一种快速提取质粒 DNA 用于鉴别重组克降的方法

A Rapid Method for Preparation of Plasmid DNA for **Screening Recombinant Clones**

郭旭东 毛舒燕 侯冬霞 旭日干*

GUO Xu-Dong, MAO Shu-Yan, HOU Dong-Xia and BOU Shorgan*

内蒙古大学哺乳动物生殖生物学及生物技术教育部重点实验室 呼和浩特 010021

The Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot 010021, China

介绍了一种利用过夜培养的菌液瞬时提取质粒 DNA,并用于电泳鉴别含有插入子克隆的方法。事先无需准备许多 繁琐的相关试剂 提取质粒的全过程只需 3 ~ 5min 就可完成 非常适合于做重组克隆的快速鉴别。

质粒 DNA,酚/氯仿/异戊醇,重组克隆

文章编号 1000-3061(2007)01-0176-03 文献标识码 A 中图分类号 0784

Abstract A simple and rapid method for preparation of plasmid DNA from overnight incubation was introduced. It does not require any additional reagents; the incubation mixture containing recombinant plasmid DNA was just mixed with H₂O and phenol/chloroform/isoamyl alcohol in certain ratio. After vortexing and spinning of the mixture, the supernatant could be directly loaded onto agarose gel and analyzed using electrophoresis. The whole preparation requires only 3 ~ 5 minutes. So to quickly screen recombinant clones, this method is better compared with traditional methods.

Key words plasmid DNA, phenol/chloroform/isoamyl alcohol, recombinant clones

从宿主菌中提取质粒 DNA 用于克隆的初步筛 选是基因工程的一项基本工作。经典的提取质粒 DNA 方法包括 SDS 碱裂解法、煮沸裂解法以及氯化 铯密度梯度离心等1]。从上世纪90年代开始,大量 层析树脂试剂盒的出现的确极大地提高了基因工程 的工作效率。但是在利用试剂盒精确提取质粒 DNA之前,仍然需要初步的筛选。这样既节省时 间 又节约了试剂盒的用量。虽然有一些实验室曾 提出经过改进的快速提取质粒的方法2-61,但是过 程仍然很繁琐 或者需要准备许多相关的溶液和试 剂。本文介绍一种能够快速提取质粒的方法,极大 地提高了筛选克隆的工作效率。而且经过多次实 践 在不同宿主间比较证明该方法的结果稳定可靠。

材料与方法 1

1.1 实验材料

- 菌株:宿主菌 E. coli DH5a、JM109 以及 Top10 均为本室保存:质粒为常用高拷贝数的克隆 载体(pUC18、pMD19T、pGEM-7Zf+等)。
- 1.1.2 试剂:不含 DNA 酶的无菌水 酚/氯仿/异戊醇 (25:24:1),10 × Loading Buffer 0.8%琼脂糖凝胶。

Received: August 15 2006; Accepted September 21 2006.

This work was supported by the grants from the National "863" program (No. 2002AA242061) and the Natural Science Foundation of Inner Mongolia (No.

^{*} Corresponding author. Tel: +86-471-4992890; E-mail: xrg@xzwlzx.imu.edu.cn

1.2 方法与步骤

- 1.2.1 分别挑取若干含有转化重组质粒的 DH5α、 JM109 和 Top10 单菌落 ,以及空质粒对照 ,分别接种于 3mL 含抗生素的 LB 培养液中 ,37 $^{\circ}$ C 摇床培养约 12 $^{\circ}$ 16h。
- 1.2.2 依次取细菌培养液 80μ L、无菌水 20μ L、酚/氯 仿/异戊醇 25:24:1) 80μ L 和 $10 \times$ Loading Buffer 20μ L (按体积比例 4:1:4:1)混合于 1.5mL 离心管中 ,激 烈振荡 1min。
- 1.2.3 12000r/min 离心 1min。
- **1.2.4** 上清 30μL 直接点样 .0.8% 琼脂糖凝胶电泳 100V 45min 后观察结果。

2 结果与讨论

本方法是利用菌液加一定量的水后渗透压的改变 进而促使大肠杆菌细胞膜、壁破裂 ,释放出内含物。再利用酚/氯仿/异戊醇试剂抽提 ,沉淀大部分蛋白质等杂质 ,使分离出的 DNA 直接溶在水相中而完成的。

获取质粒的量可按制备比例(4:1:4:1)扩大或缩小。按照本文叙述的量制备,可获取大约 120 µL的质粒上清液。

上述方法是笔者所使用最快的、粗制质粒 DNA 的方法 样品制备过程只需要 3~5min。非常适合于重组质粒的初步筛选。而且所需要的实验试剂简单 ,只需要酚/氯仿/异戊醇试剂 ,无需配制其他溶液。该方法结果与煮沸法^[4]、碱法快速提取^[5]等比较 ,同样可以得到较清晰、明确的电泳结果(见图 1、

图 1 插入子大小为 $\sim 1 \text{kb}$ 的质粒电泳结果 (宿主菌为 E.coli DH5 α)

Fig.1 Electrophoresis result of plasmid samples containing insertion around 1kb

#6 is vector control , # 11 is DNA marker λ DNA $\mathit{Hind} \ | \ | \ |$ digest. Others are candidate clones.

2,3 %

但是该方法的不足之处:一是电泳结果中条带较多,不仅含有质粒 DNA,而且还有宿主基因组DNA以及RNA等,容易干扰电泳结果。所以电泳中设置同样方法制备的空质粒对照尤显重要。二是样品只用于快速甄别含有插入子的克隆质粒,而不能用于其他用途的实验。比如进一步的限制性内切酶分析以及测序反应等。而且经过放置一定时间,样品条带将逐渐被降解。所以制备样品后即刻上样电泳十分必要。

图 2 p19TKI 克隆(插入子大小约为 2.5kb) 的电泳筛选结果(宿主菌为 *E.coli* Top10)

Fig. 2 Electrophoresis result of plasmid samples which contain insertion around 2.5kb

#6 is vector control , #11 is DNA marker λ DNA $\mathit{Hind} \ |\!\!|\!\!|\!\!|\!\!|}$ digest. Others are candidate clones.

图 3 p19TKI 克隆(插入子大小约为 2.5kb) 的电泳筛选结果(宿主菌为 $E.coli\ JM109$)

Fig. 3 Electrophoresis result of plasmid samples which contain insertion around 2.5kb

#6 is vector control , #11 is DNA marker λ DNA *Hind* Ⅲ digest. © 中国科学院微生物研究所期刊联合编辑部 http://journals.im.ac.cn Others are candidate clones.

REFERENCES(参考文献)

- Sambrook J , Russell DW. Molecular Cloning: A Laboratory Manual. 3rd ed. New York: Cold Spring Harbor Laboratory Press, 2001,
 - pp.26 66.

- 96.

- Macneil DJ. A flexible boiling procedure for isolating plasmid DNA from gram-positive microorganisms. J Microbiol Methods, 1986, 5:
- 115 123. Ortlepp SA. An improved boiling method for the preparation of bacterial plasmid and phage DNA. Gene Anal Tech, 1989 6 5) 93

- Majumdar MK, Williams DA. Minipreparations of plasmid DNA directly from cell culture by the boiling method. Biotechniques, 1992 . 13(3) 366.
 - Feliciello I, Chinali G. A modified alkaline lysis method for the preparation of highly purified plasmid DNA from Escherichia coli.

Anal Biochem 1993 212 2 3 394 - 401.

- [6]
- Bimboim HC, Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research, 1979 , 7(6): 1513 - 1523.
 - © 中国科学院微生物研究所期刊联合编辑部 http://journals.im.ac.cn