Sep. 25, 2020, 36(9): 1929-1938 ©2020 Chin J Biotech, All rights reserved

生物育种与工艺优化。

一种新型 ω-转氨酶的工业适应性选择

王继国,谢有余,王华磊,魏东芝

华东理工大学 生物工程学院, 上海 200237

王继国, 谢有余, 王华磊, 等. 一种新型 ω-转氨酶的工业适应性选择. 生物工程学报, 2020, 36(9): 1929–1938. Wang JG, Xie YY, Wang HL, et al. Industrial adaptability selection for a novel ω-transaminase. Chin J Biotech, 2020, 36(9): 1929–1938.

摘 要:尽管ω-转氨酶被认为是手性胺合成中极具工业潜力的生物催化剂,但是由于受限于酶的热不稳定及不利的反应平衡,能直接适用于工业的野生酶极少。为了发现工业适应潜力的新型ω-转氨酶,文中设计了包括底物、序列、克隆、酶活、转化率及酶学的工业适应性选择流程,并对各筛选步骤中存在的问题进行了研究,进而从土壤宏基因组中筛选出了一种来源于柄杆菌属的新型ω-转氨酶 ATA-W12,以异丙胺为供体在1 mL反应体系中转化了 85.84% 1-Boc-3-吡咯烷酮 (20 mmol/L) 和 67.42% 1-Boc-3-哌啶酮 (20 mmol/L)。酶学筛选发现,ATA-W12 在 40 ℃孵育 168 h 活力维持不变;优选反应条件为 pH 8.5、40 ℃;这些特征利于工业用理想氨基供体异丙胺的使用。笔者已采用 ATA-W12 实现了 100 g/L 光学纯(S)-(+)-1-Boc-3-氨基哌啶的 50 mL 实验室规模制备,为进一步工业化生产打下基础。

关键词: 手性胺合成, ω-转氨酶, 异丙胺, 适应性选择

Industrial adaptability selection for a novel ω-transaminase

Jiguo Wang, Youyu Xie, Hualei Wang, and Dongzhi Wei

School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China

Abstract: ω -transaminase (ω -TA) is the most promising biocatalyst for chiral amine synthesis. However, most wild-type ω -TAs cannot be applied in industry directly due to their low stability and unfavorable reaction equilibrium. In order to discover a novel ω -TA for industrial application, we designed a procedure of adaptive selection, including the screening of substrates, protein sequences and clones, enzyme activity, and product conversion and characterization, as well as trouble-shooting of each step. Through this procedure, we screened a novel ω -TA, ATA-W12 of *Caulobacter* sp. from a soil metagenome. The strain could convert 20 mmol/L 1-Boc-3-pyrrolidinone and 20 mmol/L 1-Boc-3-piperidone with 85.84% and 67.42% conversion rate, respectively, in a 1-mL scale with isopropylamine (IPA) as amine donor. ATA-W12 maintained 100% activity at 40 °C for 168 h, and its optimal reaction condition is at pH 8.5 and 40 °C. These excellent properties benefit the application of IPA as an ideal amino donor in industry. We scaled up the production of (*S*)-(+)-1-boc-3-aminopiperidine up to 50 mL (100 g/L) scale with this novel biocatalyst for its further industrial application.

Keywords: chiral amine synthesis, ω-transaminase, isopropylamine, adaptive selection

Received: January 16, 2020; Accepted: April 27, 2020

Supported by: National Natural Science Foundation of China (No. 21776084/B060804).

Corresponding author: Hualei Wang. Tel/Fax: +86-21-64251803; E-mail: hlwang@ecust.edu.cn

国家自然科学基金 (No. 21776084/B060804) 资助。

网络出版时间: 2020-05-09 网络出版地址: http://kns.cnki.net/kcms/detail/11.1998.Q.20200508.1702.006.html

据 FDA 数据库分析, 手性胺类化合物是小分 子药物合成中重要的分子模块^[1]。相比化学催化 剂, 合成手性胺的生物催化剂以光学纯度高、环 境污染小等优势^[2-3]一直被作为研究热点, 如转氨 酶类^[4-10]、单胺氧化酶类^[11]、亚胺还原酶类^[12-13] 及胺脱氢酶类^[14-15]等。其中 ω-转氨酶 (ω-TAs) 具 有对映选择性和区域选择性高、底物谱较广以及 无需额外添加昂贵的辅酶的优势, 成为工业上用 于生产手性胺的重要工业酶之一^[3,16-24]。

目前报道的野生 ω-TAs 中能直接用于制药工 业的为数不多,主要受限于酶的热不稳定及不利 的反应平衡^[4-10]。异丙胺 (IPA) 被认为是 ω-TAs 工业应用的理想氨基供体,其价格低廉利于供体 过量,可以通过移除副产物丙酮来改变反应平 衡^[3-4]。但能接受 IPA 供体的野生 ω-TAs 数量极少, 极大限制了其作为理想氨基供体的工业应用^[25]。 利用 IPA 供体有效地改变反应平衡对 ω-TAs 提出 了严格的要求^[26]: (1) 能接受 IPA 为供体; (2) 最 适反应温度在 40–60 ℃之间,且保持较高的热稳 定性; (3) 最适 pH 值在 7.0 以上; (4) 能转化 100–250 mmol/L 以上的底物浓度^[27]。

近年来基于新型氨基供体的高通量筛选方法 被大量建立^[5],但是这些氨基供体因成本高及产 物纯化难等问题难以适应工业用途,而目前尚无 基于 IPA 供体的高通量筛选方法。所以适当选择 合适的高通量筛选方法,配合兼容 IPA 供体的转 化率筛选流程有利于新型 ω-TAs 工业适应性选 择。为了从土壤宏基因组中发现一种新型 ω-TA, 我们从目标底物筛选、序列来源筛选做了适应工 业的选择;接着以邻亚二甲苯二胺显色法快速初 筛酶活,再使用 IPA 供体的 HPLC 分析法进行转 化率筛选,最后采用 1-苯乙胺 (1-PEA) 动力学分 析法进行酶学筛选,从而筛选出了一种来源于柄 杆菌属的新型 ω-转氨酶 ATA-W12,并成功用于光 学纯(*S*)-(+)-1-Boc-3-氨基哌啶的 50 mL规模制备。

http://journals.im.ac.cn/cjbcn

1 材料与方法

1.1 目标底物及氨基供体

1-Boc-3-哌啶酮 (98977-36-7)、1-Boc-3-吡咯 烷酮 (101385-93-7) 作为目标底物,邻亚二甲苯 二胺二盐酸盐 (21294-14-4)、IPA (75-31-0) 和 (*S*)-(-)-α-甲基苄胺 (2627-86-3, 1-PEA)作为氨基 供体。其中邻亚二甲苯二胺二盐酸盐购自杰达维 (上海) 医药科技发展有限公司,另外4种均购自 上海百灵威化学技术有限公司。其余化学试剂均 购自国药集团化学试剂有限公司。

1.2 土壤宏基因组 DNA 提取及测序

土壤样品按 Fast DNA Spin Kit for Soil 试剂 盒(MP Biomedicals, USA) 提取土壤基因组 DNA, 交于上海派森诺生物科技股份有限公司用 Hiseq 2000 (Illumina Inc, USA) 进行高通量测序。得到 3.3 Gb 的棉花地土壤宏基因组数据,由 ORF finder (https://www.ncbi.nlm.nih.gov/orffinder/)及 blastx (http://blast.ncbi.nlm.nih.gov/orffinder/)及 blastx (http://blast.ncbi.nlm.nih.gov/Blast.cgi) 分析获得 21 个 ω -TAs 基因全长序列 (具体数据作为附件, 包括附表 1 和 2, 附图 1 和 2, 可在网络版中下载。 见附表 1)。

1.3 ω-TAs 的克隆和表达

设计含双酶切位点的 21 个候选 ω-TAs 基因的 引物序列 (见附件附表 2),由上海捷瑞生物工程 有限公司合成。使用南京诺唯赞生物科技有限公 司的 2×*Taq* Master Mix 进行 PCR 扩增,循环条件 为:95 ℃预变性 3 min;35 个循环 (95 ℃变性 15 s;60 ℃退火 15 s;72 ℃延伸 1.5 min);最终 72 ℃延伸 5 min,4 ℃孵育。将扩增成功的产物使 用 FavorPrepTM GEL/PCR purification kit (Favorgen, Taiwan)进行 DNA 凝胶回收。

用 FastDigest 系列 BamH I、Hind Ⅲ、EcoR I和 Xho I (Thermo, USA) 将 PCR 产物和 pET-28a (+) 质 粒载体 (Merck, Germany) 酶切后使用 Ligation high (TOYOBO, Janpan) 进行连接。重组质粒被转化到 大肠杆菌 Escherichia coli DH5α 后通过菌落 PCR 及 测序进行鉴定,鉴定成功后转入 *E. coli* BL21(DE3) 表达宿主中。*E. coli* DH5α 和 *E. coli* BL21 (DE3) 购 自天根生化科技 (北京) 有限公司。

鉴定成功的单克隆接种到含 50 µg/mL 卡那 霉素的 LB 培养基试管,在 37 ℃、200 r/min 摇床 中过夜培养。按 1%接种到含卡那霉素的 LB 培养 基中,在 37 ℃、200 r/min 摇床中培养。当 OD_{600} 达到 0.6–0.8 时,加入 0.1 mmol/L IPTG,在 20 ℃、 200 r/min 条件下诱导表达。收集菌体经 2 次洗涤 后在 100 mmol/L Tris-HCl 缓冲液 (pH 8.0) 中超 声破碎,在4 ℃、8 000×g 条件下离心 15 min 收 集得到上清。上清及沉淀重悬液用 SDS-PAGE 分 析蛋白表达状况。

1.4 ω-TAs 的活性筛选

按照 Green AP 的显色方法^[28]在白色 96 孔微 孔板 (Nucn, Denmark) 建立了 200 µL 反应体系, 每个反应混合液中包含 30 mmol/L 邻亚二甲苯二 胺二盐酸盐、20 mmol/L 目标底物、0.1 mmol/L 辅酶 PLP 及 80 µL 粗酶液,用 100 mmol/L Tris-HCl (pH 8.0) 补足到 200 µL。设置无酶和无底物对照, 两个复孔。在微孔板振荡器 (杭州奥盛) 中 37 ℃、 500 r/min 进行反应。反应持续到 15 min 和 16 h 后分别观察颜色变化及拍照。

1.5 ω-TAs 的底物转化率测定

为了筛选能兼容 IPA 供体并对两种目标底物 高转化率的 ω-TAs, 建立了 1 mL 反应体系。反应 液包括 30 mmol/L IPA、20 mmol/L 目标底物、 0.1 mmol/L 辅酶 PLP 及 400 μL 粗酶液,用 100 mmol/L Tris-HCl (pH 8.0) 补足到 1 mL。反应 在 37 °C、200 r/min 摇床中进行。反应持续 16 h 的产物用乙酸乙酯萃取后进行 HPLC 分析。HPLC 分析条件为: Zorbax XDB-C18 色谱柱 (Agilent, USA); 流动相 PBS : MeOH=70 : 30; 流速 0.8 mL/min; 柱温 37 °C;检测波长 210 nm。用不 含酶对照的目标底物吸收峰面积为 100%,用目标 底物的峰面积除以对照体系的峰面积计算底物的 转化率。

1.6 ATA-W12 的酶学性质测定

采用常州天地人和生物科技有限公司的镍柱 试剂 盒 对 ATA-W12 转 氨 酶 进 行 纯 化 , 用 SDS-PAGE 进行蛋白鉴定及 Bradford 法进行蛋白 定量。

按照 Schätzle 等报道的酶动力学分析法^[29], 在紫外 96 孔酶标板中建立了 200 μL 反应体系, 用 SPECTRAMAX190 酶 标 仪 (Molecular Devices, USA) 在波长 245 nm 下进行测定。反 应液中包含 2.5 mmol/L 1-PEA、2.5 mmol/L 丙酮 酸、0.25%二甲基亚砜及 0.392 μg ATA-W12 蛋白, 用对应的反应缓冲液补足 200 μL。

为了测定最适 pH 值我们配制了不同 pH 的缓 冲液,包括 100 mmol/L PBS 的 pH 值调为 6.0、 7.0;100 mmol/L Tris-HCl 的 pH 值调为 8.0、8.5、 9.0;100 mmol/L 甘氨酸-氢氧化钠溶液 pH 值调为 9.2、10.0、10.5。最适 pH 测定在 37 ℃,5 min 反应测定吸收值,以最高吸收值为 100%计算相对 酶活力。

为了测定 ATA-W12 的最适温度,我们使用最 适 pH 的缓冲液,加入如上反应体系。在4 ℃、 20 ℃、30 ℃、40 ℃、50 ℃、60 ℃、65 ℃及 70 ℃ 下反应 5 min 后测定,以最高吸收值为 100%计算 相对酶活力。

为了测试 ATA-W12 热稳定性,将 8 台加热制 冷金属浴(杭州博日)设置温度为 4 ℃、10 ℃、 20 ℃、30 ℃、40 ℃、50 ℃、60 ℃和 70 ℃预热, 然后将 ATA-W12 稀释后保温,分别在 0.5、1、3、 12、24、43、68、168 h 时间点采样检测,反应缓 冲液采用最适 pH 的缓冲液,40 ℃、5 min 反应后 测定吸收值,以-20 ℃保存的 ATA-W12 作为对照 为 100%酶活计算相对酶活。以上所有实验均以不 加酶的反应体系作为空白扣除吸收值,设置 3 个 重复。

1.7 1-Boc-3-氨基哌啶的 50 mL 放大规模制备 采用 50 mL 放大规模制备(S)-(+)-1-Boc-3-氨

基哌啶,反应体系包括 5 g ATA-W12 湿菌体、 500 mmol/L 1-Boc-3-哌啶酮、1.5 mol/L 酸化 IPA、 2 mL 二甲基亚砜、0.2 mmol/L PLP 和 100 mmol/L Tris-HCl (pH 8.5)。

反应在 100 mL 反应瓶中进行,利用 2 mol/L IPA 水溶液流加控制 pH 值为 8.5, 温度控制在 40 ℃,搅拌速度为 300 r/min。每小时取 3 个重复 样检测反应进程,通过 HPLC 分析检测。转化率 测定采用 ZORBAX Extend C18 (4.6 mm× 250 mm×5 μm), 流动相为 28%乙腈: 72% TFA 溶 液 (0.1%), 流速为 0.8 mL/min, 柱温 37 ℃, 进 样量 5 µL, 210 nm 紫外检测。转化率通过产物摩 尔量除以添加底物摩尔量的比率来计算。取反应 后溶液 100 µL 加入 500 µL 的乙酸乙酯萃取 2 次, 加入无水硫酸钠干燥过夜,溶于异丙醇后用 HPLC 测 ee 值。ee 值测定采用 Chiralcel AD-H, 流动相为 90%的正己烷: 10%的乙醇, 流速为 1 mL/min, 柱温 30 ℃, 进样量 5 µL, 210 nm 紫 外检测。反应结束后用等体积的乙酸乙酯萃取3次, 合并萃取相, 12 000 r/min 离心 10 min 后取有机 相,旋转蒸发得到(S)-(+)-1-Boc-3-氨基哌啶。

2 结果与讨论

2.1 目标底物的选择

手性 3-氨基哌啶及 3-氨基吡咯烷是一种重要 手性胺医药中间体,广泛用于原料药的合成,如 妥舒沙星、克林沙星、头孢霉菌素衍生物等,还 作为治疗肥胖、I型和II型糖尿病、抗抑郁和精 神分裂的原料药的重要分子砌块。但化学法合成 路线复杂,拆分及氨基保护试剂成本太高,手性 胺产物的光学活性差^[30]。近 10 年来科学家一直 在尝试使用 ω-TAs 进行动力学拆分及不对称合成 来生产这两种医药中间体,但限于 ω-TAs 性能都 面临着底物水平低、转化率低及反应时间过长等 问题难以适应工业用途^[27,30-33]。所以针对这两种 手性胺医药中间体的生产筛选一种适应于工业用 途的 ω-转氨酶非常具有研究价值和应用前景。 另外 Höhne 等^[30]发现使用 ω-TAs 合成这两种 医药中间体时,采用 Boc 或 Cbz 保护杂环氮能有 效地提高 ω-TAs 的反应转化率和 *ee* 值,所以本研 究选择 1-Boc-3-哌啶酮和 1-Boc-3-吡咯烷酮作为 这两种手性胺合成的目标底物。

2.2 序列来源的选择

目前报道的野生转氨酶很少能适应工业应 用,这可能由于序列来源的工业导向性差。我们 进行此研究时采集了深海污泥、棉花地土壤、酒 厂窖泥及贵州红壤 4 种环境样品。对比这 4 种土 壤来源,棉花地土壤长期以尿素及动物粪便肥料 为主,其中含有丰富的氨类化合物及耐受高氨浓 度的细菌菌群,选择其宏基因组作为挖掘耐高氨 浓度、适应工业应用的 ω-TAs 的最佳来源。我们 对棉花地土壤基因组 DNA 进行了提取并进行了 高通量测序,并获得了 21 个 ω-TAs 基因全长序列 (见附表 1)。

2.3 ω-转氨酶克隆筛选

从土壤宏基因组高通量测序所得到的 ω-TAs 基因的丰度和在工程菌中克隆表达情况有很大差 异,所以我们设计了 21 个 ω-TAs 候选基因的引物 (见附表 2),对这些基因进行克隆筛选。

最终我们从 21个候选ω-TAs 基因中成功扩增 了 11个ω-TAs 基因。接着将这 11个基因克隆到 pET-28a(+)载体上进行菌落 PCR 并将构建的质粒 测序进行确认 (图 1),图 1 酶的标号省略 ATA-。 结果显示,6种ω-TAs 包括 ATA-W5、7、8、11、 12及 19 被成功克隆。对这6种ω-TAs 进行了表 达,制备了6种粗酶液 (菌体裂解液上清),并用 粗酶液 (图 2 中 a 系列)和沉淀 (图 2 中 b 系列) 分析了表达状况,图 2 酶编号省略 ATA-W。

ATA-W11、19 两种蛋白以包涵体形式表达较 多,而 ATA-W5、7、8、12 这 4 种 ω-TAs 主要为 可溶性表达。虽然有两种在上清中表达较少,为 了对其上清酶活进行确认,也对其进行了酶活筛 选实验,进一步验证 6 种粗酶液酶活性情况。

图 1 菌落 PCR 和测序确认 6 种 ω-TAs 成功克隆

Fig. 1 Six of ω -TAs were successfully cloned and confirmed by colony PCR and sequencing.

图 2 SDS-PAGE 鉴定 ω-转氨酶表达

Fig. 2 Identification of ω -TAs by SDS-PAGE. a: clarified cell lysates b: insoluble fraction.

2.4 酶活力初步筛选

为了筛选对两种目标底物有活性的酶,我们 采用 Green 等报道的显色方法^[28]针对 6 种新酶粗 酶液和 13 种 ω-TAs 原酶库粗酶液进行了酶活筛 选,结果如图 3 所示。

图 3 中 1-3 列含 20 mmol/L 1-Boc-3-吡咯烷 酮, 4-6 列含 20 mmol/L 1-Boc-3-哌啶酮, 每列含 两个复孔。A 行为无酶的对照组; 含 ATA-W5 的 B1/B2 和含 PSGA 的 B4/B5 作为无底物空白对

图 3 19 种 ω-TAs 粗酶液的酶活筛选

Fig. 3 Activity screening of 19 ω -TAs' clarified cell lysates.

照。C-H1/4 分别包含 ATA-W5、7、8、11、12、 19 共 6 种来自于宏基因组挖掘的新型 ω-TAs。 C-H2/5 和 C-H3/6 分别为 ATA-2、6、8、9、PSGA、 BPSTM 和 ATA-12、13、14、15、16、17、18, 共计 13 种为本研究组 ω-TAs 原酶库。

反应进行 15 min 后,含 7 种原酶库 ω-TAs 孔 出现了不同程度颜色加深,包括 PSGA、ATA-2、 8、9、13、15、18,说明反应速度快。但由于 B4/B5 含 PSGA 的无底物对照颜色也变深,故无法说明 颜色加深是否由于底物转化造成。反应经过 16 h 之后,除以上含 7 种酶的孔形成明显黑色沉淀外, 含另外 4 种酶的孔,包括 ATA-W12 和 ATA-12、 14、17 也形成了黑色沉淀,说明这 4 种酶反应速 率慢,但也具有较高的活性。

因含 PSGA 酶的无底物对照组有不依赖目标 底物反应的假阳性,因 96 孔板通量问题,原反应 只对 ATA-W5 和 PSGA 做了对照。为了进一步确 认,我们对经过 16 h 反应能形成黑色沉淀的 11 种 酶重新进行测定,如图 4 所示,2/5 列为含 1-Boc-3-吡咯烷酮的反应, 3/6 列为含 1-Boc-3-哌啶酮的反 应,f5/6 均为不含酶的对照。1/4 为含酶不含底物 的空白组。

经 16h 反应后,含 11 种酶实验组及对照组出现 了黑色沉淀 (图 4)。图 4 中不含酶空白组均未出现黑 色沉淀,说明了这种假阳性的产生不是 Green 等所推 测的由 PLP 造成的,可能是由于其推测的粗酶液本 身含有天然酮类底物如丙酮酸产生的非特异反应。 1934

图 4 确认粗酶液中酮类及 PLP 杂质的影响 Fig. 4 Confirming the influence of impurity ketone or PLP in the clarified cell lysates.

Green 等报道的显色筛选法^[28]一直被作为一 种正向筛选法来高通量筛选 ω-TAs,但是实验结 果说明,可能由于粗酶液中太多丙酮酸等酮类杂 质造成该方法并不适合粗酶液的正向筛选。无论 如何,黑色沉淀的形成说明ω-TAs一定具有很高 的酶活力。所以该方法可作为一种"负向筛选法" 来排除低活性的酶进行酶活力初筛。通过这种"负 向"酶活初筛,我们筛选出共11种具有较高活性的 ω-TAs,包括原酶ATA-2、8、9、12、13、14、15、 17、18、PSGA 和宏基因组挖掘的新酶ATA-W12。

2.5 兼容 IPA 的转化率筛选

为了进一步确认这 11 种 ω-TAs 对 IPA 的兼容 性及底物转化能力,以 30 mmol/L IPA 和 20 mmol/L 目标底物 (1-Boc-3-哌啶酮及吡咯烷 酮)建立了 1 mL 密闭反应,经过 37 ℃、16 h反 应后用 HPLC 法检测底物转化率。

图 5 显示了这种筛选的结果,除了 ATA-12 对 1-Boc-3 哌啶酮的反应非常低之外,其他所有 酶对两种底物都在 IPA 供体下具有不同的转化 率。转化率超过 50%的是 ATA-2、9 和 ATA-W12。 转化率筛选结果和显色对比让我们感到意外的 是,ATA-2、9 在显色筛选法中仅 15 min 就发生 了颜色变化,说明酶的反应速度很快;而 ATA-W12 反应很慢,16 h反应后却比 ATA-2、9 转化率高。这可能是由于 ATA-W12 比 ATA-2、9 在 37 ℃下的热稳定性更高,一直在反应中维持更 高的活性。也说明了显色筛选法只能作为一种不 依赖于底物的初筛方法,为 IPA 供体下转化率筛 选法降低工作量。

分析以 ATA-2、9 和 ATA-W12 三种 ω-TAs 的 反应产物测定的 HPLC 图谱 (见附图 1), ATA-W 12 处于 25.663 min 产物峰的信号是最强的。再者 为了真实体现 11 种 ω-TAs 在不采取副产物移除的 情况下对兼容 IPA 下底物转化效率,我们进行此 1 mL 反应时采取了密闭管反应体系。即使在这种 密闭反应体系下, ATA-W12 可以转化 67.42%的 1-Boc-3-哌啶酮和 85.84%的 1-Boc-3-吡咯烷酮, 这有利于减压或微加热去除副产物丙酮改变转氨 反应平衡的策略实施。

图 5 兼容 IPA 的 ω-TAs 转化率筛选

Fig. 5 Conversion screening of ω -TAs with IPA.

2.6 ATA-W12 的酶学筛选

根据宏基因组测序数据可知 ATA-W12 是一种来源于 Caulobacter sp. UNC358 MF Tsu5.1 的转 氨酶,用 Pfam 蛋白家族数据库分析可知属于Ⅲ类 TAs。目前为止,在野生转氨酶^[5]中,来源于 Caulobacter sp.的ω-TAs 尚未见研究报道,所以我 们对 ATA-W12 进行了酶学性质研究。

如图 6 所示, 泳道 1 为纯化的 ATA-W12, 分子量大约 55 kDa 左右, 110 kDa 左右较淡条带为 酶的二聚体形式; 泳道 2 和 3 分别为菌体破碎液 的沉淀部分及上清部分,说明了 ATA-W12 为可溶 性表达。

为了得到 ATA-W12 的适宜反应条件,我们测 定了 ATA-W12ω-转氨酶的最适 pH 值、最适温度 和温度依赖的热稳定性,结果见图 7。

图 6 ATA-W12 的表达及纯化

Fig. 6 Overexpression and purification of ATA-W12. Lane 1: purified ATA-W12 and its dimer; lane 2: precipitation fraction; lane 3: supernatant fraction.

图 7A 显示了 ATA-W12 最适 pH 值为 8.5,符 合了用 IPA 为供体时理想指标 (pH 值大于 7.0)。 在 pH 8.5 的碱性环境下,氨基供体和手性胺产物 的氨基被质子化,从而减少减压或加热原位蒸馏 时氨基供体和手性胺产物的损失。同时可以看出即使 pH 达到 9.0,该酶依然保持 90%左右的活性, pH 8.5-9.0 的高活性范围使得工业生产控制过程更为简便。

图 7B 显示了 ATA-W12 最适温度为 50 ℃, 且在 40 ℃时仍有 96%以上的酶活力,这种 40-50 ℃的范围也符合 IPA 供体原位蒸馏最佳范 围 40-60 ℃之间。这种范围既能实现有效产物移 除,又能避免底物和目标产物的蒸馏损失。

图 7C 显示了 ATA-W12 温度依赖的稳定性, 我们发现 ATA-W12 在 40 ℃和 50 ℃孵育 12 h之 内酶活力依然保持在 96%以上。所以当反应能控 制在 12 h内完成时,该酶有 40-50 ℃的温控范围, 降低了工业生产对温度控制设备的要求。但是在 12 h 以上时,50 ℃孵育的酶活力逐渐下降,而

图 7 1-PEA 快速分析法鉴定 ATA-W12 酶学性质 Fig. 7 Characterization of the ATA-W12 by a rapid assay using 1-PEA.

1936

40 ℃孵育 168 h 后依然保持,所以结合最适温度 和热稳定性,ATA-W12 的最适温度控制在 40 ℃ 较为合适。出乎意料的是,40 ℃孵育的酶活力与 4-30 ℃之间孵育相比,随着孵育时间的延长酶的 活力反而缓缓上升,推测可能 40 ℃情况下能让该 酶保持高活性构象状态。

综合以上三者的 ATA-W12 的酶学筛选结果, 可得出 ATA-W12 在 pH 8.5 和温度 40 ℃条件下进 行手性胺中间体放大合成的优选适宜反应条件。 pH 值范围在 8.5–9 之间,若反应在 12 h 之内完成, 温度可在 40–50 ℃之间进行调整。

2.7 ATA-W12 的工业潜力验证

为了验证新型转氨酶-ATA-W12 工业适应的 潜力,我们采用酶学筛选确立的 ATA-W12 的初步 反应条件实现(S)-(+)-1-Boc-3-氨基哌啶的 50 mL 实验室规模放大测试。为了方便制备,采用 5 g 未破碎 ATA-W12 湿菌体,因在 pH 8.5、40 ℃及 搅拌速度 300 r/min 的反应条件下, ATA-W12 很 容易从湿菌体中裂解释放实现催化。添加4%的二 甲基亚砜, 使得 500 mmol/L 1-Boc-3-哌啶酮容易 溶解且对 ATA-W12 酶活抑制影响不大。采用 3 倍 底物浓度的 IPA 供体,过量底物浓度使得反应利 于向产物生成方向进行。因起始反应速度快造成 pH下降,采用2mol/L异丙胺水溶液供体流加调 节 pH 为 8.5。经过 8 h 反应后,用 HPLC 法不能 检测到反应底物,500 mmol/L 1-Boc-3 氨基哌啶 酮几乎 100%转化为 (S)-(+)-1-Boc-3-氨基哌啶, 产物纯化后测试 ee 值>99.95% (见附图 2), 该项 成果 2016 年申请了中国发明专利,并于 2019 年 获得发明授权^[34]。

3 结论与展望

Green 等^[28]建立的 ω-TAs 高通量筛选法是基 于易脱氨供体邻亚二甲苯二胺,可广泛接受各类 ω-TAs 和酮类底物,因其方法的简便性及通用性 得到广泛应用。本研究发现该方法在粗酶液筛选 中易产生不依赖于目标底物的假阳性,但可以作 为一种酶活初筛方法。Schatzle等^[29]建立的ω-TAs 快速动力分析法是基于另一种易脱氨供体 1-PEA 的方法,可以快速地对ω-TAs的热稳定性及反应 条件进行初步筛选。虽然理想工业用氨基供体 IPA 可以采用传统的 HPLC 及转化率的筛选,但 是因费时费力不太适合高通量筛选。本研究组合 了基于 3 种供体的筛选方法建立了一套有效的 "ω-转氨酶的工业适应性选择"流程。发展以生物 传感器或显色法检测丙酮副产物,来建立"基于 IPA 供体的ω-转氨酶高通量筛选方法"是一个值 得继续研究的课题。

Gundersen 等^[32]以 25 mL 实验规模,采用 Ars-ωTA 转氨酶和 IPA 氨基供体经过 96 h 反应得 到 50 g/L 的(S)-(+)-1-Boc-3-氨基哌啶,转化率为 91%。而本研究发现的 ATA-W12 采用酶学筛选的 初步反应条件和 1.5 mol/L 的 IPA 供体,8 h 后几 乎完全转化 500 mmol/L 1-Boc-3-哌啶酮生成 100 g/L 的(S)-(+)-1-Boc-3-氨基哌啶,生产效率大 大提高。这可能主要源于 ATA-W12 具有耐高浓度 IPA 和高热稳定性的优良特性。对 ATA-W12 的转 氨过程进行优化,提高生产效率值得进一步研究。

总之,本研究发现的 ATA-W12 是为数不多的 具有工业应用"天赋"的野生新型 ω-转氨酶,通过 该酶的底物谱研究,可以实现其他 S-型医药中间 体的生产。另外也可作为"人工进化"改造的优良 起始酶种,通过拓展底物谱改造可实现更多医药 中间体生产,在制药工业中具有广阔应用前景。

REFERENCES

- Vitaku E, Smith DT, Njardarson JT. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J Med Chem, 2014, 57(24): 10257–10274.
- [2] Hansen KB, Hsiao Y, Xu F, et al. Highly efficient asymmetric synthesis of sitagliptin. J Am Chem Soc, 2009, 131(25): 8798–8804.

- [3] Savile CK, Janey JM, Mundorff EC, et al. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science, 2010, 329(5989): 305–309.
- [4] Fuchs M, Farnberger JE, Kroutil W. The industrial age of biocatalytic transamination. Eur J Organ Chem, 2015, 2015(32): 6965–6982.
- [5] Guo F, Berglund P. Transaminase biocatalysis: optimization and application. Green Chem, 2017, 19(2): 333–360.
- [6] Ferrandi EE, Monti D. Amine transaminases in chiral amines synthesis: recent advances and challenges. World J Microbiol Biotechnol, 2018, 34: 13.
- [7] Xia WN, Sun Y, Min C, et al. Asymmetric synthesis of aromatic L-amino acids catalyzed by transaminase. Chin J Biotech, 2012, 28(11): 1346-1358 (in Chinese).
 夏温娜, 孙雨, 闵聪, 等. 转氨酶催化不对称合成

芳香族 L-氨基酸. 生物工程学报, 2012, 28(11): 1346-1358.

[8] Du YC, Dong WY, Jiang JJ, et al. Expression and characterization of a novel ω-transaminase from *Burkholderia phytofirmans* PsJN. Chin J Biotech, 2016, 32(7): 912–926 (in Chinese).
杜 允 成,董文 玥,姜进举,等.一种来源于

Burkholderia phytofirmans PsJN 的 ω-转氨酶的表达 纯化及性质分析. 生物工程学报, 2016, 32(7): 912-926.

[9] Zhou H, Hong Y, Yan M, et al. Expression, purification and enzymatic characterization of *Thermus thermophilus* HB8 aspartate aminotransferase in *Escherichia coli*. Chin J Biotech, 2007, 23(2): 278–283 (in Chinese).

周华,洪媛,严明,等.极端嗜热菌 Thermus thermophilus HB8 中天冬氨酸转氨酶在大肠杆菌中的表达、纯化及酶学性质研究.生物工程学报, 2007, 23(2): 278-283.

- [10] Xie DF, Lü CJ, Fang H, et al. Deletion of a dynamic surface loop improves thermostability of (*R*)-selective amine transaminase from *Aspergillus terreus*. Chin J Biotech, 2017, 33(12): 1923–1933 (in Chinese). 谢东芳, 吕常江, 方卉, 等. 删除 Loop 区域表面不稳定氨基酸提高 (*R*)-ω-转氨酶热稳定性. 生物工程学报, 2017, 33(12): 1923–1933.
- [11] Ghislieri D, Turner NJ. Biocatalytic approaches to

the synthesis of enantiomerically pure chiral amines. Top Catal, 2014, 57(5): 284–300.

- [12] Grogan G. Synthesis of chiral amines using redox biocatalysis. Curr Opin Chem Biol, 2018, 43: 15–22.
- [13] Lenz M, Borlinghaus N, Weinmann L, et al. Recent advances in imine reductase-catalyzed reactions. World J Microbiol Biotechnol, 2017, 33(11): 199.
- [14] Mayol O, Bastard K, Beloti L, et al. A family of native amine dehydrogenases for the asymmetric reductive amination of ketones. Nat Catal, 2019, 2(4): 324–333.
- [15] Knaus T, Böhmer W, Mutti FG. Amine dehydrogenases: efficient biocatalysts for the reductive amination of carbonyl compounds. Green Chem, 2017, 19(2): 453–463.
- [16] Koszelewski D, Tauber K, Faber K, et al. ω-Transaminases for the synthesis of non-racemic α-chiral primary amines. Trends Biotechnol, 2010, 28(6): 324–332.
- [17] Malik MS, Park ES, Shin JS. Features and technical applications of ω-transaminases. Appl Microbiol Biotechnol, 2012, 94(5): 1163–1171.
- [18] Kelly SA, Pohle S, Wharry S, et al. Application of ω-transaminases in the pharmaceutical industry. Chem Rev, 2018, 118(1): 349–367.
- [19] Constable DJC, Dunn PJ, Hayler JD, et al. Key green chemistry research areas-a perspective from pharmaceutical manufacturers. Green Chem, 2007, 9(5): 411–420.
- [20] Frodsham L, Golden M, Hard S, et al. Use of ω-transaminase enzyme chemistry in the synthesis of a JAK2 kinase inhibitor. Org Process Res Dev, 2013, 17(9): 1123–1130.
- [21] Limanto J, Beutner G, Grau B, et al. Biocatalysts and methods for the synthesis of (1*R*,2*R*)-2-(3, 4-dimethoxyphenethoxy) cyclohexanamine: PCT, WO/2012/024104. 2012-02-23.
- [22] Mangion IK, Sherry BD, Yin JJ, et al. Enantioselective synthesis of a dual orexin receptor antagonist. Org Lett, 2012, 14(13): 3458–3461.
- [23] Shin JS, Kim BG. Transaminase-catalyzed asymmetric synthesis of L-2-aminobutyric acid from achiral reactants. Biotechnol Lett, 2009, 31(10): 1595–1599.
- [24] Burns M, Martinez CA, Vanderplas B, et al. A

chemoenzymatic route to chiral intermediates used in the multikilogram synthesis of a gamma secretase inhibitor. Org Process Res Dev, 2017, 21(6): 871–877.

- [25] Kelefiotis-Stratidakis P, Tyrikos-Ergas T, Pavlidis IV. The challenge of using isopropylamine as an amine donor in transaminase catalysed reactions. Org Biomol Chem. 2019, 17(7): 1634–1642.
- [26] Tufvesson P, Bach C, Woodley JM. A model to assess the feasibility of shifting reaction equilibrium by acetone removal in the transamination of ketones using 2-propylamine. Biotechnol Bioeng, 2013, 111(2): 309–319.
- [27] Dach R, Song JJ, Roschangar F, et al. The eight criteria defining a good chemical manufacturing process. Org Process Res Dev, 2013, 16(11): 1697–1706.
- [28] Green AP, Turner NJ, O'Reilly E. Chiral amine synthesis using ω -transaminases: an amine donor that displaces equilibria and enables high-throughput screening. Angew Chem Int Ed Engl, 2014, 53(40): 10714–10717.
- [29] Schätzle S, Höhne M, Redestad E, et al. Rapid and sensitive kinetic assay for characterization of ω-transaminases. Anal Chem, 2009, 81(19):

8244-8248.

- [30] Höhne M, Robins K, Bornscheuer UT. A protection strategy substantially enhances rate and enantioselectivity in ω-transaminase-catalyzed kinetic resolutions. Adv Synth Catal, 2008, 350(6): 807–812.
- [31] Höhne M, Kühl S, Robins K, et al. Efficient asymmetric synthesis of chiral amines by combining transaminase and pyruvate decarboxylase. Chembiochem, 2008, 9(3): 363–365.
- [32] Gundersen MT, Tufvesson P, Rackham EJ, et al. A rapid selection procedure for simple commercial implementation of ω -transaminase reactions. Org Process Res Dev, 2016, 20(3): 602–608.
- [33] Leipold L, Dobrijevic D, Jeffries JWE, et al. The identification and use of robust transaminases from a domestic drain metagenome. Green Chem, 2019, 21(1): 75–86.
- [34] Wang HL, Xie YY, Wang JG, et al. The gene sequence and application of a S-type ω-transaminase, ATA-W12. China, 106520719B. 2019-06-07 (in Chinese).
 王华磊,谢有余, 王继国,等. 一种 S型的 ω-转氨 酶 ATA-W12 及其基因和应用. 中国, 106520719B. 2019-06-07.

(本文责编 陈宏宇)