生 物 工 稈 报 Chinese Journal of Biotechnology http://journals.im.ac.cn/cjbcn DOI: 10.13345/j.cjb.190038

生物育种与工艺优化。

堂

天蓝色链霉菌海藻糖合酶的异源表达、活性分析及重组 菌全细胞转化合成海藻糖的条件优化

吴傲,张显,徐美娟,杨套伟,李华钟,饶志明

江南大学 生物工程学院 工业生物技术教育部重点实验室, 江苏 无锡 214122

吴傲, 张显, 徐美娟, 等. 天蓝色链霉菌海藻糖合酶的异源表达、活性分析及重组菌全细胞转化合成海藻糖的条件优化. 生物工程学报, 2019, 35(7): 1348-1358.

Wu A, Zhang X, Xu MJ, et al. Heterologous expression of Streptomyces coelicolor trehalose synthase and whole-cell biocatalyst production of trehalose in *Escherichia coli*, Chin J Biotech, 2019, 35(7): 1348–1358.

要:从天蓝色链霉菌 Streptomyces coelicolor 克隆得到海藻糖合酶基因 (ScTreS),在大肠杆菌 Escherichia coli 摘 BL21(DE3) 中进行了异源表达, 通过 Ni-NTA 亲和柱对表达产物进行分离纯化得到纯酶, 经 SDS-PAGE 测定其分子 量约为 62.3 kDa。研究其酶学性质发现该酶最适温度 35 ℃;最适 pH 7.0,对酸性条件比较敏感。通过同源建模和 序列比对分析, 对该基因进行定点突变。突变酶 K246A 比酶活比野生酶提高了 1.43 倍, 突变酶 A165T 相对提高了 1.39 倍,海藻糖转化率分别提高了14%和10%。利用突变体重组菌K246A进行全细胞转化优化海藻糖的合成条件并 放大进行 5 L 罐发酵,结果表明:在麦芽糖浓度 300 g/L、初始反应温度和 pH 分别为 35 ℃和 7.0 的条件下,转化率最 高达到 71.3%, 产量为 213.93 g/L; 当底物浓度增加到 700 g/L 时,海藻糖产量仍可达到 465.98 g/L。

关键词:海藻糖合酶,克隆表达,定点突变,全细胞转化

Heterologous expression of *Streptomyces coelicolor* trehalose synthase and whole-cell biocatalyst production of trehalose in Escherichia coli

Ao Wu, Xian Zhang, Meijuan Xu, Taowei Yang, Huazhong Li, and Zhiming Rao

Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China

Abstract: The trehalose synthase (ScTreS) gene from Streptomyces coelicolor was successfully cloned and heterologously

中央高校基本科研业务费专项资金 (No. JUSRP51708A),江苏高校优势学科建设工程,江苏高校品牌专业建设工程资助项目资助。 网络出版时间: 2019-06-10 网络出版地址: http://kns.cnki.net/kcms/detail/11.1998.q.20190610.1002.001.html

Received: January 19, 2019; Accepted: March 13, 2019

Supported by: Foundamental Research Funds for the Central Universities (No. JUSRP51708A), the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, Top-notch Academic Programs Project of Jiangsu Higher Education Institutions. Corresponding authors: Huazhong Li. E-mail: hzhli@jiangnan.edu.cn

Zhiming Rao. Tel: +86-510-85916881; E-mail: raozhm@jiangnan.edu.cn

expressed in *Escherichia coli* BL21(DE3). The protein purified by Ni-NTA affinity column showed an apparent molecular weight (M_W) of 62.3 kDa analyzed by SDS-PAGE. The optimum temperature of the enzyme was 35 °C and the optimum pH was 7.0; the enzyme was sensitive to acidic conditions. By homologous modeling and sequence alignment, the enzyme was modified by site-directed mutagenesis. The relative activities of the mutant enzymes K246A and A165T were 1.43 and 1.39 times that of the wild type, an increased conversion rate of 14% and 10% respectively. To optimize the synthesis conditions of trehalose, the mutant strain K246A was cultivated in a 5-L fermentor and used for whole-cell transformation. The results showed that with the substrate maltose concentration of 300 g/L at 35 °C and pH 7.0, the highest conversion rate reached 71.3%, and the yield of trehalose was 213.93 g/L. However, when maltose concentration was increased to 700 g/L, the yield of trehalose can reach 465.98 g/L with a conversion rate of 66%.

Keywords: trehalose synthase, clone and expression, site-directed mutagenesis, whole-cell conversion

海藻糖 (α-D-吡喃葡萄糖基-(1→1)-α-D-吡喃葡 萄糖苷) 是一种安全稳定的天然非还原性二糖^[1], 广 泛存在于细菌、酵母和蘑菇等真菌、藻类、昆虫及 无脊椎动物中^[2]。海藻糖具有保湿性、抗冻抗干燥 性,对酸热高度稳定等理化性质和对生物大分子的 非特异性保护等生物学功能^[3],可作为抗体疫苗和 酶的干燥稳定剂,抑制脂肪酸化、防腐的食品添加 剂,表面活性剂以及培育抗旱转基因植物的媒介^[4] 等,在医学、化妆品、食品、农业等行业起着重要 作用,具有广阔的应用前景和市场。海藻糖的产量 现状仅能基本满足国内市场需求,且大部分被国外 垄断,国内的生产工艺、产量和产品纯度等都还具 有很大的提升空间。

目前海藻糖的产业化生产主要通过以下 3 种 酶转化法实现:1)磷酸化酶法^[5-6];2)双酶法—— 麦芽寡糖基海藻糖合成酶和麦芽寡糖基海藻糖水 解酶^[7-8];3)海藻糖合成酶法^[9-10]。其中方法一需 要消耗价格昂贵的高能磷酸化合物 UDP-葡萄糖 和 6-磷酸葡萄糖,生产成本高,无法大规模生产; 方法二是目前工业化运用最多的方法之一^[11],效 率远高于早期的发酵和酵母提取等方法^[12],但同 时也存在着低聚糖积累、反应成分复杂、工艺要 求较高的弊端;方法三是通过海藻糖合成酶的分 子内转糖苷作用将麦芽糖转化为海藻糖,底物专 一性强,具有途径简单、生产原料廉价、产物简 单等优点,是酶法生产中最理想的工业化生产方 法,也是一直以来的研究热点。众多不同来源的 海藻糖合酶陆续被发现,性质和三维结构也被解 析,不断有学者尝试以分子手段如定向进化和基 于结构的定点诱变等方法来解决和突破海藻糖合 酶稳定性低、转化率不高等限制实际生产应用的 瓶颈^[13]。其中取得显著效果的有 Chou 等以已知 耐高温海藻糖合成酶序列为参考,将 Picrophilus torridus 来源的海藻糖合酶 (PTTS)中部分氨基酸 残基替换突变为脯氨酸得到的突变体 N503P. PTTS,海藻糖产量提升了 1.3 倍,而且在 65 ℃条 件下的相对活力比野生型提高了 39%^[14]。还有王 青艳等对褐色喜热裂孢菌 Thermobifida fusca海藻 糖合成酶保守氨基酸残基进行的定点突变,突变 酶比活力提高了 1.25 倍^[15]。

文中将来源于天蓝色链霉菌的海藻糖合酶 基因 (TreS) 在大肠杆菌 Escherichia coli 中进 行过表达,得到了重组酶 ScTreS,针对其酶学性 质进行初步研究,并结合同源建模得到的海藻糖 合酶预测结构和多序列比对结果,对 TreS 保守 区和活性中心附近的一些氨基酸进行定点突变, 筛选得到了性能提高的突变体。进一步对野生型 和突变体的酶学性质进行了对比分析,同时优化 了突变体重组菌全细胞转化合成海藻糖的反应 条件,为海藻糖合酶的工业化生产应用提供了实 验基础。

1 材料与方法

1.1 材料

1.1.1 菌株与质粒

天蓝色链霉菌 Streptomyces coelicolor 购自广

东省微生物菌种保藏中心。大肠杆菌 E. coli BL21 (DE3) 和质粒 pET-28a 由本实验室保藏。

1.1.2 酶和试剂

EcoR I、Hind III限制性内切酶、DNA 聚合 酶和 Dpn I 等购自 TaKaRa 公司。高保真 PCR 酶、 同源重组酶克隆试剂盒购自南京诺维赞生物科技 有限公司;琼脂糖凝胶 DNA 回收试剂盒、小量 质粒提取试剂盒、细菌 DNA 基因组提取试剂盒 购于上海捷瑞生物工程有限公司;卡那霉素、异 丙基-β-D-硫代半乳糖苷 (IPTG) 购自生工生物 工程 (上海)股份有限公司;麦芽糖一水合物、 葡萄糖、海藻糖二水合物等其他分析纯试剂均购 自国药集团化学试剂有限公司。

1.1.3 培养基

天蓝色链霉菌培养基:可溶性淀粉 20 g/L, KNO₃ 1 g/L, K₂HPO₄ 0.5 g/L, MgSO₄·7H₂O 0.5 g/L, NaCl 0.5 g/L, FeSO₄ 0.01 g/L, pH 7.2–7.4。 LB 液体培养基: 胰蛋白胨 10.0 g/L, 酵母粉 5.0 g/L, NaCl 10.0 g/L。

TY 培养基: 酵母粉 8.0 g/L, 甘油 10.0 g/L, 胰蛋白胨 12.0 g/L, K₃PO₄ 4.02 g/L, NaCl 3 g/L, 一水合柠檬酸 2.1 g/L, 柠檬酸铁铵 0.3 g/L, (NH₄)₂SO₄ 2.5 g/L, MgSO₄·7H₂O 0.5 g/L, pH 7.2。

1.2 方法

1.2.1 基因提取和引物设计

天蓝色链霉菌基因组的提取按照细菌基因组提取试剂盒的方法完成。

通过对 NCBI 上已有的链霉菌来源的海藻糖 合酶基因进行多序列比对,设计并合成同源臂引 物 ScT-F 与 ScT-R,序列参见表 1。

1.2.2 基因的克隆和重组表达载体构建

以提取的基因组为模板,使用引物 ScT-F 和 ScT-R 扩增,将纯化得到的 PCR 产物与用 *Eco*R I 和 *Hind* III酶切回收的 pET28a 载体以一定比例

表 1 本研究中使用的引物

Table 1Primers used in this study

Primer name	Primer sequence $(5'-3')$	Size (bp)
ScT-F	TGGGTCGCGGATCCGAATTCATGATCGTCAACGAGCCCGT	40
ScT-R	TCGAGTGCGGCCGCAAGCTTTCAGGCGGCGTCCTTGCGCA	40
K246A-F	CTCAAGCGGGTCCGC <u>GCA</u> GAGATCGACGCCCACTA	35
A165T-F	TTCGTCGACACCGAG <u>ACG</u> TCCAACTGGACCTTCGA	35
F178Y-F	GTCCGCAAGCAGTACTACTTCCACCGCTTCTTCTC	35
F179W-F	CGCAAGCAGTACTTCTGGCACCGCTTCTTCTCCCA	35
Q125A-F	AACCACACCAGCGAC <u>GCA</u> CACCCGTGGTTCCAGGA	35
I361A-F	CGCGCCAACATCGGT <u>GCA</u> CGCAGGCGCCTCGCCCC	35
T169S-F	GAGGCCTCCAACTGG <u>AGC</u> TTCGACCCGGTCCGCAA	35
E340D-F	GAAATGGTCACCGAC <u>GAC</u> GAACGCGACTACATG	33
L76A-F	CCGCCCTTCTTCAAG <u>GCA</u> CCGCTGAGGGACGGCGG	35
D188A-F	TTCTCCCACCAGCCG <u>GCA</u> CTCAACTACGAGAACCC	35
E331A-F	CTGCGCAACCACGAC <u>GCA</u> CTGACCCTCGAAATGGT	35
pET28a-2254-R	GCCTTACTGGTTAGCAGAATG	21

The italic sequences are the homologous arm and the underlined sequences are the mutated sites.

混合用同源重组试剂盒进行连接。最后将连接产物转化入 *E. coli* BL21 (DE3) 感受态细胞中,在 LB 固体平板培养,菌落 PCR 筛选鉴定后挑取阳 性转化子至 LB 液体培养基中培养,并提取得到 重组质粒 pET28a-ScTreS 送至上海瑞迪生物科技 有限公司测序,验证是否成功构建重组菌株。

1.2.3 突变位点的选择和突变体的构建

根据海藻糖合酶氨基酸序列,采用 http://swiss model.expasy.org 网站服务器进行海藻糖合酶三 维结构的构建,并与不同来源的海藻糖合酶氨基 酸序列进行比对分析。本着以侧链最短且不带电 荷的丙氨酸或其他相应关键氨基酸残基替换的原 则,分别选择 L76、Q125、A165、T169、F178、 F179、D188、K246、E331、E340、I361 位点进 行突变。突变引物参见表 1。

定点突变选择以大引物 PCR 定点突变的方法^[16-18] 进行。以野生型的重组表达质粒 pET28a-ScTreS 为模板使用高保真酶进行 PCR 反应。在上游引物 中引入突变点,下游引物采用质粒 pET28a 上下游 的一段序列作为通用引物 (pET28a-2254-R),第一 步 PCR 反应扩增的产物作为含有突变序列的大片 段引物,在第二步 PCR 反应中再次变性延伸得到含 完整突变基因的全长质粒。反应条件:95℃预变性 3 min;95℃变性 30 s,55℃退火 1 min,72℃延 伸 3 min,5个循环;95℃变性 30 s;68℃延伸 6 min, 20 个循环;68℃充分延伸 12 min。反应结束用 *Dpn* I 消化 PCR 产物中的模板之后将其转化 *E. coli* BL21 (DE3)。挑取菌落 PCR 鉴定结果阳性的转化子 送上海瑞迪生物科技有限公司进行测序。

1.2.4 TreS 酶的表达和纯化

由-40 ℃冰箱取出菌种,于固体 LB 平板划线 活化,挑取单菌落接入含有卡那霉素 (50 µg/mL) 抗性的 10 mL LB 培养液中。37 ℃过夜培养后按 照 1% (*V*/*V*)的接种量转接入含相同浓度抗生素 的 50 mL LB 培养基中继续培养 2-3 h,待 *OD*₆₀₀ 达到 0.6-0.8 时加入终浓度为 0.5 mmol/L 的 IPTG, 16 ℃过夜培养。离心收集菌体,用 50 mmol/L 磷 酸钠缓冲液 (pH 7.0)洗涤菌体并悬浮。超声破碎 (破碎 1 s,间隔 3 s,共破碎 8-10 min),12 000 r/min 低温离心 20 min,取上清得重组菌粗酶液。

将粗酶液用 0.2 μm 滤膜过滤处理,通过 Ni-NTA 亲和层析,利用不同浓度的咪唑进行梯度 洗脱获得纯化蛋白。并采用 Bradford 法测定蛋白 浓度^[19-20]。

1.2.5 酶活测定

反应体系包含 100 g/L 麦芽糖, 50 mmol/L 的 pH 7.0 磷酸钠缓冲液, 30 μg 纯酶, 35 ℃水浴保 持 1 h, 沸水浴 10 min 终止反应。使用 HPLC 法 检测酶活。高效液相色谱检测条件为: RID 检测 器, NH2 柱 (Agilent 5 μm, 4.6 mm×250 mm), 流 动相为 80%乙腈, 流速 1 mL/min, 柱温 40 ℃。

酶活定义为:每1 min 生成1 μmol 海藻糖的 酶量为1个酶活力单位。

1.2.6 酶学性质

酶的最适反应温度和最适反应 pH:分别在 25℃、30℃、35℃、40℃、45℃温度下测定海 藻糖合酶的酶活,分析获得酶的最适反应温度。 分别在不同 pH 5.5、6.0、6.5、7.0、7.5、8.0 的反 应体系下测定海藻糖合酶的酶活,研究酶的最适 反应 pH。

酶的热稳定性:取适量纯酶液在35 ℃、40 ℃、 45 ℃保温一定时间后取样检测其残余酶活力,考 察酶的热稳定性。

1.2.7 突变体的发酵罐培养及全细胞转化生产海 藻糖

将突变体 BL21/pET28a-K246A 按 1.2.4 方法活 化并转接入 50 mL LB 大瓶,培养 5–6 h 后接种至 装有 2.5 L TY 培养基的 5 L 发酵罐中低转速培养, 待菌体浓度 *OD*₆₀₀ 达到 18–20 时,添加 0.2 mmol/L 的 IPTG, 28 ℃高转速诱导培养 12 h 左右,发酵 液用 6 000 r/min 离心 30 min,去除上清,收集菌体,进行全细胞转化优化反应条件。

2 结果与分析

1352

2.1 基因克隆及重组载体构建

提取天蓝色链霉菌基因组作为模板 PCR 扩 增目的基因 *TreS*。按 1.2.2 方法构建重组菌,并 送样基因测序得到 *TreS* 序列,核酸大小 1 701 bp (图 1A), GenBank 的 Protein ID 为 AZQ37515.1。

2.2 突变位点的选择

同源建模及利用 Discovery Studio 以麦芽糖 为配体,进行分子对接结果见图 2。海藻糖合成 酶具有典型的 (β/α)₈桶装催化结构域,底物结合

图 1 Streptomyces coelicolor TreS 基因的克隆 (A) 和表达及纯化分析 (B)

Fig. 1 The result of amplification and expression of target *TreS* gene of *Streptomyces coelicolor*. (A) The amplification result. (B) SDS-PAGE of the purified TreS from *E. coli* BL21(DE3). M: marker; 1: crude enzyme; 2–3: purified TreS.

图 2 ScTreS 结合底物麦芽糖的表面结构图 (A) 和底物结合位点、保守结构域以及部分突变氨基酸三维结构图(B)

Fig. 2 The binding model of ScTreS 3D molecular with maltose substrate. (A) A surface structure of ScTreS with maltose. (B) The location of substrate binding site, conserved domain (I, II, III, IV), and mutant amino acids (A165, F178, K246).

在蛋白表面的凹槽内,与分子内转糖苷作用活性 中心靠近酶表面的报道相符^[21-22]。根据已有的结 构研究和分析结果,推测保守序列 I 区的 His121 和IV区的 His329 介导底物结合,保守序列 II 区和 III区形成活性中心,其中的 Asp218 和 Glu260 分 别作为亲核基团和质子供体发挥作用^[23-25]。实验 设计选择 L76、Q125、A165、T169、F178、F179、 D188、K246、E331、E340、I361 等残基进行定 点突变,按 1.2.3 方法构建突变重组菌,将验证含 重组质粒的阳性克隆子送往公司测序,除去部分 未突变的原始菌株外,其他转化子突变位置和氨 基酸均符合预期突变。

2.3 野生重组酶与突变酶的表达纯化

按 1.2.4 的方法将取得的重组菌和突变体粗酶 液用 Ni-NTA 琼脂糖凝胶柱纯化。取少量粗酶液和 纯化产物进行 SDS-PAGE 分析,如图 1B 和图 3 所 示,含有重组质粒 pET28a-TreS 的大肠杆菌在分 子量 62 kDa 处有明显蛋白表达带,所得纯化酶液 单一,可见 *TreS* 在 *E. coli* BL21 (DE3) 中能够正 常表达。野生酶与突变酶酶活结果如表 2 所示, 突变酶 K246A 与野生酶比酶活提高 1.43 倍; A165T 和 F178Y 提高约 1.39 倍和 1.18 倍。已报 道如谷氨酸棒杆菌 *Corynebacterium glutamicum*、天 蓝色链霉菌 *Streptomyces coelicolor* (Gene ID: 8250619)、阿维链霉菌 Streptomyces avermitilis、 灰色链霉菌 Streptomyces griseus、弯曲热单孢菌 Thermomonospora curvate 来源的 TreS 酶活分别为 55、56、57、60和65 U/mg^[26]。可见野生型 ScTreS 酶活略偏低,而A165T和K246A的酶活则基本相持 平或更高。另外以100g/L的海藻糖为底物,在相同 条件下反应测得 ScTreS 逆向酶活为20.9 U/mg。

2.4 野生酶与突变酶的酶学性质比较

2.4.1 野生酶与突变酶的最适温度比较

酶在不同温度下测得的酶活结果见图 4A,突 变酶与野生酶 ScTreS 的最适反应温度并没有发 生明显变化,都为 35 ℃左右。当温度大于 35 ℃ 时突变体 Q125A 酶活即迅速下降,而野生酶和其 他突变体在 40 ℃以下仍能保持较高酶活,温度大 于 40 ℃时,酶活开始逐渐下降。

2.4.2 野生酶与突变酶的最适 pH 比较

实验结果表明 (图 4B),重组酶和突变酶的最 适反应 pH 都为 7.0,野生酶和突变体 K246A、 A165T、F179W 在 pH 6.0-7.5 之间始终保持大于 90%的较高酶活力。酸性条件下,突变体 K246A、 A165T 的相对酶活与野生酶对比相对较低,而在 碱性条件下则相反。

2.4.3 野生酶和突变酶热稳定性的比较

将野生酶于 35 ℃、40 ℃和 45 ℃静置并取样

图 3 野生型 ScTreS 和突变株纯化的 SDS-PAGE 分析

Fig. 3 SDS-PAGE of the purified ScTreS and mutants from E. coli BL21(DE3). M: marker.

mutan	its						
Table	2	Relative	activities	of wild	type	ScTreS	and
表 2	重約	狙野生型	和突变体的	ScTreS É	的相对	亅酶活	

Enzyme/ mutant	Specific activity (U/mg)	Relative activity (%)
Wild type	47.9±0.6	100.0±1.2
K246A	68.5±0.8	143.0±1.7
A165T	66.5±0.3	139.0±0.7
F178Y	56.5±1.2	118.0±2.5
F179W	48.8±0.4	102.0±0.8
Q125A	43.2±0.5	90.3±1.1
I361A	7.3±0.5	15.2±0.9
T169S	41.1±0.9	85.9±1.8
E340D	32.3±0.5	67.4±1.1
L76A	0	0
D188A	0	0
E331A	0	0

检测酶的剩余活力,结果见图 4C。在不同温度保持 12 h后,35 ℃下酶液仍约有 80%酶活,40 ℃和 45 ℃条件下分别剩余约 60%和 45%的酶活;而在 24 h后,酶液在 35 ℃、40 ℃、45 ℃条件下的酶活分别下降到约 62%、45%、31%;可见野生酶活力在 45 ℃以下时比较稳定,在 45 ℃时则变得较差。

将突变酶分别置于 35 ℃、40 ℃、45 ℃保持 24 h 后取样测其残余酶活并与野生酶进行对比,结 果如图 4D,突变体的热稳定性与野生酶的范围相 近,仅发生了细微变化,没有明显的提高或降低。

2.4.4 野生酶与突变酶合成海藻糖的能力比较

取适量野生型 ScTreS 和突变株 K246A、 A165T、F178Y、F179W、Q125A 纯酶,在 50 mmol/L 磷酸钠缓冲液 (pH 7.0)、100 g/L 麦芽糖底物浓度 体系下,35 ℃、150 r/min 条件反应,按时取样 进行 HPLC 检测。结果如图 5 所示,反应 8 h 时,

图 4 野生酶和突变酶的最适温度 (A)、最适 pH (B) 和温度稳定性 (C-D) Fig. 4 Optimal temperature (A), optimal pH (B) and thermal stability (C, D) of wild and mutant enzyme.

图 5 野生型 ScTreS 和突变株 K246A、A165T、 F178Y、F179W、Q125A 合成海藻糖能力的比较 Fig. 5 Comparison of the ability of wild-type ScTreS

and mutant enzyme K246A, A165T, F178Y, F179W and Q125A to synthesize trehalose.

突变株 K246A 海藻糖转化率达到最高,为71.1%, 比野生型提高约 14%; A165T 最高转化率 66.8%, 相对提高约 10%; F178Y 相对提高约 6%; F178W 基本与野生酶持平; 而 Q125A 转化率比野生型降 低约 5%。

2.5 海藻糖合酶突变体全细胞转化合成海藻 糖的条件优化

2.5.1 温度对全细胞转化合成海藻糖的影响

温度通过影响酶促反应的效率而影响海藻糖的合成。控制初始反应 pH 7.0,底物浓度 200 g/L, 菌体量 *OD*₆₀₀=20,其他条件相同的情况下,分别 在 25 ℃、30 ℃、35 ℃、40 ℃、45 ℃下进行全细 胞转化合成海藻糖,结果如图 6A 所示。当反应

图 6 温度 (A)、pH (B)、菌体生长密度 (C) 和底物浓度 (D) 对突变重组菌 BL21/pET28a-K246A 全细胞转化 合成海藻糖的影响

Fig. 6 Influence of temperature (A), pH (B), cell growth density (C) and substrate concentration (D) on the transformation of trehalose in mutant recombinant BL21/pET28a-K246A whole cells.

1356

温度为 35 ℃时,转化率达到最高,达到 64.5%, 同时伴随生成 12.7%的葡萄糖:在 45 ℃时转化率 较低, 仅为 50.7%, 并生成 12.5%的葡萄糖。

2.5.2 初始 pH 对全细胞转化合成海藻糖的影响

维持反应温度 35 ℃,底物浓度 200 g/L,菌 体量 OD₆₀₀ 为 20, 其他条件相同的情况下, 在初 始体系 pH 分别为 5.5、6.0、6.5、7.0、7.5、8.0 条件下进行全细胞转化合成海藻糖。pH 对海藻糖 制备的影响结果见图 6B, pH 小于 7.0 时, 全细 胞的转化率随 pH 的升高而增加,在 pH 6.5 和 7.0 时转化率较高,分别为 62.4%和 65.9%,副产物 葡萄糖的转化率分别为 7.82%和 9.1%; 而当 pH 升高到 8.0 时,转化率则下降到 50.7%。

2.5.3 菌体量对全细胞转化合成海藻糖的影响

实际应用中为了满足生产效率和降低生产成 本,将菌体浓度控制在适宜的水平也是至关重要 的。控制其他条件相同, 在反应温度 35 ℃, 初始 pH 7.0, 底物浓度 200 g/L, 菌体量 OD₆₀₀ 分别为 5、10、15、20、25、30 条件下进行全细胞转化 合成海藻糖。结果如图 6C,转化体系细胞 OD₆₀₀ 为15时,海藻糖产量最高,转化率为69.2%。

2.5.4 底物浓度对全细胞转化合成海藻糖的影响

控制反应温度 35 ℃,初始 pH 7.0, 菌体量 OD₆₀₀为15,在麦芽糖浓度分别为100、200、300、 400、500、600、700 g/L 条件下进行生物转化。全 细胞转化率结果如图 6D 所示,并没有表现出明 显的底物抑制效果,底物浓度 300 g/L 转化率达到 最高,约73.7%。当底物浓度增加到700g/L时,转 化率也能维持在 65.3% 左右。

2.5.5 5L 罐全细胞转化

用1LpH7.0、50 mmol/L的磷酸钠缓冲液配 置的麦芽糖溶液悬浮适量 BL21/pET28a-K246A 菌体, 使其 OD₆₀₀ 为 15, 35 ℃、200 r/min 条件下 于罐上转化,液相检测转化液中海藻糖、麦芽糖 及葡萄糖的浓度。结果如图 7 所示, 300 g/L 底

Trehalose

Maltose

Glucose

图 7 重组菌 BL21/pET28a-K246A 分别在底物麦芽糖 浓度 300 g/L(A) 和 700 g/L(B) 条件下的 5 L 罐转化 Fig. 7 The whole-cell bioconversion with recombiant BL21/pET28a-K246A under the condition of 300 g/L (A) or 700 g/L (B) maltose in 5 L fermenter.

物浓度下, 共生成 213.93 g/L 海藻糖, 21.35 g/L 葡萄糖,转化率 71.3%。700 g/L 底物浓度下,共 生成 465.98 g/L 海藻糖, 42.73 g/L 葡萄糖, 转化 率 66.5%。

3 讨论

А

300

250

200

文中从天蓝色链霉菌中克隆出一种新型海藻 糖合酶并在大肠杆菌 BL21 (DE3) 中进行了异源 表达。测得其相应的酶学性质参数,最适反应温 度 35 ℃, 最适 pH 7.0, 海藻糖转化率最高为 65%。 同源建模模拟得到 ScTreS 的三维结构并进行底 物对接。根据序列比对的结果和对三维模型的分 析,选取活性中心附近的部分氨基酸残基进行了 定点突变。推测突变体 L76A、D188A、E331A、 Q125A、T169S、I361A 和 E340D 影响破坏了底 物结合位点和催化中心,导致酶完全失活或降低; A165 和 F178 分别位于底物结合的凹槽的正上方, 突变后表面结构发生改变,使底物更容易进入到 酶的活性中心,所以比酶活得到了提高,海藻糖 转化率也提高了 10%和 6%;而 K246 在保守序列 II 区、III 区对应结构后的第 4 个α螺旋的转角, 突变为丙氨酸后,酶的疏水性增加,底物的催化 结构域也发生细微变化,对酶活力产生了影响, 使得海藻糖转化率提高了 14%。对此还需要进一 步的饱和突变以及晶体结构的研究分析来进行 佐证。

酶法催化比全细胞催化对反应条件更加敏 感,容易失活,而全细胞催化更稳定,可重复 利用率高, 文中的全细胞重复利用 3 次后海藻 糖产量仍有 54.7%,另外全细胞催化不仅在反应 过程中会消耗一部分葡萄糖副产物,有利于后 期海藻糖的分离纯化;而且省去了酶法催化前 期所需破碎细胞的过程,工艺流程更简便优化, 经济效益更高。所以为了契合实际生产,本研 究对利用突变株 BL21/pET28a-K246A 全细胞转 化合成海藻糖的反应条件也进行了探索优化。 结果表明在温度 35 ℃、pH 7.0、底物浓度 300 g/L 的最适条件下,海藻糖转化率为73.7%;改变底 物浓度,转化率也基本大于 63%,在高浓度底 物 700 g/L 时的转化率分别为 66%, 符合目前已 报道和实际应用的最高水平^[27],与经过透性化 等工艺处理的细胞海藻糖转化率水平相比,转 化率相近或更高,在效率和生产工艺上都更有 优势。综上所述, 文中所构建的天蓝色链霉菌 海藻糖合成酶和突变株及其相关研究结果为海 藻糖合成酶生产海藻糖的工业化应用进一步奠 定了理论和实验基础。

REFERENCES

 Crowe JH, Crowe LM, Chapman D. Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science, 1984, 223(4637): 701–703. 1357

- [2] Paul MJ, Primavesi LF, Jhurreea D, et al. Trehalose metabolism and signaling. Annu Rev Plant Biol, 2008, 59: 417–441.
- [3] Roth R, Sussman M. Trehalose synthesis in the cellular slime mold Dictyostelium discoideum. Biochim et Biophys Acta, 1966, 122(2): 225–231.
- [4] Huang RB. Trehalose: A Novel Sugar in the New Century. Beijing: Chemical Industry Press, 2010 (in Chinese).
 黄日波. 海藻糖: 21 世纪的新型糖类. 北京: 化学工业出版社, 2010.
- [5] Kern C, Wolf C, Bender F, et al. Trehalose-6-phosphate synthase from the cat flea *Ctenocephalides felis* and *Drosophila melanogaster*: gene identification, cloning, heterologous functional expression and identification of inhibitors by high throughput screening. Insect Mol Biol, 2012, 21(4): 456–471.
- [6] Zhao SM, Fu FL, Gou L, et al. Cloning and truncation modification of trehalose-6-phosphate synthase gene from *Selaginella pulvinata*. Gene, 2013, 512(2): 414–421.
- [7] Carpinelli J, Krämer R, Agosin E. Metabolic engineering of *Corynebacterium glutamicum* for trehalose overproduction: role of the TreYZ trehalose biosynthetic pathway. Appl Environ Microbiol, 2006, 72(3): 1949–1955.
- [8] Maruta K, Hattori K, Nakada T, et al. Cloning and sequencing of trehalose biosynthesis genes from *Arthrobacter* sp. Q36. Biochim Biophys Acta (BBA) -Gen Subj, 1996, 1289(1): 10–13.
- [9] Liang JY, Huang RB, Huang Y, et al. Cloning, expression, properties, and functional amino acid residues of new trehalose synthase from *Thermomonospora curvata* DSM 43183. J Mol Catal B: Enzym, 2013, 90: 26–32.
- [10] Zhang R, Pan YT, He SM, et al. Mechanistic analysis of trehalose synthase from *Mycobacterium smegmatis*. J Biol Chem, 2011, 286(41): 35601–35609.
- [11] Song XG, Tang SS, Jiang L, et al. Integrated biocatalytic process for trehalose production and separation from

maltose. Ind Eng Chem Res, 2016, 55(40): 10566–10575.

- [12] Schiraldi C, di Lernia I, de Rosa M. Trehalose production: exploiting novel approaches. Trends Biotechnol, 2002, 20(10): 420–425.
- [13] Cai X, Seitl I, Mu WM, et al. Biotechnical production of trehalose through the trehalose synthase pathway: current status and future prospects. Appl Microbiol Biotechnol, 2018, 102(12): 2965–2976.
- [14] Chou HH, Chang SW, Lee GC, et al. Site-directed mutagenesis improves the thermostability of a recombinant *Picrophilus torridus* trehalose synthase and efficiency for the production of trehalose from sweet potato starch. Food Chem, 2010, 119(3): 1017–1022.
- [15] Wang QY, Chen FZ, Huang FB, et al. Study on site-directed mutagenesis and kinetics of trehalose synthase from *Thermobifida fusca*. J Guangxi Agric Biol Sci, 2007, 26(2): 115–119 (in Chinese).
 王青艳,陈发忠,黄福宝,等. *Thermobifida fusca* 海藻 糖合成酶的定点突变及其动力学性质研究. 广西农业 生物科学, 2007, 26(2): 115–119.
- [16] Ke SH, Madison EL. Rapid and efficient site-directed mutagenesis by single-tube 'megaprimer' PCR method. Nucleic Acids Res, 1997, 25(16): 3371–3372.
- [17] Ling MM, Robinson BH. Approaches to DNA mutagenesis: an overview. Anal Biochem, 1997, 254(2): 157–178.
- [18] Sambrook J. Rapid and efficient site-directed mutagenesis by the single-tube megaprimer PCR method. Nat Methods, 2004, 1: 181–182.
- [19] Kruger NJ. The Bradford method for protein quantitation//Walker JM, Ed. Basic Protein and Peptide Protocols. Totowa: Humana Press, 1994, 32: 9–15.

- [20] Walker JM. The Protein Protocols Handbook. 3rd ed. Clifton, New Jersey: Humana Press, 2009.
- [21] Caner S, Nguyen N, Aguda A, et al. The structure of the *Mycobacterium smegmatis* trehalose synthase reveals an unusual active site configuration and acarbose-binding mode. Glycobiology, 2013, 23(9): 1075–1083.
- [22] Wang YL, Chow SY, Lin YT, et al. Structures of trehalose synthase from *Deinococcus radiodurans* reveal that a closed conformation is involved in catalysis of the intramolecular isomerization. Acta Crystallogr Sect D: Biol Crystallogr, 2014, 70: 3144–3154.
- [23] Mirza O, Skov LK, Remaud-Simeon M, et al. Crystal structures of amylosucrase from *Neisseria polysaccharea* in complex with D-glucose and the active site mutant Glu328Gln in complex with the natural substrate sucrose. Biochemistry, 2001, 40(30): 9032–9039.
- [24] Ravaud S, Robert X, Watzlawick H, et al. Trehalulose synthase native and carbohydrate complexed structures provide insights into sucrose isomerization. J Biol Chem, 2007, 282(38): 28126–28136.
- [25] Zhang DH, Li N, Lok SM, et al. Isomaltulose synthase (*Pal*I) of *Klebsiella* sp. LX3. Crystal structure and implication of mechanism. J Biol Chem, 2003, 278(37): 35428–35434.
- [26] Liang JY. Site-directed mutagenesis of active center of trehalose synthase and preparation of trehalulose[D]. Nanning: Guangxi University, 2013 (in Chinese).
 梁甲元.海藻糖合成酶活性中心的定点突变及其制备 海藻酮糖的研究[D].南宁: 广西大学, 2013.
- [27] Liu HL, Yang SJ, Liu Q, et al. A process for production of trehalose by recombinant trehalose synthase and its purification. Enzyme Microb Technol, 2018, 113: 83–90.

(本文责编 郝丽芳)