生物工程学报 Chinese Journal of Biotechnology http://journals.im.ac.cn/cjbcn DOI: 10.13345/j.cjb.210952

Jul. 25, 2022, 38(7): 2566-2580 ©2022 Chin J Biotech, All rights reserved

 • 合成生物技术
 •

代谢工程改造大肠杆菌合成丙二酸

付雯盲^{1,2},李诗韵^{1,2},赵运英^{1,2,3},邓禹^{1,2,3}

1 江南大学 粮食发酵与食品生物制造国家工程研究中心, 江苏 无锡 214122

2 江南大学 生物工程学院, 江苏 无锡 214122

3 江南大学 江苏省生物活性产品加工工程研究中心, 江苏 无锡 214122

付雯宣,李诗韵,赵运英,邓禹. 代谢工程改造大肠杆菌合成丙二酸. 生物工程学报, 2022, 38(7): 2566-2580. FU WX, LI SY, ZHAO YY, DENG Y. Metabolic engineering of *Escherichia coli* for production of malonic acid. Chin J Biotech, 2022, 38(7): 2566-2580.

摘 要:丙二酸是一种重要的有机二元羧酸,其应用价值遍及化工、医药、食品等领域。本文以 大肠杆菌为底盘细胞,过表达了 ppc、aspC、panD、pa0132、ynel 和 pyc 基因,成功构建了丙二 酸合成重组菌株大肠杆菌 BL21(TPP)。该菌株在摇瓶发酵条件下,丙二酸产量达到 0.61 g/L。在 5 L 发酵罐水平,采用间歇补料的方式丙二酸的积累量达 3.32 g/L。本研究应用了融合蛋白技术, 将 ppc 和 aspC、pa0132 和 ynel 分别进行融合表达,构建了工程菌 BL21(SCR)。在摇瓶发酵水平, 该菌株丙二酸的积累量达到了 0.83 g/L,较出发菌株 BL21(TPP) 提高了 36%。在 5 L 发酵罐中, 工程菌 BL21(SCR) 的丙二酸产量最高达 5.61 g/L,较出发菌株 BL21(TPP) 提高了 69%。本研究实 现了丙二酸在大肠杆菌中的生物合成,为构建丙二酸合成的细胞工厂提供了理论依据和技术基础, 同时也对其他二元羧酸的生物合成具有启发和指导意义。

关键词: 大肠杆菌; 代谢改造; 丙二酸; 融合表达

Received: December 29, 2021; Accepted: March 15, 2022

Supported by: National Key Research and Development Program of China (2019YFA0905502); National Natural Science Foundation of China (21877053); Natural Science Foundation of Jiangsu Province, China (BK20181345)

Corresponding authors: ZHAO Yunying. Tel: +86-510-85329031; Fax: +86-510-85918312; E-mail: yunyingzhao@jiangnan.edu.cn DENG Yu. Tel: +86-510-85329031; Fax: +86-510-85918312; E-mail: dengyu@jiangnan.edu.cn

基金项目:国家重点研发计划 (2019YFA0905502);国家自然科学基金 (21877053);江苏省自然科学基金 (BK20181345)

Metabolic engineering of *Escherichia coli* for production of malonic acid

FU Wenxuan^{1,2}, LI Shiyun^{1,2}, ZHAO Yunying^{1,2,3}, DENG Yu^{1,2,3}

1 National Engineering for Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, Jiangsu, China

2 School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China

3 Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University,

Wuxi 214122, Jiangsu, China

Abstract: Malonic acid is an important dicarboxylic acid, which can be widely used in the fields of chemical industry, medicine and food. In this study, a recombinant *Escherichia coli* strain BL21(TPP) was constructed to synthesize malonate through overexpressing six genes of *ppc*, *aspC*, *panD*, *pa0132*, *yneI* and *pyc*. Under shake flask fermentation conditons, strain BL21(TPP) produced 0.61 g/L malonic acid. In a 5 L fermentor, the production of malonic acid reached 3.32 g/L by using an intermittent feeding strategy. Next, a recombinant strain BL21(SCR) was constructed by fusional expression of *ppc* and *aspC*, as well as *pa0132* and *yneI*, respectively. As a result, the production of malonic acid increased to 0.83 g/L at the shake flask level, which was a 36% increase over the starting strain BL21(TPP). Finally, the highest malonate production reached 5.61 g/L in a 5 L fermentor, which was a 69% increase over the starting strain BL21(TPP). Production of malonic acid by metabolically engineered *E. coli* provides a basis for further optimization, and may also serve as a reference for the biosynthesis of other dicarboxylic acids.

Keywords: Escherichia coli; metabolic engineering; malonic acid; fusional expression

丙二酸是一种二元羧酸,又称缩苹果酸, 在自然界中以钙盐的形式存在于甜菜根中。丙 二酸在世界范围内需求量巨大,被美国能源部 列为可由生物质生产的前 30 种化学品之一^[1], 是非常重要的有机合成中间体。丙二酸及其酯 可用于合成巴比妥、维生素 B₁、维生素 B₂,是 重要的医药中间体^[2],亦是吲熟酯等植物生长 调节剂的中间体,因此在农业中常用于合成植 物生长调节剂^[3];在化工领域,丙二酸是一种 具有竞争力的铝表面处理剂,加热分解生成乙 酸和水。生成的乙酸能够和铝发生反应生成醋 酸铝、氢气和水,不会造成环境污染,与甲酸 等酸性处理剂相比具有很大的优势^[4];在食品 加工领域,丙二酸及其酯是重要的食品添加剂, 能提高产品的风味^[5]。目前,工业上生产丙二 酸主要采用水解丙二酸二乙酯的方法^[6],以及 在氢氧化钙水溶液中水解氟乙酸钙得到丙二酸 钙,再通过酸性水解获得丙二酸^[7]。然而这些 合成方法具有反应过程复杂、生产成本高等缺 点,因此,开发一种可行、高效、生产成本低 的生产替代途径迫在眉睫。

近年来,生物法合成丙二酸逐渐走入人们 的视野^[8],研究者开始探索丙二酸生物合成途 径,但由于缺乏对合适酶和代谢途径的认识, 生物法合成丙二酸的研究进展缓慢。目前并未 发现生产丙二酸的天然代谢途径^[9],β-丙氨酸途 径是生物法合成丙二酸较为理想的代谢通路, 该途径以β-丙氨酸作为丙二酸的合成前体合成 丙二酸^[10],为代谢合成丙二酸奠定了基础。有 研究者通过β-丙氨酸途径实现了丙二酸在大肠 杆菌中的生物合成,最终通过发酵优化使重组 菌株在5L发酵罐的产量达到3.6g/L^[8],证明 了生物合成丙二酸具有可行性。但目前关于丙 二酸生物合成的研究还处于初级阶段,丙二酸 的产量有待进一步的提高。

大肠杆菌 (Escherichia coli) 是公认的已经 被充分研究的模式生物,其含有的大部分蛋白 酶也都被深入地研究^[11]。由于其清晰的遗传背 景、繁殖速度快以及成熟的基因改造技术,大 肠杆菌是备受研究者青睐的基因工程菌。随着 分子酶工程学的不断发展, 酶融合技术已经被 广泛用于代谢工程实验中, 是近年来的研究热 点之一^[12]。在合成生物学方面,该技术可通过 减少底物的损失和中间体的积累提高终产物的 产量;还可以利用抗原抗体特异性结合的原理, 在宿主菌株中表达支架蛋白以实现酶的共定 位。Tippmann 等的研究中运用了该方法, 使大 肠杆菌中聚羟基丁酸酯的产量提高了7倍^[13]。 Dueber 等运用融合蛋白技术优化合成酶的比 例,减少了细胞的代谢负担,从而使产物的滴 度提高了 77 倍[14],这说明酶融合技术应用前景 广阔,在代谢合成领域极具应用价值。

本研究为了降低生产成本,提高研究的商 业价值,所有质粒选用的均是组成型表达载体。 本研究首先过表达大肠杆菌 BL21(DE3)来源 的磷酸烯醇式丙酮酸羧化酶 (*ppc*)、天冬氨酸转 氨酶 (*aspC*)、天冬氨酸-α-脱羧酶 (*panD*) 基 因,同时引入铜绿假单胞菌来源的 β-丙氨酸丙 酮酸转氨酶 (*pa0132*) 基因、大肠杆菌 K12 来 源的琥珀酸半醛脱氢酶 (*ynel*) 基因,获得重组 菌 BL21(TP)。为了进一步提高丙二酸产量,本 研究设计了两种实验方案:(1)用 CRISPR/Cas9 技术敲除竞争途径的 pykA 基因,阻碍碳源进入 TCA 循环,重组菌命名为 BL21ΔpykA(TP);(2) 过表达谷氨酸棒杆菌来源的丙酮酸羧化酶 (pyc) 基因,通过增强草酰乙酸的供给提高丙二酸产 量,获得的重组菌命名为 BL21(TPP),并通过 SDS-PAGE 验证途径中 6 个酶是否表达。在摇 瓶水平和 5 L 发酵罐水平对 BL21(TPP)菌株进 行发酵优化,最后将 yneI、pa0132 和 ppc、aspC 分别进行融合表达。最终,本研究实现了大肠 杆菌中丙二酸的生物合成,为后续生物合成丙 二酸的研究提供了技术基础和理论依据。

1 材料与方法

1.1 材料

1.1.1 菌株、质粒和培养基

表 1 为菌株及相关介绍;表 2 为质粒及相关介绍。

LB 培养基 (g/L):蛋白胨 10,酵母粉 5, 氯化钠 10;SOB 培养基 (g/L):蛋白胨 20,酵 母粉 5,MgSO₄·7H₂O 2.47,NaCl 0.5,KCl 0.186; 固体培养基需添加 2.5%的琼脂粉,添加的抗菌 素终浓度为 1 mmol/L。

1.1.2 引物

本研究所有引物均由天霖生物公司合成, 如表3所示。

1.1.3 主要试剂

DNA 聚合酶及 Marker 购自 TaKaRa 公司; MultiF Seamless Assembly Mix 重组酶购自 ABclonal 公司; DNA 纯化及质粒提取试剂盒购 自生工生物工程 (上海) 股份有限公司。

1.2 重组质粒的构建

为了在大肠杆菌中构建丙二酸生物合成途径,本研究过表达了大肠杆菌 BL21(DE3)来源的磷酸烯醇式丙酮酸羧化酶 (*ppc*)、天冬氨酸

Table 1 Strains used in this study					
E. coli strains	Characteristics	Sources			
JM109	For plasmid construction	Lab store			
BL21(DE3)	For expressing genes	Lab store			
MG1655(K12)	For expressing genes	Lab store			
DH5a	For expressing genes	Lab store			
BL21(TPP)	BL21(DE3) carrying pCDF-ppc-aspC, pTrc99A-pyc-panD and pRSF-yneI-pa0132	This study			
BL21(SCR)	BL21(DE3) carrying pCDF-ppc-linker-aspC, pRSF-yneI-linker-pa0132 and	This study			
	pTrc99A-pyc-panD				
BL21(TP)	BL21(DE3) carrying pCDF-ppc-aspC, pTrc99A-panD and pRSF- yneI-pa0132	This study			
BL21∆pykA	BL21(DE3) knocking out <i>pykA</i> gene	This study			
BL21ΔpykA(TP)	BL21(DE3) knocking out <i>pykA</i> gene carrying pCDF-ppc-aspC, pTrc99A-panD and	This study			
	pRSF-vneI-pa0132				

表1 本研究所用菌株

表 2 本研究所用质粒

Table 2Plasmids used in this study					
Plasmids	Characteristics	Sources			
pTrc99A-panD	pTrc99A harboring the optimized gene panD, AmpR	This study			
pTrc99A-pyc-panD	pTrc99A harboring the optimized genes pyc and panD, AmpR	This study			
pCDF-ppc-aspC	pCDF harboring the optimized genes ppc and aspC, StrepR	This study			
pRSF-yneI-pa0132	pRSF harboring the optimized genes yneI and pa0132, KanR	This study			
pCDF-ppc-linker-aspC	pCDF-ppc-aspC harboring the antibody sequence linker, StrepR	This study			
pRSF-yneI-linker-pa0132	pRSF-yneI-linker-pa0132 harboring the antibody sequence linker, KanR	This study			
pCas	pCas-cas9, KanR	Lab store			
pTarget-pykA	sgRNA-pykA, Spe	This study			
pTarget	sgRNA, Spe	Lab store			

转氨酶 (aspC)、天冬氨酸-α-脱羧酶 (panD) 基因。同时引入了铜绿假单胞菌 (Pseudomonas aeruginosa) 来源的 β-丙氨酸丙酮酸转氨酶 (pa0132) 基因、大肠杆菌 K12 来源的琥珀酸半醛脱氢酶 (ynel) 基因和谷氨酸棒杆菌 (Corynebacterium glutamicum) 来源的丙酮酸羧化酶 (pyc) 基因。以本实验室保存的 pRSF、pCDF、pTc99A 质粒以及大肠杆菌的基因组为 模板,通过表 3 中的引物,分别扩增获得基因 片段以及上下游的同源臂序列。再采用同源重 组的方法,构建 pTrc99A-panD、pTrc99A-pyc-panD、pCDF-ppc-aspC 和 pRSF-yneI-pa0132 表 达质粒。具体构建策略如下。

重组质粒 pTrc99A-panD 的构建:以大肠杆 菌 BL21(DE3) 基因组为模板,用引物 panD-F、 panD-R 扩增天冬氨酸-α-脱羧酶 (*panD*) 基因。 以实验室保存的 pTrc99A 质粒为模板,用引物 pTrc99A-F、pTrc99A-R 线性化质粒模板。再用 同源重组酶将 *panD* 片段和 pTrc99A 质粒同源 重组,将重组产物转入 *E. coli* JM109 感受态细 胞中,得到 pTrc99A-panD 重组质粒。

重组质粒 pTrc99A-pyc-panD 的构建:以大 肠杆菌 BL21(DE3) 基因组为模板,用引物 panD-F、panD-R 扩增天冬氨酸-α-脱羧酶 (*panD*) 基因。以谷氨酸棒杆菌基因组为模板,用引物 pyc-F、pyc-R 扩增丙酮酸羧化酶 (*pyc*) 基因。以

Table 3 Primers used in this study			
Primers	Sequences $(5' \rightarrow 3')$		
ppc-F	AACAGACCCCATGGGCATGAACGAACAATATTCCGCATT	_	
ppc-R	GCCGGATGATTAATTGTCAAGAATTCTTAGCCGGTATTACGCATACCTG		
aspC-F	CACACAGGAAACAGACCATGTTTGAGAACATTACCGCCG		
aspC-R	GCCGCAAGCTTGTCGACTTACAGCACTGCCACAATCGC		
yneI-F	CACACAGGAAACAGACCATGACCATTACTCCGGCAACTC		
yneI-R	TTCTTTACCAGACTCGAGTCAGATCCGGTCTTTCCACAC		
pa0132-F	CACACAGGAAACAGACCATGAATCAGCCCCTGAATGTC		
pa0132-R	GCCGGATGATTAATTGTCAAAAGCTTTCAGGCAATTCCGTTCAGAG		
pyc-F	CACACAGGAAACAGACCGTGTCGACTCACACATCTTCAACG		
pyc-R	GCCGGATGATTAATTGTCAAGAATTCCTTAGGAAACGACGACGATCAAGTC		
panD-F	GAAACAGACCCTCGAGCAAGAGGTATATATTAATGTTGCGTACTATCC		
panD-R	GCCAAAACAGCCAAGCTTCTAGATCGAGCGACTGGTTAAAAG		
pCDF-F	GTCGACAAGCTTGCGGCC		
pCDF-R	ATTTCCTAATGCAGGAGTCGCAT		
pRSF-F	CTCGAGTCTGGTAAAGAAACCGC		
pRSF-R	ATTTCCTAATGCAGGAGTCGCAT		
pTrc99A-F	AAGCTTGGCTGTTTTGGCG		
pTrc99A-R	CAGCTCATTTCAGAATATTTGCCA		
pRSF-linker-F	ATGACCATTACTCCGGCAACTC		
pRSF-linker-R	AAGCTTGGCAATTCCGTTCA		
pCDF-linker-F	ATGTTTGAGAACATTACCGCCG		
pCDF-linker-R	GAATTCGCCGGTATTACGCA		
linker-pRSF-F	ACGGAATTGCCAAGCTTTCTTCAAGCTCTGGTAGCTCGTC		
linker-pRSF-R	CCGGAGTAATGGTCATTCCGGAGCTCGAACTGCC		
linker-pCDF-F	TAATACCGGCGAATTCTCTTCAAGCTCTGGTAGCTCGTC		
linker-pCDF-R	CGGCGGTAATGTTCTCAAACATTCCGGAGCTCGAACTGCC		
pykA-sgRNA-F	TGCGCGTCAGCTAAACCGAGGTTTTAGAGCTAGAAATAGCAAGT		
pykA-sgRNA-R	CTCGGTTTAGCTGACGCGCAACTAGTATTATACCTAGGACTGAG		
pykA-up-F	CCACAGCCAGGATCCACGCATGAGTTGTATGAATTGT		
pykA-up-R	CATCCGGCAACGTACGTAATACTCCGTTGACTGAAACAAC		
pykA-down-F	TGTTTCAGTCAACGGAGTATTACGTACGTTGCCGGATGC		
pykA-down-R	TGCGGCCGCAAGCTTTACGTCAGGGGTACTGG		

表3 木研密所用引物

同源重组酶将 panD、pyc 片段和 pTrc99A 质 粒同源重组,将重组产物转入 E. coli JM109 感受态细胞中,得到 pTrc99A-pyc-panD 重组 质粒。

重组质粒 pCDF-ppc-aspC 的构建: 以大肠 杆菌 BL21(DE3) 基因组为模板,用引物 ppc-F、 ppc-R 扩增磷酸烯醇式丙酮酸羧化酶基因 (ppc); 引物 aspC-F、aspC-R 扩增天冬氨酸转氨 酶基因 (aspC)。以 pCDF 质粒为模板,用引物 pCDF-F、pCDF-R 线性化质粒模板。再用同源 重组酶将 ppc、aspC 片段和 pCDF 质粒同源重 组,将重组产物转入 E. coli JM109 感受态细胞 中,筛选获得 pCDF-ppc-aspC 重组质粒。

重组质粒 pRSF-yneI-pa0132 的构建:琥珀 酸半醛脱氢酶基因 (yneI) 和 β-丙氨酸丙酮酸 转氨酶基因 (pa0132) 由苏州金唯智生物科技 有限公司合成,用引物 yneI-F、yneI-R 扩增琥 珀酸半醛脱氢酶基因 (yneI);用引物 pa0132-F、 pa0132-R 扩增 β-丙氨酸丙酮酸转氨酶基因 (pa0132)。以实验室保存的 pRSF 质粒为模板, 用引物 pRSF-F、pRSF-R 线性化质粒模板。再用 同源重组酶将 yneI、pa0132 片段和 pRSF 质粒 同源重组,将重组产物转入 E. coli JM109 感受 态细胞中,获得 pRSF-yneI-pa0132 重组质粒。

为了提高丙二酸合成途径的效率,本研究 将丙二酸合成途径的关键酶 ynel 和 pa0132 以 及 ppc 和 aspC 分别进行融合表达。采用 Stefan 等^[12]的融合蛋白构建方法,对构建的组成型表 达质粒进行改造。具体构建策略如下。

重组质粒 pCDF-ppc-linker-aspC 的构建: linker 基因片段由苏州金唯智生物科技有限公司合成,其氨基酸序列为 (SSSSG)4。用引物 linker-pCDF-F、linker-pCDF-R 扩增 linker 片段。 以 pCDF-ppc-aspC 质粒为模板,用引物 pCDFlinker-F、pCDF-linker-R 线性化 pCDF 质粒, 再用同源重组酶将 linker 片段和 pCDF-ppcaspC 质粒同源重组,将重组产物转入 *E. coli* JM109 感受态细胞中,筛选获得 pCDF-ppc-linkeraspC 重组质粒。

重组质粒 pRSF-yneI-linker-pa0132 的构建: linker 基因片段由苏州金唯智生物科技有限公司合成,引物 linker-pRSF-F、linker-pRSF-R 扩增 linker 片段。以 pRSF-yneI-pa0132 质粒为模板, pRSF-linker-F、pRSF-linker-R线性化 pRSF 质粒, 再用同源重组酶将 linker 片段和 pRSF-yneIpa0132 质粒同源重组,将重组产物转入 *E. coli* JM109 感受态,筛选获得 pRSF-yneI-linker-pa0132 重组质粒。

1.3 CRISPR/Cas9 系统敲除大肠杆菌丙酮 酸激酶 (*pykA*) 基因

本研究使用双质粒系统敲除 pykA 基因,构 建含有 Cas9 编码基因的 pCas 质粒和含有 sgRNA 的 pTarget 质粒。基因敲除时,将两个质粒和目 标基因上下游 500 bp 的片段一起电转化入待敲 除菌株中,并使用终浓度为 10 mmol/L 的阿拉 伯糖诱导重组酶的合成,实现基因敲除。

验证敲除正确后,诱导pCas质粒定位pTarget 质粒上的 sgRNA,从而消除 pTarget 质粒。由于 pCas质粒是温敏型质粒,因此选用在 42 ℃ 培养的方式消除 pCas质粒。

1.4 重组菌株的构建

将质粒 pRSF-yneI-pa0132、pCDF-ppc-aspC 和 pTrc99A-panD 电转化至 BL21(DE3) 菌株 中,获得重组菌 BL21(TP)。将质粒 pRSF-yneIpa0132、pCDF-ppc-aspC 和 pTrc99A-panD 电转 化至 BL21(DE3)Δ*pykA* 菌株中,获得重组菌 BL21Δ*pykA*(TP)。将质粒 pRSF-yneI-pa0132、 pCDF-ppc-aspC 和 pTrc99A-pyc-panD 电转化至 BL21(DE3) 菌株中,获得产丙二酸的工程菌 BL21(TPP)。将 pCDF-ppc-linker-aspC、pRSFyneI-linker-pa0132 和 pTrc99A-pyc-panD 电转化 至 BL21(DE3) 菌株中,获得产丙二酸的工程菌 BL21(DE3) 菌株中,获得产丙二酸的工程菌 BL21(DE3) 菌株中,获得产丙二酸的工程菌 BL21(SCR)。

1.5 基因表达的鉴定

挑取单克隆于 25 mL 的 LB 培养基中,37 ℃ 培养 12 h。再将上述菌液转接 LB 培养基中过 夜培养,发酵时按 2%接种量转接 SOB 培养基 中,37 ℃培养 48 h。分别在 4、8、12、24、36、 48 h 取样,10 000 r/min、4 ℃离心 20 min,取 上清液进行 SDS-PAGE 检测。

1.6 重组菌株的发酵实验

摇瓶发酵: 重组菌株接种至 LB 培养基中

传代两次,发酵时取传代结束菌液接种至 SOB 培养基中,37 ℃、230 r/min 培养 72 h,每隔 12 h 取样,测定 *OD*₆₀₀ 和丙二酸积累量。

5 L 发酵罐发酵: 重组菌株接种至 LB 培养 基中培养 12 h, 再按 2%接种量分别接种于 6 瓶 LB 培养基中, 37 ℃、230 r/min 培养 12 h 后接 种发酵罐。

1.7 检测方法

HPLC 检测:取发酵液 1 mL, 13 000 r/min 离心 10 min,取上清液通过 0.22 µm 的滤膜。 丙二酸、乙酸和葡萄糖采用示差检测器进行分 析,检测参数如下:采用 5 mmol/L H₂SO₄ 作为 流动相,0.6 mL/min 流速进样,柱温 30 ℃,进 样量 20 µL,检测器温度 30 ℃。β-丙氨酸检测 参数参考 Song 等^[15]的研究。

2 结果与分析

2.1 丙酮酸激酶 (pykA) 基因敲除菌的构建

用引物 pykA-sgRNA-F 和 pykA-sgRNA-R 全质粒 PCR 扩增 pTarget 质粒,引入 20 bp 的 sgRNA 序列,获得基因敲除质粒 pTarget-pykA。 用引物 pykA-up-F 和 pykA-up-R 扩增上游同源 臂;用引物 pykA-down-F 和 pykA-down-R 扩增 下游同源臂,利用融合 PCR 技术获得 1 000 bp 的上下游同源臂。

将 pCas 质粒、pTarget-pykA 质粒和上下游 同源臂电转化入 BL21(DE3) 菌株中实现基因 敲除,并进行菌落 PCR 验证,结果如图 1 所示。 若敲除成功,则条带大小应为 750 bp,将条带 大小正确的扩增片段送至天霖生物公司测序。 测序结果与同源臂序列一致,则 *pykA* 基因敲除 成功。将 pTrc99A-panD、pCDF-ppc-aspC 和 pRSF-yneI-pa0132 质粒转化至基因敲除菌株 中,获得重组菌 BL21Δ*pykA*(TP)。

图 1 菌落 PCR 验证琼脂糖凝胶电泳图 Figure 1 Colony PCR to verify *pykA* deletion. 1-6: *pykA* gene deletion; 7: no gene deletion.

2.2 BL21(TPP) 重组菌的表达分析

将构建的 3 个表达质粒 pRSF-yneI-pa0132、 pCDF-ppc-aspC 和 pTrc99A-pyc-panD 转化至 BL21(DE3) 菌株中,获得产丙二酸的工程菌 BL21(TPP),丙二酸合成途径如图 2 所示。本研 究构建 BL21(TPP) 菌株后,通过 SDS-PAGE 验 证了 *pa0132、yneI、pyc、ppc、aspC、panD* 这 6 个关键酶基因的表达情况。挑取 BL21(TPP) 转 化子接种到新鲜的 SOB 培养基 37 ℃、230 r/min 培养,取发酵上清液进行 SDS-PAGE 检测,对 照为培养 12 h 的 BL21 菌株发酵上清液,结果 如图 3 所示。

ynel和 pa0132 基因表达的目的蛋白大小分 别为 49.7 kDa 和 48.4 kDa,图 3A 检测结果显 示这两个蛋白已经成功表达; ppc 和 aspC 基因表 达的目的蛋白大小分别为 99.0 kDa 和 43.6 kDa, 图 3B 显示 ppc 和 aspC 基因已表达;图 3C 的 检测结果显示 pyc 和 panD 基因均已成功表达, 其目的蛋白大小分别为 128.0 kDa 和 14.1 kDa。 蛋白胶图中的条带大小与理论一致,因此磷酸 烯醇式丙酮酸羧化酶 (ppc)、天冬氨酸转氨酶 (aspC)、天冬氨酸-α-脱羧酶 (panD)、β-丙氨酸 丙酮酸转氨酶 (pa0132)、琥珀酸半醛脱氢酶 (ynel) 和丙酮酸羧化酶 (pyc) 基因已表达。

图 2 丙二酸合成途径代谢通路 Glucose:葡萄糖;Glucose-6-P:6-磷酸-葡萄糖;Phosphoenolpyruvate: 磷酸烯醇式丙酮酸; Pyruvate:丙酮酸; Acetyl-CoA:乙酰辅酶A; Citrate:柠檬酸; Succinic acid:琥 珀酸; Fumarate:富马酸; Oxaloacetate:草酰乙酸; Aspartate:天冬氨酸; β-alanine: β-丙氨酸; Malonice semialdehyde:丙二酸半醛; Malonate:丙二酸; *pykA*:丙酮酸激酶; *gltA*:柠檬酸合酶; *sdhC*:琥珀 酸脱氢酶; *ppc*:磷酸烯醇式丙酮酸羧化酶; *pyc*:丙酮酸羧化酶; *aspC*:天冬氨酸转氨酶; *panD*:天 冬氨酸-α-脱羧酶; *pa0132*: β-丙氨酸丙酮酸转氨酶; *yneI*:琥珀酸半醛脱氢酶

Figure 2 Metabolic pathway for the production of malonate acid. Glucose-6-P: 6-phosphate-glucose; pykA: pyruvate kinase; gltA: citrate synthase; sdhC: succinate dehydrogenase; ppc: phosphoenolpyruvate carboxylase; pyc: pyruvate carboxylase; aspC: aspartate aminotransferase; panD: aspartate- α -decarboxylase; pa0132: β -alanine pyruvate aminotransferase; yneI: succinate semialdehyde dehydrogenase.

图 3 过表达关键酶基因的 SDS-PAGE 验证

Figure 3 SDS-PAGE verification of overexpression of key genes. (A) pRSF-yneI-pa0132. (B) pCDF-ppc-aspC. (C) pTrc99A-pyc-panD.

2.3 重组菌株的摇瓶发酵

2.3.1 重组菌株摇瓶发酵液液相检测结果

将经过两次活化的重组菌 BL21(TP)、 BL21Δ*pykA*(TP) 和 BL21(TPP) 种子液接种至 50 mL SOB 培养基中, 37 ℃、230 r/min 摇瓶发 酵 72 h,每 12 h 取样进行液相检测。液相检测 结果如图 4 所示,菌株 BL21(TPP) 的丙二酸积 累量最高,丙二酸在 48-60 h 的积累最快,最 高在 60 h 时有 0.47 g/L 的丙二酸积累量。因此 以 BL21(TPP) 为本研究的出发菌株。

2.3.2 重组菌 BL21(TPP) 发酵液的液质检测 结果

重组菌株 BL21(TPP) 在 SOB 中发酵培养 72 h 后,将发酵液离心,取上清液通过 0.22 μm 的滤膜制备检测样品。采用 LC-MS 对丙二酸进 行定性,检测结果如图 5 所示,图 5A 为丙二 酸标样,图 5B 为发酵上清液样品,样品中的特 征离子 (*m*/*z* 59.0、*m*/*z* 103.0) 与标样相同,说 明发酵液中有丙二酸的积累。

2.4 重组菌 BL21(TPP) 的摇瓶发酵优化 2.4.1 宿主菌株的筛选

不同的宿主菌株,其丙二酸生产能力也不同。因此对常见的几种大肠杆菌 (E. coli) 宿主

图 5 BL21(TPP) 摇瓶发酵上清液的液质检测结 果 A:丙二酸标样; B:发酵上清液样品 Figure 5 LC-MS analysis of the supernatant of strain BL21(TPP) cultured in shake flasks. (A) Malonic acid standard. (B) Fermentation supernatant.

进行了发酵筛选,以便于后续的研究。将 pRSFyneI-pa0132、pCDF-ppc-aspC 和 pTrc99A-pycpanD 质粒转化入 MG1655(K12)、JM109、 BL21(DE3) 和 DH5α 菌株中,初始葡萄糖浓度 为4 g/L,接种量 2%进行摇瓶发酵。由图 6 可 知,BL21(DE3) 菌株合成丙二酸的能力最强, 丙二酸积累量最高,为 0.51 g/L。因此本研究以 BL21(DE3) 菌株作为宿主菌株以进行进一步 的研究。

2.4.2 碳源对重组菌株 BL21(TPP) 产丙二酸 的影响

微生物发酵过程中常用的碳源有葡萄糖、 淀粉、果糖、甘露糖和甘油等^[16],不同的碳源 种类对发酵过程中菌体的生长代谢影响显著。本

图 6 不同宿主菌株对丙二酸产量的影响 Figure 6 Effect of different host strains on the production of malonic acid.

研究选取了大肠杆菌发酵常用的 5 种碳源,每种 碳源的浓度均为 4 g/L,其他组分和培养条件均 不变,发酵液检测结果如图 7 所示。从图中可 以看出,最有利于丙二酸生产的碳源是葡萄 糖,其次是乳糖和蔗糖,半乳糖作为碳源时丙 二酸的积累量明显低于葡萄糖。其原因可能是 葡萄糖对于菌体而言是快速碳源,容易被菌体 所利用。

2.4.3 初始糖浓度对重组菌 BL21(TPP) 产丙 二酸的影响

培养基中的糖浓度是大肠杆菌发酵控制中 的关键因素,浓度过高时会利于副产物的生成, 阻碍目标产物的高效合成^[17]。本研究选取了4、 8、12、16g/L四个初始葡萄糖的浓度梯度,探 究最佳的初始糖浓度。使用 SOB 培养基发酵 72 h,每12 h取样测定 *OD*₆₀₀并进行 HPLC 检 测,结果如图 8 所示。从图中可以看出,4 g/L 的初始糖浓度更有利于菌体积累丙二酸。糖浓 度过高,对菌体的生长和代谢有抑制作用。

2.4.4 重组菌 BL21(TPP) 的上罐发酵

本研究继续在5L发酵罐水平探究BL21(TPP) 菌株产丙二酸的最优条件,发酵罐的发酵条件

图 7 不同碳源种类对丙二酸产量的影响 Figure 7 Effect of different types of carbon sources on the production of malonic acid.

图 8 不同初始糖浓度对丙二酸积累量的影响 Figure 8 Effect of different initial sugar concentration on the production of malonic acid.

为通气量 1 vvm,转速 400 r/min,温度 37 ℃, 装液量 3 L,接种量 10%。补料方式对发酵罐的 产量有很大的影响,因为不同的补料方式会导 致发酵液中残糖浓度的不同,残糖浓度过高, 发酵液中渗透压过大,不利于菌体对营养物质 的吸收;而残糖浓度过低时,菌体缺少碳源的 供给,必然影响产物的合成^[18]。因此首先比较 连续补料和间歇补料对丙二酸积累量的影响,发 酵结果如图 9 所示。从图中可以看出,连续补料 在 49 h 时丙二酸积累量最高,为 0.688 g/L。间 歇补料在 42 h 时丙二酸积累量最高,为 2.16 g/L, 是流加补料的 3 倍多,并且达到最高产量的时 间也更短。分析原因可能是:少量多次的补料 方式能够克服底物的抑制效应,使菌体的活力 更高,更有利于菌体生长和利用底物^[19],因此 后续的上罐将采用间歇补料的方式。

溶氧浓度是高密度发酵过程中影响菌体生 长的重要因素之一,对菌体生长和代谢的影响 很大^[20]。将溶氧控制在最佳的范围,能够使 菌体的活力更强。本研究在溶氧和搅拌关联的 设置下对发酵罐的溶解氧进行了优化,设置了 25%和 15%两个梯度,其他发酵条件不变, HPLC 结果如图 10 所示。分析图中数据,溶氧 为 15%时菌体的生长速率比 25%溶氧时快很多, 并且副产物的积累也更少,这可能是碳源大部分 用于菌体生长的缘故。从丙二酸的积累量来看, 溶氧为 25%时丙二酸积累量为 3.32 g/L,而溶 氧为 15%时的丙二酸产量仅为 1.65 g/L,这可

图 9 5L 发酵罐补料方式对丙二酸积累量的影响

Figure 9 Effect of feeding method on the production of malonic acid in 5 L fermentor. (A) Continuous feeding. (B) Intermittent feeding.

图 10 5L 发酵罐溶解氧对丙二酸积累量的影响

Figure 10 Effect of dissolved oxygen on the production of malonic acid in 5 L fermentor. (A) 25%. (B) 15%.

能是由于 15%的溶解氧不足以同时满足菌体的 生长及产物的合成,造成丙二酸积累少,菌体 过早衰老的现象。

2.5 重组菌 BL21(SCR) 发酵合成丙二酸 2.5.1 重组菌 BL21(SCR) 摇瓶发酵合成丙二酸

将 BL21(SCR) 菌株在 4 g/L 初始糖的 SOB 中, 37 ℃、230 r/min 培养 72 h, 每 12 h 取样 并采用 HPLC 进行定量检测,发酵结果如图 11 所示。BL21(SCR) 菌株在 48 h 时积累 0.83 g/L 的丙二酸,比相同条件下的对照组 BL21(TPP) 菌株提高了 36%。该结果说明对蛋白质进行融 合表达能够减少中间代谢物的损失,促进丙二 酸的合成。

2.5.2 接种量对 BL21(SCR) 菌株产丙二酸的 影响

本文研究了不同接种量对 BL21(SCR) 菌 株在 5 L 发酵罐培养条件下产丙二酸的影响, 进一步探究该菌株的丙二酸生产能力。发酵过程 中,设置了 10%接种量和 15%接种量两个梯度, 初始糖浓度为 4 g/L, 0–3 h 的转速为 300 r/min,

图 11 BL21(SCR) 融合蛋白菌株摇瓶发酵结果 Figure 11 Shake flask fermentation of strain BL21(SCR) with fusion protein.

3 h 后设置为溶氧与转速联动,以保证溶氧在 25%左右,搅拌转速范围为 300-800 r/min,每 当葡萄糖浓度降为0g/L时,补加终浓度为8g/L 的葡萄糖,发酵结果如图 12 所示。分析图中数 据,当接种量为 15%时菌株的生长速率更快, 丙二酸的积累也更多,最高为 4.5g/L,这说明 提高接种量对丙二酸的积累有促进作用。

图 12 BL21(SCR) 菌株不同接种量 5L 发酵罐发酵结果

Figure 12 Fermentation profile of strain BL21(SCR) in 5 L fermentor with different inoculum size. (A) 10%. (B) 15%.

☎: 010-64807509

2.5.3 BL21(SCR) 菌株梯度降温上罐发酵

BL21(SCR) 菌株上罐结果显示 (图 13), 乙 酸在整个发酵过程中的积累非常多,为了减少乙 酸的积累,进一步提高丙二酸的积累量,本研究 采用了梯度降温的上罐发酵策略。通过在发酵中 后期降低发酵罐温度,达到减慢菌体生长,提高 目标代谢通路碳流量的目的^[21]。发酵过程中, 初始糖浓度为4g/L, 0-3h的转速为300r/min, 3h后设置为溶氧与转速联动,以保证溶氧在25% 左右,搅拌转速范围为 300-800 r/min,每当葡 萄糖浓度降为0g/L时,补加终浓度为8g/L的 葡萄糖,初始发酵温度为 37 ℃,12 h 降温到 34 ℃, 24 h 降温到 32 ℃, 32 h 降温到 30 ℃直 至发酵结束,发酵结果如图 13 所示。可以看出 梯度降温确实可以减缓菌体的生长,抑制副产物 乙酸的合成,该条件下丙二酸的积累量达到了 5.61 g/L, 这说明发酵中后期降低温度能促进丙 二酸的合成。

3 讨论

丙二酸作为一种重要的有机合成中间体,它

图 13 BL21(SCR) 菌株梯度降温 5 L 发酵罐发 酵结果

Figure 13 Fermentation profile of strain BL21(SCR) in 5 L fermentor with gradient cooling.

可用作金属表面处理剂、植物生长调节剂^[22]以 及维生素B₂的合成,因此丙二酸的需求量巨大。 但目前广泛使用的化学合成法具有生产成本 高、转化率低等缺点^[23],因此生物法合成丙二 酸成为了近年来的研究热点,构建基因工程菌 实现丙二酸的合成具有重要的意义。

本研究以大肠杆菌 BL21(DE3) 作为表达 宿主,通过引入外源 pa0132、yneI 和 pyc 基因, 以及过表达大肠杆菌自身的 ppc、aspC 和 panD 基因,实现了大肠杆菌中丙二酸的生物合成。 通过对重组菌株进行发酵优化,使菌株在摇瓶 的最高产量为 0.61 g/L,5L发酵罐水平对重组 菌株进行了补料方式以及溶解氧浓度的优化, 我们发现在间歇补料以及溶氧为 25%的条件下 丙二酸的积累量最高,在 62 h 时积累了 3.32 g/L 的丙二酸。

为了进一步提高丙二酸产量,本研究将丙 二酸合成途径的关键酶基因 ynel 和 pa0132 以 及 ppc 和 aspC 分别进行融合表达, 以减少底物 的损失和中间代谢物的积累,提高丙二酸的产 量。构建的 BL21(SCR) 菌株在摇瓶中的丙二酸 积累量为 0.83 g/L, 在 5 L 发酵罐中最高 54 h 时积累了 5.61 g/L 丙二酸。该实验结果与出发 菌株 BL21(TPP) 相比,产量提高了 69%,并且 菌体的生长和丙二酸的积累速度也更快。通过 对最优发酵结果碳平衡的计算,发现单位体积 (1L) 消耗的碳原子量为 1.62 mol, 生产丙二酸 消耗碳原子 0.16 mol, 生产乙酸消耗 0.67 mol, 生产 β-丙氨酸消耗 0.56 mol, 剩余的 0.23 mol 碳原子用于菌体生长, 总碳平衡。说明乙酸和 β-丙氨酸作为主要的副产物占据了大部分的碳源, 这也是限制丙二酸产量提高的关键因素。本研究 最优发酵条件的丙二酸产率为 0.09 g/g 葡萄糖, 该途径的理论产率为 0.88 g/g 葡萄糖。实际产 率低于理论产率的原因主要有:乙酸的积累量

较高,最高有 21.4 g/L 的积累 (图 13),与目标 途径竞争了大量的碳源;发酵过程中丙二酸的前 体β-丙氨酸的积累量一直在上升 (图 13),说明β-丙氨酸丙酮酸转氨酶 (*pa0132*)和琥珀酸半醛 脱氢酶 (*ynel*)的催化效率不高,使得 β-丙氨 酸没有被高效地转化为丙二酸。

本研究对重组菌株的研究主要集中在发酵 优化,而对途径中酶的活性以及辅因子没有进行 深入的研究。并且目前有研究表明,琥珀酸半醛 脱氢酶是一种 CoA 依赖的脱氢酶,改变 CoA 的 数量可以调节该酶的活性^[24];添加 NAD⁺和 NADH 可以激活该酶的活性^[25]。在后续的研究 中,将对琥珀酸半醛脱氢酶进行纯化和表征, 从而进一步提高丙二酸的产量。

REFERENCES

- Werpy T, Petersen G. Top Value Added Chemicals from Biomass: volume I — Results of Screening for Potential Candidates from Sugars and Synthesis Gas[R]. OSTI, 2004.
- [2] Davydov VV, Repetskaya AV. Protective effect of malonic acid in hypoxic hypoxia. Fiziol Zh, 1991, 37(5): 111-112.
- [3] Manning DT, Cappy JJ, See RM, et al. Use of malonic acid derivative compounds for retarding plant growth: US, 5292937. 1994-03-08.
- [4] 张红梅,魏文珑,常宏宏.阳离子交换树脂催化水解 法制备丙二酸工艺的研究.应用化工,2007,36(7): 653-655.
 Zhang HM, Wei WL, Chang HH. Study on the preparation process of malonic acid catalyzing by cation exchange resin. Appl Chem Ind, 2007, 36(7): 653-655 (in Chinese).
- [5] Api AM, Belsito D, Botelho D, et al. RIFM fragrance ingredient safety assessment, diethyl malonate, CAS Registry Number 105-53-3. Food Chem Toxicol, 2018, 122(Suppl 1): S267-S274.
- [6] Kasumov T, Brunengraber H. An improved procedure for the synthesis of labelled fatty acids utilizing diethyl malonate. J Label Compd Radiopharm, 2006, 49(2): 171-176.
- [7] Lei H, Yin YW, Luo BK, et al. Preparation method of

malonic acid and its ester: CN, 1410409. 2003-04-16.

- [8] Song CW, Kim JW, Cho IJ, et al. Metabolic engineering of *Escherichia coli* for the production of 3-hydroxypropionic acid and malonic acid through β-alanine route. ACS Synth Biol, 2016, 5(11): 1256-1263.
- [9] Chae TU, Ahn JH, Ko YS, et al. Metabolic engineering for the production of dicarboxylic acids and diamines. Metab Eng, 2020, 58: 2-16.
- [10] Piao XY, Wang L, Lin BX, et al. Metabolic engineering of *Escherichia coli* for production of L-aspartate and its derivative β-alanine with high stoichiometric yield. Metab Eng, 2019, 54: 244-254.
- [11] Orencio-Trejo M, Utrilla J, Fernández-Sandoval MT, et al. Engineering the *Escherichia coli* fermentative metabolism. Adv Biochem Eng Biotechnol, 2010, 121: 71-107.
- [12] 黄子亮,张翀,吴希,等. 融合酶的设计和应用研究进展,生物工程学报,2012,28(4):393-409.
 Huang ZL, Zhang C, Wu X, et al. Recent progress in fusion enzyme design and applications. Chin J Biotech, 2012, 28(4): 393-409 (in Chinese).
- [13] Tippmann S, Anfelt J, David F, et al. Affibody scaffolds improve sesquiterpene production in *Saccharomyces cerevisiae*. ACS Synth Biol, 2017, 6(1): 19-28.
- [14] Dueber JE, Wu GC, Malmirchegini GR, et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol, 2009, 27(8): 753-759.
- [15] Song CW, Kim DI, Choi S, et al. Metabolic engineering of *Escherichia coli* for the production of fumaric acid. Biotechnol Bioeng, 2013, 110(7): 2025-2034.
- [16] Zhang Y, Dai XF, Jin HN, et al. The effect of optimized carbon source on the synthesis and composition of exopolysaccharides produced by *Lactobacillus paracasei*. J Dairy Sci, 2021, 104(4): 4023-4032.
- [17] 程立坤,赵春光,黄静,等.葡萄糖浓度对大肠杆菌 发酵 L-色氨酸的影响.食品与发酵工业,2010,36(3): 5-9.
 Cheng LK, Zhao CG, Huang J, et al. Effect of glucose concentration on L-tryptophan fermentation by *Escherichia coli*. Food Ferment Ind, 2010, 36(3): 5-9
- [18] 刘辉,赵忠盖.一种基于滞后检测值的残糖浓度模 糊控制.计算机与应用化学,2016,33(2):191-196.
 Liu H, Zhao ZG. A fuzzy controller for residual sugar concentration based on delayed measurements. Comput

(in Chinese).

Appl Chem, 2016, 33(2): 191-196 (in Chinese).

- [19] Caldwell TP, Synoground BF, Harcum SW. Method for high-efficiency fed-batch cultures of recombinant *Escherichia coli*. Methods Enzymol, 2021, 659: 189-217.
- [20] Whiffin VS, Cooney MJ, Cord-Ruwisch R. Online detection of feed demand in high cell density cultures of *Escherichia coli* by measurement of changes in dissolved oxygen transients in complex media. Biotechnol Bioeng, 2004, 85(4): 422-433.
- [21] 迟雷. 基于过程控制优化的重组大肠杆菌高密度发酵研究[D]. 西安:西北大学,2011.
 Chi L. Study on high celldensity cultivation in recombinant *Escherichia coli* based on optimization of process control[D]. Xi'an: Northwest University, 2011 (in Chinese).
- [22] Zhang S, Wei ZM, Zhao MY, et al. Influence of

malonic acid and manganese dioxide on humic substance formation and inhibition of CO_2 release during composting. Bioresour Technol, 2020, 318: 124075.

- [23] 董浩浩,李静,杨国忠.丙二酸合成工艺研究进展. 山东化工,2015,44(20):49-51.
 Dong HH, Li J, Yang GZ. Progress of synthesis of malonic acid. Shandong Chem Ind, 2015, 44(20): 49-51 (in Chinese).
- [24] Talfournier F, Stines-Chaumeil C, Branlant G. Methylmalonate-semialdehyde dehydrogenase from *Bacillus subtilis*. J Biol Chem, 2011, 286(25): 21971-21981.
- [25] Popov KM, Kedishvili NY, Harris RA. Coenzyme Aand NADH-dependent esterase activity of methylmalonate semialdehyde dehydrogenase. Biochim Biophys Acta, 1992, 1119(1): 69-73.

(本文责编 郝丽芳)