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Transgenic Rice Breeding for Abiotic Stress Tolerance—
Present and Future
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Abstract Environmental stresses and the continuing deterioration of arable land along with an explosive increase in world
population pose serious threats to global agricultural production and food security. Improving the tolerance of the major crop
plants to abiotic stresses has been a main goal in agriculture for a long time. As rice is considered one of the major crops the
development of new cultivars with enhanced abiotic stress-tolerance will undoubtedly have an important effect on global food
production. The transgenic approach offers an attractive alternative to conventional techniques for the genetic improvement of rice
cultivars. In recent years an array of stress-related genes has already been transferred to rice to improve its resistance against
abiotic stresses. Many transgenic rice plants with enhanced abiotic stress-tolerance have been obtained. This article focuses on

the progress in the study of abiotic stress tolerance in transgenic rice breeding.
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Table 1 Transgenic rice carrying abiotic stress — related genes
Gene Enzyme/protein encoded Phenotypic expression
ABF3 Transcription factor Increased tolerance to drought stress
ADC Arginine decarboxylase Increased salt and drought tolerance *~°
AgNHX1 Vacuolar Na* /H* antiporter Enhanced salt tolerance ©
Aldh2a Aldehyde dehydrogenase Submergence tolerance
Calcineurin A ;az}r -and ‘calmodulin—dependent Improved salt stress tolerance 8
serine/threonine phosphatase
CAT + GST Catalase + Glutathione S-transferase Improved salt paraquat ° and chilling stress resistance '
CBF3 C-repeat/dehydration-responsive element binding factor 3 Elevated tolerance to drought and high salinity >
cbnA Chlorocatechol dioxygenase Degrade chloroaromatic compounds !
codA Choline oxidase glycine betaine synthesis Higher tolerance to salinity and cold =1
codA Choline oxidase glycine betaine synthesis Higher tolerance to salinity *
CYP2B6 A cytochrome P450 monooxygenase Detoxified various classes of herbicides
Serritin A protein that store large amouints of iron Higher iron level =1
GPAT Glycerol-3-phosphate acyltransferase Improved chilling stress resistance 7
GS2 Chloroplastic glutamine synthetase Enhanced salinity resistance and chilling tolerance '*
GS Glutamine synthetase Tolerant to nitrogen deficiency '
GST Glutathione S-transferase Improved abiotic stress resistance »
hsp101 Heat shock protein 101 Improved high temperature tolerance 2!
HVA1 Group 3 LEA protein Higher tolerance to drought and salinity stresses 2
MnSOD Manganese superoxide dismutase Improved drought tolerance *
L . . Increased Fe efficiency phytosiderophores secretion and grain
naat Nicotianamine aminotransferase . o4
yield
OsCDPK7 Regulatory factor Tmproved cold ~ salinity and drought tolerance » =2
OsMAPKS Mitogen-activated protein kinase Higher tolerance to drought salt and cold stresses >’
OsNHX1 Vacuolar Na* /H* antiporter Enhanced salt tolerance 2
OsPTF1 Transcription factor Tolerance to phosphate starvation »
OsA OtsB Trehalose-6-phosphate synthase Higher level tolerance to abiotic stresses **
trehalose-6-phosphate phosphatase
PEPC Phosphoenolpyrusate carboxylase Enhanced stre?s' tolerance photf)syn.thetic c'a'pacit3y 7and yield
under photoinhibitory and photooxidative conditions *' =
PHYA Phytochrome Altered plant architecture and increased grain yield ¥
o Enhanced stress tolerance  photosynthetic capacity and yield
PPDK Pyruvate orthophosphate dikinase Lo L .. m
under photoinhibitory and photooxidative conditions
Protox Protoporphyrinogen oxidase Higher resistance to herbicide 3~
samde S — adenosylmethionine decarboxylase Higher polyamines level and salt tolerance *
S0D2 Plasma membrane Na* /H* antiporter Increased salinity tolerance ¥
SsNHX 1 Vacuolar Na* /H* antiporter Enhanced salt tolerance 3

SsNHX1 + AVP1

TPSP

Vacuolar Na* /H* antiporter + vacuolar H* -PPase

Bifunctional fusion of trehalose-6-phosphate T-6-P  synthase

TPS and T-6-P phosphatase TPP

Enhanced salt tolerance *

Increased trehalose accumulation and abiotic stress tolerance

without stunting growth under stress conditions
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OsNHX1  NHX1 from Oryza sativa L.
NHX1 from Atriplex gmelini C.A.Mey *°

AgNHX1

SOD2 a
plasma membrane Na* /H" antiporter from Schizosacchar-

SsNHX1 NHX1 from Suaeda salsa

omyces pombe

L. *
SOD?2 P-ATPase = SsNHXI1
V-ATPase
Na*/H*
Na* /H*
300mmol/L NaCl
150mmol/L NaCl SsNHX 1 AVP1
Arabidopsis vacuolar H* -PPase
SsNHX 1 ?

41

Sakamoto 2

Arthrobacter globiformis ~ codA choline oxidase
ChICOD plants
CytCOD plants

ChlCOD
CytCOD
Mohanty "
150mmol/L

NaCl

ADC  Arginine
decarboxylase ¢cDNA ADC

4

Capell Thu-Hang %

samdc Datura stramonium S-

adenosylmethionine decarboxylase ¢DNA

2 L. .
Escherichia coli

otsA otsB

30

Jang
TPSP bifunctional fusion of the TPS and TPP
2
c4
C3
Ku PEPC  phosphoenolpyruvate
carboxylase

PEPC  PPDK pyruvate orthophosphate dikinase
2
PEPC
PS1l

PEPC  PPDK
C4

32
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Ariizumi " Fe 3 Drakakaki
GPAT  glycerol-3-phosphate S ferritin
acyltransferase 2 Serritin -~ mRNA
ICAP
hsp101  Athsp101 inductively coupled argon plasma
cDNA Fe
21
4
6
Bacillus subtilis Protox  Protoporphyrinogen
OsCDPK7 Ca’* -dependent protein kinase oxidase Lee % B.
/ subtilis Protox
Saijo OsCDPK7 oxyfluorfen
OsCDPK'7 / Protox Protox
» /
Shimizu " Ralstonia
CDPK eutropha NH9 ¢bnA  chlorocatechol dioxygenase
OsCDPK2 CDPK isoform 3-chlorocatechol
0sCDPK2 2-chloromucote
3% ~ 1%
CDPK chloroaromatic compounds
“®  CBF3  ABF3
ABA ABA Oh
} CBF3 Suaeda salsa 1.. ¢cDNA
Glutathione S-transferase EC 2.5.1.18
CBF3 - GST Catalase EC 1.11.1.6
ABF3 CAT1 *7% GST  GST + CAT1
92 10
GST + CAT1
5 H,0, MDA malon
dialdehyde
30% pH GST  CAT
Fe
Fe
naat nicotianamine aminotransferase
Fe
Fe Fe SsNHX1 — AVP1
4.1 SsINHX 1
* Goto ferritin GST
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CAT1 GST
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2
3
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