生物工程学报 Chinese Journal of Biotechnology http://journals.im.ac.cn/cjbcn DOI: 10.13345/j.cjb.220257

Oct. 25, 2022, 38(10): 3773-3789 ©2022 Chin J Biotech, All rights reserved

研究报告

伍国强博士,兰州理工大学生命科学与工程学院院长、教授、硕士生导师。 主要从事糖料作物抗逆基因挖掘和种质资源创新与利用,豆科植物抗逆性遗传 改良等方面的研究。近年来,主持国家自然科学基金项目 4 项,甘肃省自然科 学基金项目 2 项,兰州市科技计划项目 2 项。以第一作者或通讯作者在 Journal of Plant Physiology、Journal of Plant Growth Regulation、Frontier in Plant Science 等 SCI 杂志上发表学术论文 30 余篇;获国家发明专利 3 项。兼任中国草学会 草业生物技术委员会理事,甘肃省生态学学会理事,甘肃省科技特派员等学术 职务。

甜菜 BvHAK 基因家族全基因组鉴定及其在盐处理下的表达分析

杨小涵,伍国强,魏明,王北辰

兰州理工大学 生命科学与工程学院, 甘肃 兰州 730050

杨小涵, 伍国强, 魏明, 王北辰. 甜菜 BvHAK 基因家族全基因组鉴定及其在盐处理下的表达分析. 生物工程学报, 2022, 38(10): 3773-3789.

YANG XH, WU GQ, WEI M, WANG BC. Genome-wide identification of *BvHAK* gene family in sugar beet (*Beta vulgaris*) and their expression analysis under salt treatments. Chin J Biotech, 2022, 38(10): 3773-3789.

摘 要:高亲和性 K⁺转运蛋白 (high-affinity K⁺ transporter, HAK) 是植物中最重要的 K⁺转运蛋 白家族之一,在植物 K⁺吸收和转运过程中发挥重要功能。为探究甜菜 BvHAK 基因家族成员生物 学功能及基因表达模式,采用生物信息学手段,预测了蛋白质的理化性质、基因结构、染色体定 位、系统进化、保守基序、三维结构、互作网络、启动子顺式作用元件,并通过 qRT-PCR 分析了 盐胁迫下 BvHAKs基因在甜菜不同组织中的表达水平。共鉴定出 10个甜菜 BvHAK基因家族成员, 含有 8-10 个外显子、7-9 个内含子;平均氨基酸个数为 778.30,平均分子量为 88.31 kDa,等电 点为 5.38-9.41,跨膜区为 11-14 个。BvHAK4、-5、-7 和-13 定位在质膜,而其余定位在液泡膜。

Received: April 5, 2022; Accepted: July 18, 2022

Supported by: National Natural Science Foundation of China (31860404, 32160466); Sub-Project of Major Scientific and Technological Special Plan of Gansu Province, China (21ZD3NA001-3); Lanzhou Science and Technology Planning Project (2021-1-1765)

Corresponding author: WU Guoqiang. E-mail: wugq08@126.com

基金项目: 国家自然科学基金 (31860404, 32160466); 甘肃省科技重大专项计划子课题 (21ZD3NA001-3); 兰州市科技 计划项目 (2021-1-1765)

系统进化分析发现,高等植物 HAK 可分为 5 个簇,分别为I、II、III、IV和V簇,其中II簇成员可进一步分为IIa、IIb和IIc等 3 个亚簇; BvHAK 家族成员则分布在前 4 簇,分别含有 1、6、1 和 2 个成员。甜菜 BvHAK 基因家族主要含有胁迫响应元件、激素响应元件和生长发育响应元件。进一步对 BvHAK基因在盐处理下甜菜不同组织中的表达模式分析发现,50 和 100 mmol/L NaCl 不同程度地诱导甜菜地上部和根部 BvHAK 基因家族成员的表达;高盐 (150 mmol/L)则下调了其在地上部的表达水平。这些结果表明, BvHAK 基因家族在响应盐胁迫过程中起重要作用。

关键词:甜菜;高亲和性K⁺转运蛋白;HAK基因家族;顺式作用元件;耐盐性

Genome-wide identification of *BvHAK* gene family in sugar beet (*Beta vulgaris*) and their expression analysis under salt treatments

YANG Xiaohan, WU Guoqiang, WEI Ming, WANG Beichen

School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China

Abstract: High-affinity K⁺ transporter (HAK) is one of the most important K⁺ transporter families in plants and plays an important role in plant K^+ uptake and transport. To explore the biological functions and gene expression patterns of the HAK gene family members in sugar beet (Beta vulgaris), physicochemical properties, the gene structure, chromosomal location, phylogenetic evolution, conserved motifs, three-dimensional structure, interaction network, *cis*-acting elements of promoter of BvHAKs were predicted by bioinformatic analysis, and their expression levels in different tissues of sugar beet under salt stress were analyzed by qRT-PCR. A total of 10 BvHAK genes were identified in the sugar beet genome. They contained 8-10 exons and 7-9 introns. The average number of amino acids was 778.30, the average molecular weight was 88.31 kDa, and the isoelectric point was 5.38-9.41. The BvHAK proteins contained 11-14 transmembrane regions. BvHAK4, -5, -7 and -13 were localized on plasma membrane, while others were localized on tonoplast. Phylogenetic analysis showed that HAK in higher plants can be divided into five clusters, namely cluster I, II, III, IV, and V, among which the members of cluster II can be divided into three subclusters, including IIa, IIb, and IIc. The BvHAK gene family members were distributed in cluster [–IV with 1, 6, 1, and 2 members, respectively. The promoter of *BvHAK* gene family mainly contained stress responsive elements, hormone responsive elements, and growth and development responsive elements. The expression pattern of the BvHAK genes were further analyzed in different tissues of sugar beet upon salt treatment, and found that 50 and 100 mmol/L NaCl significantly induced the expression of the BvHAK genes in both shoots and roots. High salt (150 mmol/L) treatment clearly down-regulated their expression levels in shoots, but not in roots. These results suggested that the BvHAK gene family plays important roles in the response of sugar beet to salt stress.

Keywords: sugar beet (*Beta vulgaris*); high-affinity K⁺ transporter; *HAK* gene family; *cis*-acting element; salt tolerance

盐胁迫是制约全球农作物生长和产量的主要 环境因素之一^[1]。全球盐碱地面积多达 9.5 亿 hm², 约占陆地总面积的 7%^[2]。我国是世界上土壤盐 碱化最为严重的国家之一,盐渍化土地面积多 达 0.99 亿 hm²,约占全国土地面积的 1/10, 主 要分布在西北、华北、东北及沿海地区^[3]。绝 大多数农作物、尤其是甜土植物 (glycophytes) 对盐分很敏感^[4]。土壤中高浓度盐分会扰乱植 物对 N、P、K 等元素的吸收,产生离子毒害及 渗透胁迫并诱发氧化胁迫,从而抑制生长、甚 至导致作物的绝产^[5-6]。当植物遭受盐胁迫时, 介质中的 Na⁺将通过根系非选择性阳离子通道 (non-selective cation channels, NSCCs) 和高亲 和性 K⁺转运蛋白 (high-affinity K⁺ transporters, HKTs) 进入细胞, 高浓度 Na⁺会紊乱离子的稳 态平衡[7-8]。因此,维持或重建离子平衡对植物 应答盐胁迫至关重要。

植物主要通过大量吸收 K⁺和外排 Na⁺来维 持体内离子稳态平衡,以抵御盐胁迫^[9]。 HAK/KUP/KT (high-affinity K⁺ transporter/K⁺ uptake permease/K⁺ transporter) 家族是植物中 最大的 K⁺转运蛋白家族之一,其在盐胁迫下通过 电化学梯度介导高亲和性 K⁺吸收,从而维持植物 体内 K⁺/Na⁺稳态平衡, 增强植物的耐盐性^[10]。在 拟南芥 (Arabidopsis thaliana) 中, AtKUP6 和 AtKUP11 受盐胁迫的诱导并上调表达^[11]。研究 表明, 过量表达水稻 (Oryza sativa) OsHAK5 使 转基因烟草植株体内 K⁺积累显著增加, 从而提 高植株的耐盐性^[12]。目前, HAK 基因家族已在 许多物种中被鉴定,包括大豆 (Glycine max)^[13]、葡萄 (Vitis vinifera)^[14]、橡胶树 (Hevea brasliensis)^[15]、马铃薯 (Solanum tuberosum)^[16]、 香蕉 (Musa acuminata)^[17]、油菜 (Brassica napus)^[18]、小麦 (Triticum aestivum)^[19]等。然而, 在糖料作物中尚未见 HAK 基因家族研究的报道。

在我国北方地区广为种植的糖料作物甜菜 (Beta vulgaris L.) 为藜科 (Chenopodiaceae) 甜 菜属 (Beta) 二年生草本植物,属于典型的嗜盐 作物,具有很强的耐盐碱性和出色的耐贫瘠性, 是盐碱地轮作和改良的重要作物^[20]。研究表明, 添加适量 NaCl (15-100 mmol/L) 不仅能够显 著促进甜菜幼苗生长,而且还能明显减缓渗透 胁迫对其造成的不利影响:即使在未添加 NaCl 的条件下,渗透胁迫后的甜菜叶中仍能够维持 K⁺/Na⁺稳态平衡^[21]。本课题组前期基于甜菜基 因组数据库^[22],采用生物信息学手段,挖掘和 鉴定出 BvNHX^[23]、BvWKRY^[24]、BvSnRK2^[25]和 BvCIPK^[26]基因家族成员,并阐明了它们在甜菜 响应盐胁迫中的作用机制。然而,目前尚未见 对甜菜 BvHAK 基因家族成员鉴定及其盐处理 下表达分析的报道。

鉴于此,本研究对甜菜 BvHAK 基因家族进行全基因组鉴定及表达模式分析,探究 BvHAK 在甜菜响应盐胁迫中的作用,以期为农作物抗 逆性遗传改良提供基因资源和理论依据。

1 材料与方法

1.1 材料

供试甜菜 (B. vulgaris L.) 品种为"甘糖7号", 种子购自甘肃省威武三农种业科技有限公司。挑 选籽粒饱满的种子,播种至装满蛭石的育苗盘 (5 cm×5 cm×5 cm; 32 孔),每孔播 3 粒种子。用蒸 馏水浇灌,待种子萌发后,使用改良的 1/2 Hoagland 营养液浇灌。待出苗两周后,进行间苗,每孔留 1 株生长均匀一致的幼苗。幼苗培养条件:温度 25 ℃/20 ℃ (昼/夜),光周期 16 h/8 h (昼/夜),光照 强度 550-600 µmol/(m²·s),空气相对湿度 65%-75%。培养至4周龄的甜菜幼苗,分别用0 (对 照)、50、100 和 150 mmol/L NaCl 处理 72 h 后, 地上部和根分开取样,3 次生物学重复,经液氮速 冻后置于-80℃冰箱保存备用[27]。

1.2 甜菜 BvHAK 基因家族成员的鉴定

利用拟南芥基因组数据库 TAIR (http:// wwwarabidopsis.org) 获得 13 个 *AtHAK* 基因的 氨基酸序列^[28]。然后利用 NCBI 基因组数据库 (http://www.ncbi.nlm.nih.gov) 和甜菜基因组数 据库 (http://bvseq.boku.ac.at/index.shtml),通过 BLAST 在线搜索 *BvHAK* 基因家族成员序列^[29]。 BvHAK 预选蛋白的所有同源蛋白序列均满足 期望值 (E)<10⁻⁴⁰。

通过 ExPASy (http://web.expasy.org/) 在线 数据库计算 *BvHAK* 基因家族成员的等电点 (isoelectric point, p*I*) 和分子量 (molecular weight, MW)^[30]。通过在线软件 Plant-mPLoc (http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/) 预测 *BvHAK* 基因家族成员的亚细胞定位^[31]。采 用 TMHMM 3.0 (http://www.cbs.dtu.dk/serbices/ TMHMM) 鉴定 *BvHAK* 基因家族编码蛋白的跨 膜结构域 (transmembrane domain, TM)^[32]。

1.3 甜菜 BvHAK 染色体分布分析

利用甜菜基因组数据库确定 *BvHAK* 基因家 族成员在染色体上的定位,并通过 MapInspect 1.0 软件 (http://mapinspect.software.informer.com/) 绘制 *BvHAK* 基因家族成员在染色体上的分布图^[33]。

1.4 HAK家族系统进化关系及 dN/dS 分析

为探究 HAK 基因家族进化及系统发育关系, 采用 MEGA X 软件 (http://www.megasoftware.net/) 对拟南芥、水稻、玉米 (Zea mays)^[34]、大麦 (Hordeum vulgare)^[35]、小麦^[36]、白杨 (Populus alba)、菠菜 (Spinacia oleracea) 和甜菜等 9 个 物种 111 个 HAK 基因家族蛋白序列进行系统进 化分析,并通过邻接比对 (neighbor-joining, NJ) 法以 1 000 重复算法构建系统进化树^[37]。采用 PAL2NAL 在线软件 (http://www.bork.embl.de/ pal2nal/) 计算 BvHAK 基因家族成员的同义 (synonymous substitution, dS) 和 非 同义 (non-synonymous substitution, *dN*) 替换率。采用 PAML4.9 软件分析 *BvHAK* 基因家族成员 CDS 编码蛋白的进化选择压力^[38]。

1.5 甜菜 BvHAK 蛋白质保守基序和基因 结构分析

利用在线工具 MEME 5.4.1 (https://memesuite.org/meme/) 预测 *BvHAK* 基因家族成员的 蛋白质保守基序 (motif),基序的最大数目为 10,宽度设置为 6-50。采用 GSDS 在线网站 (http://gsds.cbi.pku.edu.cn/) 分析 *BvHAK*基因家 族成员的基因结构^[39]。通过将编码区序列 (coding domain sequence, CDS) 与相应基因组 序列 (http://bvseq.boku.ac.at) 进行比对,生成 *BvHAK* 基因家族成员的外显子/内含子结构图。 **1.6 甜菜 BvHAK 家族蛋白三维结构和互** 作网络分析

利用 SWISS-MODEL 在线软件 (https:// swissmodel.expasy.org/interactive) 预测了 BvHAK 蛋白的三维结构 (three-dimensional structure, 3-D) 模型^[40]。利用 STRING 在线数据库 (http:// string-db.org) 进行蛋白与蛋白相互作用预测。

1.7 甜菜 BvHAK 基因家族成员顺式作用 元件和基因表达模式分析

利用 plantCARE 在线软件 (http://bioinformation. psb.ugent.be/webtools/plantcare/html) 预测 *BvHAK* 基因家族成员启动子中可能存在的各种 顺式作用调控元件^[41]。

采用 UNIQ-10 柱式 Trizol 总 RNA 抽提试 剂盒 (生工生物工程 (上海) 股份有限公司) 对不同浓度 NaCl 处理的甜菜根和叶进行总 RNA 提取,利用 cDNA 第一链合成试剂盒 (PrimeScriptTM RT Master Mix, TaKaRa) 合成 cDNA 第一链。采用 Primer Premier 5.0 和 Oligo7.0 软件设计用于 qRT-PCR 分析的基因特 异性引物 (表 1)^[42]。按照荧光实时定量 PCR 试 剂盒 (TB GreenTM Premix Ex *Taq*TM II, TaKaRa)

因家族成员,并根据其所对应的染色体上的位

置信息,依此对鉴定的基因命名为 BvHAK1-

BvHAK10 (表 2)。序列分析表明, BvHAK 基因

家族成员的 CDS 范围为 2 004-2 541 bp, 编码

氨基酸的个数在 668-847 aa 不等, 平均值为

778.3 aa; 分子量为 81.76-95.16 kDa, 平均值 为 88.31 kDa。亚细胞定位预测结果显示,

*BvHAK1、-4、-6、-7、-9*和-10等6个成员定位 于液泡膜 (vacuole, Vac), 而 *BvHAK2、-3、-5*和

-8等4个成员定位于质膜 (plasma membrane, PM)

进行 qRT-PCR 反应^[43]。*BvACTIN* 作为内参基因。 通过 $2^{-\Delta\Delta Ct}$ 方法进行计算 *BvHAK* 基因的相对表 达水平。所有的结果均以 3 个生物学重复的平 均值±SE 表示,每个生物学重复由 3 个技术重 复组成。采用 SPSS 22.0 软件分析显著性差异 水平 (*P*<0.05),并用 Excel 2010 作图^[44]。

2 结果与分析

2.1 甜菜 BvHAK 基因家族成员的鉴定及 基因结构分析

在甜菜基因组中共鉴定到 10 个 BvHAK 基

表 1	本文所用的引物信息及序列	
Table	1 Primers used in this study	

Gene name	Forward primer $(5' \rightarrow 3')$	Reverse primer $(5' \rightarrow 3')$
BvHAK1	CTACAAACACGAATTAATGGCTTCT	AAAGCCAACCGCAGAAGCAATAG
BvHAK2	GCACAATGGATTTATCAACTCACCC	CAGAATACCAAAGAAAGAACACCAAA
BvHAK3	AATGTAAGCAGTAACAATGAGCAAGA	GCGGAATGACCACCACCTACAT
BvHAK4	AACAATAAGGAGAAATCATGGAGGAC	AACACATACAAAGGGGATATACTCA
BvHAK5	TTAGCTTATCAGAGTCTTGGAATAGT	AAACAGTGAGGCTCCAAAAGATCAA
BvHAK6	TGTGGGTGAAAAATGGTAGGAAAAG	ACTCACTTCACTTCCATCTACCCA
BvHAK7	TGTGCCCTTTTTGAGTGAGTCTATG	GCTTAAATCTCCATACACTACTCCT
BvHAK8	GTGTCGGTATCGTTTATGGGGATT	CCCATTATCATCTGCGCTCAATAC
BvHAK9	GGATGATGGCGAGGAGAGAGAAAG	ACCTATCTTCAATTCCGAAACTTCA
BvHAK10	CTAACATGGATCTGGAAAACAACAA	AAAACAAAGGACAAAACCCCATAAAT
BvACTIN	ACTGGTATTGTGCTTGACTC	ATGAGATAATCAGTGAGATC

(表 2)。

表 2 甜菜 BvHAK 基因家族成员鉴定

 Table 2
 Identification of BvHAK gene family members in sugar beet

Gene name	Gene ID	Chr	Exon count	CDS (b	p) Protein	p <i>I</i>	MW (kDa) TM	Subcellular
					length (aa)				localization
BvHAK1	Bv1_012350_gwcc	1	9	2 418	806	7.30	89.87	14	Vac
BvHAK2	Bv2_038040_xuej	2	10	2 199	733	8.96	81.76	12	PM
BvHAK3	Bv2_043210_nsir	2	8	2 286	762	8.37	85.29	11	PM
BvHAK4	Bv2_030090_hets	2	9	2 358	786	6.49	88.16	12	Vac
BvHAK5	Bv5_099680_qewf	5	9	2 325	775	9.41	87.53	12	PM
BvHAK6	Bv6_149150_dnus	6	9	2 523	841	7.19	93.59	13	Vac
BvHAK7	Bv6_149160_jraq	6	8	2 334	778	7.59	87.46	13	Vac
BvHAK8	Bv6_146500_ndso	6	9	2 349	783	8.76	87.38	12	PM
BvHAK9	Bv7_171890_ygwk	7	10	2 541	847	5.38	95.16	12	Vac
BvHAK10	Bv_005060_xrpy	UN	8	2 316	772	6.95	86.92	12	Vac

为进一步确定 BvHAK 基因间的结构差异, 对 BvHAK 家族成员进行基因结构分析。如图 1A 所示,10 个 BvHAK 基因含有 8-10 个外显 子和 7-9 个内含子。其中,BvHAK3、-5、-7 和-10 等4个成员各含有8个外显子和7个内含 子;BvHAK1、-4、-6和-8 等4个成员各含有 9个外显子和8个内含子;BvHAK2和-9各含有 10个外显子和9个内含子。另外,BvHAK 基因 家族成员外显子长度及内含子结构呈现出相对 保守的特点 (图1A)。

2.2 甜菜 BvHAK 基因家族染色体定位分析 甜菜 BvHAK 基因家族染色体定位分析结 果表明,10 个家族成员中有 9 个成员能够精准 定位在 9 条甜菜基因组的 1、2、5、6、7 号染 色体上 (图 1B)。1、5 和 7 号染色体上各有 1 个成员,分别是 BvHAK1、-5 和-9;2 号染色 体上有 3 个成员,分别是 BvHAK2、-3 和-4;6 号 染色体上也分布 3 个成员,分别为 BvHAK6、-7 和-8。然而, BvHAK10 没有定位在染色体上。 2.3 HAK 基因家族系统进化树构建和 dN/dS 分析

为解析甜菜与其他物种之间 HAK 基因家族成员的进化关系,对甜菜 10 个、拟南芥 13 个、菠菜 12 个、白杨 10 个、大麦 6 个、水稻 27 个、玉米 21 个、小麦 8 个、大麦 4 个共计 111 个 HAK 基因家族成员氨基酸序列进行系统发育树构建。

图 1 甜菜 BvHAK 家族基因结构 (A) 和染色体定位 (B) 分析

Figure 1 Analysis of the gene structure (A) and chromosome location (B) of BvHAK gene family members.

http://journals.im.ac.cn/cjbcn

结果表明, HAK 基因家族成员分为5簇,分别为I、 II、III、V和IV簇,其中II簇成员可分为IIa、IIb和 IIc等3个亚簇(图2)。甜菜 BvHAK 基因家族成员 分布在前4簇中,分别为1个、6个、1个和2个 成员,而第IV簇中没有 BvHAK 基因家族成员。其 中, BvHAK3在第I簇; BvHAK5和 BvHAK8 在IIa 簇; BvHAK2 在IIb 簇; BvHAK4、BvHAK7 和 BvHAK10在IIc簇, BvHAK1 在第III簇; 而 BvHAK6 和 BvHAK9 在第V簇中。在同一簇中, 甜菜 BvHAK 基因家族成员在进化树中与菠菜、拟南芥、白杨 的亲缘关系距离更近, 而与玉米、水稻、小麦、 大麦等单子叶植物的进化关系较远 (图 2)。

在遗传学中,未导致氨基酸改变的核苷酸 变异称为同义突变,反之则称为非同义突变。 一般认为,同义突变不受自然选择,而非同义 突变则受到自然选择作用。dN/dS表示异义替换

图 2 植物 HKT 基因家族系统发育树

Figure 2 Phylogenetic tree of *HKT* family in plants.

(dN)和同义替换(dS)之间的比例。这个比例 可以判断是否有选择压力作用于蛋白质编码基 因。若 dN/dS>1,则认为有正选择效应。若 dN/dS=1,则认为存在中性选择。若 dN/dS<1, 则认为有纯化选择作用。如表 3 所示,大多数 BvHAKs(除 BvHAK8和 BvHAK10外)与 BvHAK3的dN/dS均大于1,表明BvHAK1、-2、 -4、-5、-6、-7和-9与BvHAK3在进化上具有 正选择作用。进一步采用PAML4.9软件对10个 BvHAK 基因家族的CDS序列进行选择压力分 析。结果表明,BvHAK序列选择压力检测参数 dN/dS小于1(数据未显示),可见BvHAKs基因 所承受的选择压力总体趋势为纯化选择。

2.4 甜菜 BvHAK 基因家族蛋白质保守结构及其性质分析

根据序列比对结果可以看出(图 3),所有 BvHAK的TM2和TM3之间有一个长的胞质环 (loop),此为高亲和性K⁺转运蛋白典型的结构特 点。基于MEME分析设置10个基序,分析了甜

TM 2

菜 BvHAK 基因编码氨基酸序列,发现所有的 BvHAK 基因家族成员均含有 motif1、motif2、 motif3、motif4、motif5、motif6、motif7、motif8、 motif9 和 motif10 (图 4)。另外,同一簇中,各个 成员基序的位置基本上保持一致。由此可见, BvHAK 基因家族具有高度保守的结构域。另外, BvHAK 蛋白跨膜结构域的数量在 11-14 不等,等 电点位于 5.38-9.41 之间,其中 7 个成员的 p/ 大 于 7 (表 2),表明绝大多数 BvHAK 属于碱性蛋白。

表 3 甜菜 BvHAK 基因 dN 和 dS 的替换比率 Table 3 Substitution rate of dN and dS among the BvHAK genes

2,1111 8				
Gene1	Gene2	dS	dN	dN/dS
BvHAK1	BvHAK3	1.046 5	17.897 8	17.102 4
BvHAK2	BvHAK3	2.134 6	6.860 2	3.213 8
BvHAK4	BvHAK3	1.486 3	11.868 7	7.985 5
BvHAK5	BvHAK3	0.101 1	10.004 9	99.000 0
BvHAK6	BvHAK3	1.880 2	7.450 0	3.962 3
BvHAK7	BvHAK3	3.283 3	3.476 8	1.058 9
BvHAK8	BvHAK3	12.977 9	4.446 8	0.342 6
BvHAK9	BvHAK3	0.150 3	14.878	99.000 0
BvHAK10	BvHAK3	5.106 3	4.478 8	0.877 1

图 3 甜菜 BvHAK 基因家族蛋白保守结构域氨基酸序列比对 TM2 和 TM3 分别代表第 2 和第 3 个 跨膜区

Figure 3 Amino acid sequence alignment of the protein conserved domains of *BvHAK* genes. TM2 and TM3 indicate the 2nd and 3rd transmembrane domain, respectively.

2.5 甜菜 BvHAK 基因家族蛋白质三维结构分析

为了进一步研究 BvHAK 基因家族的蛋白质结构,采用 SWISS-MODEL 软件预测 BvHAK 蛋白 3-D 结构 (图 5),所有蛋白的 3-D 结构均由蛋白质 数据 (Protein Data Bank, PDB) 中获得的相似结构模板和晶体结构组成,所有预测的 BvHAK 蛋白的 C 得分在-1.92-1.13 之间,表明预测模型的准确性较高。3-D 结构进一步验证了对 BvHAK 基因家族蛋白质的保守基序预测的准确性。

图 4 甜菜 BvHAK 基因家族蛋白保守基序分布及特征分析

Figure 4 Distribution and characteristics of conserved motifs in *BvHAK* genes.

Figure 5 Three-dimensional structure of BvHAK family proteins.

2.6 甜菜 BvHAK 家族蛋白互作网络预测 采用在线软件 STRING 对甜菜 BvHAK基因
家族成员蛋白互作网络进行预测(图 6)。结果
表明, 8 个 BvHAK (BvHAK2–BvHAK9)均与
AKT1 (XP_01681784.1)存在互作关系。
BvHAK1、-2、-6、-8和-9与TPK3 (XP_01666502.1)存在互作。BvHAK1和 BvHAK3还与CIPK23
(XP_010687109.1)存在互作;与 BvHAK4存在
互作的蛋白有 AHA1 (XP_010678592.1)、PME12
(XP_010687598.1)、PME22 (XP_010674080.1)、
PME36 (XP_010692199.1)、AHA7 (XP_010692042.1)、 BvHKT1; 1 (XP_010688439.1)、BvHKT1; 2 (XP_010690257.1) 和 BvHKT1; 3 (XP_010690256.1) (图 6)。这些结果为深入研究 BvHAK 与其他蛋白质的互作及其协同调控网络提供依据。

2.7 甜菜 BvHAK 基因家族启动子顺式作 用元件及在盐处理下的表达模式分析

为更全面地了解调控基因表达的诱导因素 和基因功能,对甜菜 BvHAK 基因家族成员翻译 起始位点上游 1 500 bp 启动子顺式作用元件进 行了分析。结果表明, BvHAK 基因家族成员含 有与激素响应元件 (如脱落酸、赤霉素、乙烯、

Figure 6 Predication of protein-protein interaction network of BvHAK family.

生长素),胁迫反应相关元件(如低温、高盐、干 旱)和生长与发育相关响应元件 (如玉米醇溶蛋 白代谢调节、分生组织和光响应)(表 4)。在激素 相关响应元件中,只在 BvHAK9 中发现了 1 个 GARE-motif; 大多数 BvHAK (除 BvHAK2、-7 和 -9) 含有 1-3 个 ERE; ABRE 在 BvHAK3、-4、-6、 -9 和-10 基因的启动子中存在。在胁迫反应相关 作用元件中, 9个成员 (除 BvHAK4) 中含有 1-3 个 ARE 元件; MYB 在 9 个成员 (除 BvHAK3) 的 启动子中存在。另外, BvHAK1、-3、-5、-6、-9 和-10 启动子中含有 STRE。在生长与发育相关响 应元件中,光响应元件无论从类型或数量,在 BvHAK 基因上游调控区中都是最多的,如 box4 在 8 个 BvHAK 成员 (除 BvHAK4 和 BvHAK5) 启 动子中均有发现。如表 4 所示, BvHAK 基因 9 个 成员 (除 BvHAK2) 含有激素相关响应元件; 而

胁迫反应和生长与发育相关响应元件存在于所 有成员中。特别值得一提的是, BvHAK1和-5含 有所有胁迫反应相关响应元件。

为了解甜菜 BvHAK 基因家族在不同浓度 盐处理下表达量变化情况,采用 qRT-PCR 对其基 因表达水平进行相对定量检测。结果显示,与对 照 (0 mmol/L NaCl) 相比,50 和 100 mmol/L NaCl 显著增加了甜菜叶和根中 BvHAK1、 BvHAK2、BvHAK4、BvHAK7 和 BvHAK9 表达 量 (图 7)。在50 和 100 mmol/L NaCl 处理下, 叶中的 BvHAK2 表达量比根中的表达量分别高 87.1%和 182.9%, BvHAK4 在叶中的表达水平比根 中的分别高 147.5%和 53.9%; 然而, BvHAK9 在 叶中的表达量则显著低于根,分别低 26.9%和 27.7%。在 50 mmol/L NaCl 处理下, BvHAK7 在根 中的表达量同显著低于根,分别低 26.9%和

表 4 甜菜 BvHAK 基因家族成员启动子顺式作用元件分布

Functional class Element name		Element function		BvH								
			AK1	AK2	AK3	AK4	AK5	AK6	AK7	AK8	AK9	AK10
Hormone	GARE-motif	Gibberellin-responsive	0	0	0	0	0	0	0	0	1	0
	ABRE	Abscisic acid responsiveness	0	0	2	3	0	3	0	0	3	1
	TCA-element	Salicylic acid responsiveness	0	0	0	1	1	1	1	0	1	0
	TGA-element	Auxin-responsive element	0	0	0	1	0	1	0	0	0	0
	ERE	Ethylene-responsive element	1	0	1	2	1	2	0	1	0	3
Stress	LTR	Low-temperature responsiveness	1	0	1	0	1	0	0	0	0	0
	MYB	Drought related element	5	1	0	2	1	3	2	2	3	1
	MBS	Drought-inducibility	1	0	0	1	1	0	1	0	0	0
	ARE	Anaerobic induction	1	1	1	0	3	1	1	1	1	2
	STRE	Stress response element	3	0	1	0	1	2	0	0	1	2
	W-box	Salt-responsive element	2	0	0	0	1	5	0	0	1	2
Development	AE-box	A module for light response	0	0	0	0	1	1	1	0	0	0
	Box4	Light responsiveness	3	5	3	0	0	2	4	4	2	1
	GCN4_motif	Endosperm expression	0	0	0	0	1	0	0	0	1	0
	CAT-box	Meristem expression	0	0	0	2	0	1	1	0	0	0
	O2-site	Zein metabolism regulation	0	0	2	0	0	0	0	1	1	1
	WRE3	Wnt responsive DNA element	0	0	0	0	0	3	0	0	0	1

Table 4 Distribution of the *cis*-acting regulatory elements of promoter regions of *BvHAK* gene family members

图 7 甜菜 BvHAK 基因家族成员在不同浓度 NaCl 处理下的相对表达水平 A:不同浓度 NaCl 处理下 BvHAK1 在叶和根中的相对表达水平;B:不同浓度 NaCl 处理下 BvHAK2 在叶和根中的相对表达水平;C:不同浓度 NaCl 处理下 BvHAK3 在叶和根中的相对表达水平;D:不同浓度 NaCl 处理下 BvHAK4 在叶和根中的相对表达水平;E:不同浓度 NaCl 处理下 BvHAK5 在叶和根中的相对表达水平;F:不同浓度 NaCl 处理下 BvHAK6 在叶和根中的相对表达水平;G:不同浓度 NaCl 处理下 BvHAK7 在叶和根中的相对表达水平;H:不同浓度 NaCl 处理下 BvHAK6 在叶和根中的相对表达水平;G:不同浓度 NaCl 处理下 BvHAK7 在叶和根中的相对表达水平;I:不同浓度 NaCl 处理下 BvHAK6 在叶和根中的相对表达水平;J:不同浓度 NaCl 处理下 BvHAK10 在叶和根中的相对表达水平;J:不同浓度 NaCl 处理下 BvHAK10 在叶和根中的相对表达水平。不同字母表示差异显著(P<0.05)

Figure 7 Relative expression levels of BvHAK gene family members under various concentrations of NaCl. (A) Relative expression levels of BvHAK1 in shoots and roots under different concentrations of NaCl. (B): Relative expression levels of BvHAK2 in shoots and roots under different concentrations of NaCl. (C): Relative expression levels of BvHAK3 in shoots and roots under different concentrations of NaCl. (D): Relative expression levels of BvHAK3 in shoots and roots under different concentrations of NaCl. (D): Relative expression levels of BvHAK3 in shoots and roots under different concentrations of NaCl. (E): Relative expression levels of BvHAK5 in shoots and roots under different concentrations of NaCl. (F): Relative expression levels of BvHAK6 in shoots and roots under different concentrations of NaCl. (G): Relative expression levels of BvHAK6 in shoots and roots under different concentrations of NaCl. (G): Relative expression levels of BvHAK6 in shoots and roots under different concentrations of NaCl. (H): Relative expression levels of BvHAK6 in shoots and roots under different concentrations of NaCl. (I): Relative expression levels of BvHAK6 in shoots and roots under different concentrations of NaCl. (I): Relative expression levels of BvHAK8 in shoots and roots under different concentrations of NaCl. (I): Relative expression levels of BvHAK8 in shoots and roots under different concentrations of NaCl. (I): Relative expression levels of BvHAK9 in shoots and roots under different concentrations of NaCl. (J): Relative expression levels of BvHAK9 in shoots and roots under different concentrations of NaCl. (J): Relative expression levels of BvHAK9 in shoots and roots under different concentrations of NaCl. (J): Relative expression levels of BvHAK9 in shoots and roots under different concentrations of NaCl. (J): Relative expression levels of BvHAK9 in shoots and roots under different concentrations of NaCl. (J): Relative expression levels of BvHAK9 in shoots and roots under

BvHAK7 在叶中的表达量显著高于根。与对照相比,高盐 (150 mmol/L NaCl)处理显著降低了叶和根中 BvHAK1 和 BvHAK7 的表达量。另外,高盐处理显著降低了 BvHAK6、BvHAK8 和 BvHAK9 在叶中的表达量,而对根中的表达量影响差异不显著。这些结果表明,50 和 100 mmol/L NaCl 不同程度地诱导甜菜叶和根中 BvHAK 基因家族成员的表达;高盐则下调了 BvHAK 在叶中的表达水平,而对根中的表达量没有影响。

3 讨论

3.1 甜菜 BvHAK 基因家族全基因组鉴定

在本研究中,甜菜基因组数据库中共鉴定 出 10 个 BvHAK基因 (表 2),与其他物种的 HAK基因家族成员数量不尽相同,如拟南芥中有 13 个^[28],玉米 27 个、马铃薯 15 个、水稻 27 个^[45], 桃 (*Prunus persica*) 15 个,葡萄 18 个^[46]、红皮 柳 (*Salix purpurea*) 22 个^[47]、茶树 (*Camellia sinensis*) 21 个^[48]。可能是由于在进化过程中 HAK家族不同亚科的特定基因复制和损失,造 成了植物中 HAK家族基因数量上的差异。

根据亚细胞定位预测, 6 个 BvHAK 基因家 族成员定位在液泡膜(BvHAK1、-4、-6、-7、 -9和-10), 而 4 个成员定位在质膜(BvHAK2、 -3、-5和-8)。已有研究表明,绝大多数植物 HAK 基因家族成员定位于质膜上^[49]。在水稻中, OsHAK10 定位于液泡膜上,也有部分 HAK 家 族成员如小立碗藓(Physcomitrella patens) PpHAK2 定位于内膜, PpHAK3 定位于高尔基 体^[50]。内含子与外显子的数目和结构也是基因 家族进化中的一项重要指标。在本研究中, 3 个 BvHAK 基因家族成员(BvHAK3、-7和-10)含 有 8 个外显子, 5 个成员(BvHAK1、-4、-5、-6 和-8)含有 9 个外显子,其余 BvHAK 家族成员 含有 10 个外显子(图 1A)。红皮柳 SpuHAK13 含有 6 个外显子, 梨 (*Pyrus bretschneideri*) *PbrHAK11* 中有 7 个外显子, *PbrHAK7* 中有 6 个 外显子^[51]。高等植物中的大部分 *KT/HAK/KUP* 基因包含 8-10 个外显子 (少于绿藻中的外显 子)^[52]。对于 HAK 蛋白家族成员, K⁺转运蛋白 结构域存在于所有物种中,具有高度的相似性。 这些结果表明,高等植物 HAK 基因家族序列相 对保守。

顺式作用元件参与基因活性调控,是转录 调控的关键分子开关^[53]。在植物中,生长素 ABA、乙烯等激素在植物的生长发育与逆境胁 迫响应过程中起着重要作用^[54]。在 BvHAK 基因 家族成员中,鉴定出 39个顺式作用调控元件, 其中激素响应元件7个,胁迫响应元件8个, 生长发育元件 24 个 (表 4)。在互作网络预测研 究中,除 BvHAK2 与 BvHAK9 外,其余 BvHAK 蛋白均与向内整流通道 AKT1 互作^[55]。另外, BvHAK 家族成员与 K⁺通道 TPK3 互作^[56]。在 本研究中,BvHAK3还与CIPK23相互作用(图 6)。在辣椒 (Capsicum annuum) 和番茄中, HAK5 及同源蛋白可被 CBL1/CIPK23 复合物激 活^[57-58]。在甘蔗 (Saccharum officinarum) 中, SsHAK1 可能被 CBL1-CIPK23 复合物或 RUPO 磷酸化和激活^[59]。这些研究结果为进一步揭示 HAK 调控机制奠定基础。

3.2 甜菜 BvHAK 在盐处理下的表达模式 分析

在本研究中,盐处理显著诱导了 BvHAK4 在叶和根中的表达水平。研究表明,水稻 OsHAK2 介导 Na⁺转运和低亲和性 K⁺转运,大 麦 HvHAK2 为低亲和性 K⁺转运且对 Na⁺敏感。 棉花 (Gossypium hirsutum) GhHKT2^[60]、甘蔗 SsHAK2、葡萄 VvKUP2 中也均发现有类似功能。 拟南芥 AtHAK5 主要在根中表达,介导 K⁺的吸 收^[51]。水稻 OsHAK5 则为 Na⁺敏感型的高亲和 性 K⁺转运蛋白^[12]。在水稻根和叶中均检测到 OsHAK5表达,其通过增强根中 K⁺的吸收和 K⁺ 从根至地上部的转运,从而提高 K^+/Na^+ 比,保 持离子稳态,增强水稻的耐盐性^[61]。芦苇 (Phragmites australis) PhaHAK5 具有 Na⁺渗透 性,也可提高植物的耐盐性^[62]。在盐胁迫下, BvHAK3 在根和叶中均有表达, 但叶中的表达 量显著高于根中。BvHAK3 在低盐胁迫处理后, 根中的表达量达到峰值:但在 100 mmol/L NaCl 处理后,叶中的表达量达到最高。另外,小立 碗藓 PpHAK13 主要介导 Na⁺转运^[63]。系统发育 分析表明, BvHAK6 与拟南芥 AtHAK12 进化关 系较近 (图 2), 其功能可能与 AtKHAK12 功能 相似,通过光合系统参与甜菜对盐胁迫的响应。 玉米 ZmHAK4 在根的维管束中优先表达, 编码 一种新的质膜 Na⁺选择性转运蛋白,该转运蛋 白可能通过从木质部汁液中回收 Na⁺, 从而介 导地上部 Na⁺外排^[64]。在水稻和小麦中, 与玉 米 ZmHAK4 的同源基因,具有相同的表达模式 和离子转运特性, 表明 ZmHAK4 及其同源基因 具有相似的耐盐机制^[35]。在本研究中, BvHAK4 在 50 mmol/L NaCl 处理下地上部表达量最高 (图 7D), 推测其与 ZmHAK4 具有相同的耐盐机 理。另外, BvHAK5 在 50 mmol/L NaCl 处理后 叶表现出较高的表达水平 (图 7E), 这与拟南芥 中AtKUP7的表达模式一致。由此说明, BvHAK5 对甜菜根系吸收 K⁺至关重要,且可能参与 K⁺ 向木质部汁液的转运[65]。

4 结论

在本研究中, 共鉴定 10 个甜菜 BvHAK 基 因家族成员, 其含有 8-10 个外显子、7-9 个内 含子不等; 平均氨基酸个数为 778.3, 平均分子 量为 88.31 kDa, 等电点为 5.38-9.41, 跨膜区 为 11-14 个不等。系统进化分析发现, 高等植 物 HAK 可分为 5 个簇,分别为I、II、III、V和 IV簇,其中II簇成员可进一步分为IIa、IIb 和IIc 等 3 个亚簇; BvHAK 家族成员则分布在前 4 簇, I簇和III簇有 1 个成员, II簇有 6 个成员,V簇有 2 个成员。进一步对 BvHAK 基因在盐处理下甜菜 不同组织中的表达模式分析发现,50 和 100 mmol/L NaCl不同程度地诱导甜菜叶和根中 BvHAK 基因家 族成员的表达;高盐 (150 mmol/L)则下调其在叶 中的表达水平,而对根中的表达量没有影响。

REFERENCES

- Jorge TF, Tohge T, Wendenburg R, et al. Salt-stress secondary metabolite signatures involved in the ability of *Casuarina glauca* to mitigate oxidative stress. Environ Exp Bot, 2019, 166: 103808.
- [2] Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59: 651-681.
- [3] 杨真,王宝山.中国盐渍土资源现状及改良利用对策.山东农业科学,2015,47(4):125-130.
 Yang Z, Wang BS. Present status of saline soil resources and countermeasures for improvement and utilization in China. Shandong Agric Sci, 2015, 47(4): 125-130 (in Chinese).
- [4] Etesami H, Glick BR. Halotolerant plant growth-promoting bacteria: prospects for alleviating salinity stress in plants. Environ Exp Bot, 2020, 178: 104124.
- [5] Assaha DVM, Ueda A, Saneoka H, et al. The role of Na⁺ and K⁺ transporters in salt stress adaptation in glycophytes. Front Physiol, 2017, 8: 509.
- [6] Rajappa S, Krishnamurthy P, Kumar PP. Regulation of *AtKUP2* expression by bHLH and WRKY transcription factors helps to confer increased salt tolerance to *Arabidopsis thaliana* plants. Front Plant Sci, 2020, 11: 1311.
- [7] Alqahtani M, Lightfoot DJ, Lemtiri-Chlieh F, et al. The role of *PQL* genes in response to salinity tolerance in *Arabidopsis* and barley. Plant Direct, 2021, 5(2): e00301.
- [8] Gupta A, Shaw BP, Roychoudhury A. NHX1, HKT, and monovalent cation transporters regulate K⁺ and Na⁺ transport during abiotic stress. Transporters and Plant Osmotic Stress. Amsterdam: Elsevier, 2021: 1-27.

- [9] Zhang HW, Xiao W, Yu WW, et al. Foxtail millet SiHAK1 excites extreme high-affinity K⁺ uptake to maintain K⁺ homeostasis under low K⁺ or salt stress. Plant Cell Rep, 2018, 37(11): 1533-1546.
- [10] Li WH, Xu GH, Alli A, et al. Plant HAK/KUP/KT K⁺ transporters: function and regulation. Semin Cell Dev Biol, 2018, 74: 133-141.
- [11] Gobert A, Park G, Amtmann A, et al. Arabidopsis thaliana cyclic nucleotide gated channel 3 forms a non-selective ion transporter involved in germination and cation transport. J Exp Bot, 2006, 57(4): 791-800.
- [12] Horie T, Sugawara M, Okada T, et al. Rice sodium-insensitive potassium transporter, OsHAK5, confers increased salt tolerance in tobacco BY₂ cells. J Biosci Bioeng, 2011, 111(3): 346-356.
- [13] 晁毛妮, 温青玉, 张晋玉, 等. 大豆 KUP/HAK/KT 钾 转运体基因家族的鉴定与表达分析. 西北植物学报, 2017, 37(2): 239-249.

Chao MN, Wen QY, Zhang JY, et al. Identification and expression analysis of *KUP/HAK/KT* potassium transporter gene family in soybean [*Glycine max* (L.) Merr]. Acta Bot Boreali Occidentalia Sin, 2017, 37(2): 239-249 (in Chinese).

- [14] 马丽娟,马钰,何红红,等. 葡萄 HAK 基因家族的鉴定与表达分析.西北农业学报,2019,28(6):922-934.
 Ma LJ, Ma Y, He HH, et al. Identification and expression analysis of grape *HAK* gene family. Acta Agric Boreali Occidentalis Sin, 2019, 28(6): 922-934
- [15] 肖小虎,林显祖,龙翔宇,等. 橡胶树 KT/HAK/KUP 基因家族成员的鉴定与表达分析. 热带作物学报, 2022, 43(1): 1-8.
 Xiao XH, Lin XZ, Long XY, et al. Identifcation and expression of *KT/HAK/KUP* genes in *Hevea brasliensis*. Chin J Trop Crops, 2022, 43(1): 1-8 (in Chinese).
- [16] 许赛赛,张博,仲阳,等. 马铃薯 HAK/KUP/KT 基因 家族鉴定与表达分析. 分子植物育种, 2021, 19(12): 3878-3886.
 Xu SS, Zhang B, Zhong Y, et al. Identification and expression analysis of HAK/KUP/KT gene family in potato. Mol Plant Breed, 2021, 19(12): 3878-3886 (in Chinese).
- [17] 田娜,王斌,伍俊为,等.香蕉高亲和性钾转运蛋白 (HAK) 家族全基因组鉴定及表达.应用与环境生物学 报,2021,DOI:10.19675/j.cnki.1006-687x.2021.04010.
 Tian N, Wang B, Wu JW, et al. Genome-wide

identification and expression of the banana high-affinity potassium transporter (HAK) family. Chin J Appl Environ Biol, 2021, DOI:10.19675/j.cnki. 1006-687x.2021.04010 (in Chinese).

- [18] 朱乐,赵鑫泽,蒋立希.甘蓝型油菜钾离子转运载体 HAK/KUP/KT 家族的全基因组鉴定与分析.浙江大 学学报 (农业与生命科学版), 2021, 47(3): 303-313.
 Zhu L, Zhao XZ, Jiang LX. Genome-wide identification and analysis of potassium ion transporter HAK/KUP/KT family in rapeseed (*Brassica napus* L.).
 J Zhejiang Univ (Agric Life Sci), 2021, 47(3): 303-313 (in Chinese).
- [19] 吴胜男,杨媛,李英壮,等.小麦KUP/HAK/KT基因 家族的全基因组鉴定、系统进化和表达模式分析.西 北农业学报,2021,30(3):351-364.
 Wu SN, Yang Y, Li YZ, et al. Genome-wide identification, phylogeny and expression analysis of KUP/HAK/KT transcription factors in wheat. Acta Agric Boreali Occidentalis Sin, 2021, 30(3): 351-364 (in Chinese).
- [20] Leiva-Eriksson N, Pin PA, Kraft T, et al. Differential expression patterns of non-symbiotic hemoglobins in sugar beet (*Beta vulgaris* ssp. vulgaris). Plant Cell Physiol, 2014, 55(4): 834-844.
- [21] Wu GQ, Feng RJ, Liang N, et al. Sodium chloride stimulates growth and alleviates sorbitol-induced osmotic stress in sugar beet seedlings. Plant Growth Regul, 2015, 75(1): 307-316.
- [22] Dohm JC, Minoche AE, Holtgräwe D, et al. The genome of the recently domesticated crop plant sugar beet (*Beta vulgaris*). Nature, 2014, 505(7484): 546-549.
- [23] Wu GQ, Wang JL, Li SJ. Genome-wide identification of Na⁺/H⁺ antiporter (NHX) genes in sugar beet (*Beta* vulgaris L.) and their regulated expression under salt stress. Genes, 2019, 10(5): 401.
- [24] Wu GQ, Li ZQ, Cao H, et al. Genome-wide identification and expression analysis of the *WRKY* genes in sugar beet (*Beta vulgaris* L.) under alkaline stress. PeerJ, 2019, 7: e7817.
- [25] Wu GQ, Liu ZX, Xie LL, et al. Genome-wide identification and expression analysis of the *BvSnRK2* genes family in sugar beet (*Beta vulgaris* L.) under salt conditions. J Plant Growth Regul, 2021, 40 (2): 519-532.
- [26] Wu GQ, Xie LL, Wang JL, et al. Genome-wide identification of *CIPK* genes in sugar beet (*Beta vulgaris*) and their expression under NaCl stress. J

(in Chinese).

Plant Growth Regul, 2022, DOI: org/10.1007/s00344-021-10545-6.

- [27] Genies L, Orjollet D, Carasco L, et al. Uptake and translocation of cesium by *Arabidopsis thaliana* in hydroponics conditions: links between kinetics and molecular mechanisms. Environ Exp Bot, 2017, 138: 164-172.
- [28] Quintero FJ, Blatt MR. A new family of K^+ transporters from *Arabidopsis* that are conserved across phyla. FEBS Lett, 1997, 415(2): 206-211.
- [29] Del Río ÁR, Minoche AE, Zwickl NF, et al. Genomes of the wild beets *Beta patula* and *Beta vulgaris* ssp. Maritima. Plant J, 2019, 99(6): 1242-1253.
- [30] Gasteiger E, Hoogland C, Gattiker A, et al. Protein identification and analysis tools on the ExPASy server. The Proteomics Protocols Handbook. Totowa, NJ: Humana Press, 2005: 571-607.
- [31] Chou KC, Shen HB. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One, 2010, 5(6): e11335.
- [32] Azeem F, Zameer R, Rehman Rashid MA, et al. Genome-wide analysis of potassium transport genes in Gossypium raimondii suggest a role of GrHAK/KUP/KT8, GrAKT2.1 and GrAKT1.1 in response to abiotic stress. Plant Physiol Biochem, 2022, 170: 110-122.
- [33] Jin R, Jiang W, Yan MX, et al. Genome-wide characterization and expression analysis of HAK K⁺ transport family in *Ipomoea*. 3 Biotech, 2021, 11(1): 3.
- [34] Zhang M, Liang XY, Wang LM, et al. A HAK family Na⁺ transporter confers natural variation of salt tolerance in maize. Nat Plants, 2019, 5(12): 1297-1308.
- [35] Cai KF, Zeng FR, Wang JM, et al. Identification and characterization of *HAK/KUP/KT* potassium transporter gene family in barley and their expression under abiotic stress. BMC Genomics, 2021, 22(1): 317.
- [36] Cheng XY, Liu XD, Mao WW, et al. Genome-wide identification and analysis of *HAK/KUP/KT* potassium transporters gene family in wheat (*Triticum aestivum* L.). Int J Mol Sci, 2018, 19(12): 3969.
- [37] Kumar S, Stecher G, Tamura K. MEGA 7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33(7): 1870-1874.
- [38] Yang ZH. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol, 2007, 24(8): 1586-1591.
- [39] Hu B, Jin JP, Guo AY, et al. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics, 2015,

31(8): 1296-1297.

- [40] Guan Y, Wang DH, Lv C, et al. Archives of microbiology: screening of pectinase-producing bacteria from *Citrus* peel and characterization of a recombinant pectate lyase with applied potential. Arch Microbiol, 2020, 202(5): 1005-1013.
- [41] Costa CS, Bravo JP, Ribeiro CL, et al. Vascular expression driven by the promoter of a gene encoding a high-affinity potassium transporter *HAK5* from *Eucalyptus grandis*. Plant Cell Tissue Organ Cult, 2017, 131(2): 213-222.
- [42] Oliferuk S, Simontacchi M, Rubio F, et al. Exposure to a natural nitric oxide donor negatively affects the potential influx of rubidium in potassium-starved *Arabidopsis* plants. Plant Physiol Biochem, 2020, 150: 204-208.
- [43] Dai FB, Li AJ, Rao SP, et al. Potassium transporter LrKUP8 is essential for K^+ preservation in *Lycium ruthenicum*, a salt-resistant desert shrub. Genes, 2019, 10(8): 600.
- [44] Sun Q, Lu HR, Zhang Q, et al. Transcriptome sequencing of wild soybean revealed gene expression dynamics under low nitrogen stress. J Appl Genet, 2021, 62(3): 389-404.
- [45] Gupta M, Qiu XH, Wang L, et al. *KT/HAK/KUP* potassium transporters gene family and their whole-life cycle expression profile in rice (*Oryza sativa*). Mol Genet Genom, 2008, 280(5): 437-452.
- [46] Davies C, Shin R, Liu WH, et al. Transporters expressed during grape berry (*Vitis vinifera* L.) development are associated with an increase in berry size and berry potassium accumulation. J Exp Bot, 2006, 57(12): 3209-3216.
- [47] Liang MX, Gao YC, Mao TT, et al. Characterization and expression of *KT/HAK/KUP* transporter family genes in willow under potassium deficiency, drought, and salt stresses. Biomed Res Int, 2020, 2020: 2690760.
- [48] Yang TY, Lu X, Wang Y, et al. HAK/KUP/KT family potassium transporter genes are involved in potassium deficiency and stress responses in tea plants (*Camellia* sinensis L.): expression and functional analysis. BMC Genomics, 2020, 21(1): 556.
- [49] Li Y, Peng LR, Xie CY, et al. Genome-wide identification, characterization, and expression analyses of the *HAK/KUP/KT* potassium transporter gene family reveals their involvement in K⁺ deficient and abiotic stress responses in pear rootstock seedlings.

Plant Growth Regul, 2018, 85(2): 187-198.

- [50] Haro R, Fraile-Escanciano A, González-Melendi P, et al. The potassium transporters HAK2 and HAK3 localize to endomembranes in *Physcomitrella patens*. HAK2 is required in some stress conditions. Plant Cell Physiol, 2013, 54(9): 1441-1454.
- [51] Gierth M, Mäser P, Schroeder JI. The potassium transporter AtHAK5 functions in K^+ deprivation-induced high-affinity K^+ uptake and AKT1 K^+ channel contribution to K^+ uptake kinetics in *Arabidopsis* roots. Plant Physiol, 2005, 137(3): 1105-1114.
- [52] He CY, Cui K, Duan AG, et al. Genome-wide and molecular evolution analysis of the *Poplar KT/HAK/KUP* potassium transporter gene family. Ecol Evol, 2012, 2(8): 1996-2004.
- [53] Ding X, Li JH, Pan Y, et al. Genome-wide identification and expression analysis of the UGlcAE gene family in tomato. Int J Mol Sci, 2018, 19(6): 1583.
- [54] Zhang YL, Li X. Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Curr Opin Plant Biol, 2019, 50: 29-36.
- [55] Nieves-Cordones M, Lara A, Ródenas R, et al. Modulation of K^+ translocation by AKT1 and AtHAK5 in *Arabidopsis* plants. Plant Cell Environ, 2019, 42(8): 2357-2371.
- [56] Adams E, Miyazaki T, Shin R. Contribution of KUPs to potassium and cesium accumulation appears complementary in *Arabidopsis*. Plant Signal Behav, 2019, 14(1): 1554468.
- [57] Ragel P, Ródenas R, García-Martín E, et al. The CBL-interacting protein kinase CIPK23 regulates HAK5-mediated high-affinity K⁺ uptake in

Arabidopsis roots. Plant Physiol, 2015, 169(4): 2863-2873.

- [58] Martínez-Cordero MA, Martínez V, Rubio F. Cloning and functional characterization of the high-affinity K⁺ transporter HAK1 of pepper. Plant Mol Biol, 2004, 56(3): 413-421.
- [59] Feng XM, Wang YJ, Zhang NN, et al. Genome-wide systematic characterization of the HAK/KUP/KT gene family and its expression profile during plant growth and in response to low-K⁺ stress in Saccharum. BMC Plant Biol, 2020, 20(1): 20.
- [60] Li Z, Tian X, Zhang M, et al. *GhKT2*: a novel K⁺ transporter gene in cotton (*Gossypium hirsutum*). Front Agr Sci Eng, 2018, 5(2): 226-235.
- [61] Feng HM, Tang Q, Cai J, et al. Rice OsHAK16 functions in potassium uptake and translocation in shoot, maintaining potassium homeostasis and salt tolerance. Planta, 2019, 250(2): 549-561.
- [62] Takahashi R, Nishio T, Ichizen N, et al. High-affinity K⁺ transporter PhaHAK5 is expressed only in saltsensitive reed plants and shows Na⁺ permeability under NaCl stress. Plant Cell Rep, 2007, 26(9): 1673-1679.
- [63] Benito B, Garciadeblas B, Rodriguez-Navarro A. HAK transporters from *Physcomitrella patens* and *Yarrowia lipolytica* mediate sodium uptake. Plant Cell Physiol, 2012, 53(6): 1117-1123.
- [64] Ma NN, Dong LN, Lü W, et al. Transcriptome analysis of maize seedling roots in response to nitrogen-, phosphorus-, and potassium deficiency. Plant Soil, 2020, 447(1/2): 637-658.
- [65] Šustr M, Doksanská T, Doležalová B, et al. ¹³⁴Cs uptake and growth at various Cs⁺ and K⁺ levels in *Arabidopsis AtKUP7* mutants. Plants, 2020, 9(11): 1525.

(本文责编 陈宏宇)