai Y et al. Cloning of a cDNA for liver microsomal retinol dehydrogenase. J Biol Chem, 1995, 270:3900 – 3904
- [11] Boerman MHEM, Napoli JL. Characterization of a microsomal retinol dehydrogenase : A short-chain alcohol dehydrogenase with integral and peripheral membrane forms that interacts with holo-CRBP (Type I). *Biochemistry*, 1995, **34** 7027 – 7037
- [12] Chai XY, Zhai Y, Popescu G et al. Cloning of a cDNA for a second retinol dehydrogenase type II. J Biol Chem ,1995 270 28408 – 28412
- [13] Chai XY, Zhai Y, Napoli JL. Cloning of a rat cDNA encoding retinol dehydrogenase isozyme type []]. Gene ,1996, 169 219 – 222
- [14] Gregg D. Families of retinoid dehydrogenases regulating vitamin A

function production of visual pigment and retinoic acid. Eur J Biochem 2000 267 4315 - 4324

- [15] Huang DY, Ichikawa Y. Purification and characterization of a novel cytosolic NADF( H)-dependent retinol oxidoreductase from rabbit liver. *Biochem Biophys Acta*, 1997, **1338**(1) 47 – 59
- [16] Subramani S. Components involved in peroxisome import, biogenesis, proliferation, turnover, and movement. *Physiol Rev*, 1998, **78**:171-188
- [ 17 ] Taylor WR. The classification of amino acid conservation. J Theor Biol 1986 119 205 – 218
- [ 18 ] Duax WL, Griffin JF, Ghosh D. The fascinating complexities of steroid-binding enzymes. Curr Opin Struct Biol, 1996, 6 6 813 - 823
- [19] Venter JC et al. The sequence of the human genome. Science, 2001 291 :1304 – 1352
- [20] Sambrook J. Adenovirus amazes at Cold Spring Harbor. Nature, 1977, 268 :101 – 104
- [21] Gilbert W. Why genes in pieces? Nature ,1978 , 271 501

## Sequencing and Bioinformatic Analysis of NRDRiso cDNA

DU Jing<sup>1 2\*</sup> LIU Ge-Fei<sup>2</sup> WANG Gui-Ling<sup>2</sup> XU Xiao-Lin<sup>2</sup> WANG Bo<sup>2</sup> ZHU Li<sup>2</sup> <sup>1</sup>(Department of Biochemistry, Shenyang Medical College, Shenyang, 110034, China)

<sup>2</sup>(Department of Cell Biology, China Medical University, Shenyang, 110054, China)

**Abstract** This study describes the cDNA sequencing and the bioinformatic analysis of a novel NADE (H) dependent retinol dehydrogenase/reductases isoform (NRDRiso). Based upon the concensus sequences of human and mouse NRDR coding region, we have identified a short 377 bp RT-PCR product from human liver tissue. The cDNA sequence of a NRDR isoform was then isolated using RACE approach and its sequence was analysed. The full-length cDNA is 1  $\mu$ 03bp in length and was submitted to Gen-Bank as NADP-dependent retinol dehydrogenase /reductase short isoform (NRDRiso). The open reading frames of NRDRiso cD-NA is 525 bp.

Key words NRDRiso , cDNA sequence , Alternative splicing , Bioinformatics

Received  $\div 09\text{-}19\text{-}2003$ 

 $<sup>\</sup>ast~$  Corresponding author. Tel :86-21-62934830 ; E-mail : Dujing1106@sohu.com