Oct. 25, 2024, 40(10): 3561-3587 ©2024 Chin J Biotech, All rights reserved

农业生物技术・

福州双瓣茉莉萜烯类合成酶基因家族鉴定及其响应 茉莉酸甲酯的表达分析

林少青¹,周琳薇¹,冯丽卿¹,钟彩荣¹,曾瑜²,廖毓森¹,方静平^{1*}

1 福建师范大学 生命科学学院, 福建 福州 350117

2 闽榕茶业有限公司, 福建 福州 350018

林少青,周琳薇,冯丽卿,钟彩荣,曾瑜,廖毓森,方静平.福州双瓣茉莉萜烯类合成酶基因家族鉴定及其响应茉莉酸甲酯的表达分析[J]. 生物工程学报,2024,40(10): 3561-3587.

LIN Shaoqing, ZHOU Linwei, FENG Liqing, ZHONG Cairong, ZENG Yu, LIAO Yusen, FANG Jingping. Terpene synthase gene family in *Jasminum sambac* var. *Fuzhou bifoliatum*: genome-wide analysis and expression pattern in response to methyl jasmonate[J]. Chinese Journal of Biotechnology, 2024, 40(10): 3561-3587.

要: 萜烯类合成酶(terpene synthases, TPSs)是合成花香中多种萜类化合物的关键酶, 但 TPS 摘 基因在福州双瓣茉莉(Jasminum sambac var. Fuzhou bifoliatum)中全基因组鉴定和响应茉莉酸甲酯 (methyl jasmonate, MeJA)的表达模式分析少见报道。本研究利用生物信息学的方法对双瓣茉莉 TPS (DJTPS)基因进行全基因组鉴定,对基因家族成员的理化性质、亚细胞定位、蛋白互作、系统进化、 亚家族分类、染色体定位及共线性、基因结构、顺式作用元件和保守基序进行分析,并利用转录 组数据和实时荧光定量 PCR (quantitative real-time PCR, qRT-PCR)分析 DJTPS 家族在不同组织器官 下及在 MeJA 处理下的表达模式。结果表明, 在双瓣茉莉全基因组中一共鉴定到 32 个 DJTPS 家族 成员,不均匀地分布在9条染色体上,所编码蛋白质均为亲水性蛋白,大多数定位于细胞质;系 统进化分析显示,DJTPS 家族分为 TPS-a、TPS-b、TPS-c、TPS-e/f 和 TPS-g 共 5 个亚家族;共线 性结果揭示了双瓣茉莉中共有 10 组复制事件,大部分都经历了纯化选择;分析双瓣茉莉与其他 6 个物种之间的 TPS 同源基因对,发现了不同数量的同源基因对;基因结构和保守基序分析结果 显示,同一亚家族的外显子数量和基序数目具有一定的保守性;对顺式作用元件分析发现,DJTPS 家族中存在多个可能涉及 MeJA 响应的元件;转录组和 qRT-PCR 数据分析显示,多个 TPS 基因在 不同组织器官中特异性表达,在花中特异性表达的基因最多; 14 个 TPS 基因在 MeJA 处理 5 h 或 6 h 后表达上调,其中 DJTPS03、DJTPS04 和 DJTPS21 在 MeJA 处理后表达量显著增加。本研究 初步证明了 MeJA 能够促进 DJTPS 家族成员在开花关键时期的表达,从而促进萜类化合物的合成, 提高花香的品质。

*Corresponding author. E-mail: jinphia@fjnu.edu.cn

资助项目: 福建省自然科学基金(2023J01508); 福州市科技计划(2021-N-119)

This work was supported by the Natural Science Foundation of Fujian Province (2023J01508) and the Project of Science and Technology of Fuzhou City (2021-N-119).

Received: 2024-01-24; Accepted: 2024-04-09; Published online: 2024-08-21

关键词: 福州双瓣茉莉; 萜烯类合成酶基因家族; 茉莉酸甲酯; 表达模式

Terpene synthase gene family in *Jasminum sambac* var. *Fuzhou bifoliatum*: genome-wide analysis and expression pattern in response to methyl jasmonate

LIN Shaoqing¹, ZHOU Linwei¹, FENG Liqing¹, ZHONG Cairong¹, ZENG Yu², LIAO Yusen¹, FANG Jingping^{1*}

1 College of Life Science, Fujian Normal University, Fuzhou 350117, Fujian, China 2 Minrong Tea Industry Co. Ltd., Fuzhou 350018, Fujian, China

Abstract: Terpene synthases (TPSs) play a crucial role in the synthesis of terpenoids that contribute to the scent profiles of flowers. However, few studies report the genome-wide analysis of TPSs gene in Jasminum sambac var. Fuzhou bifoliatum and their expression pattern in response to methyl jasmonate (MeJA). In this study, we employed bioinformatics tools for genome-wide analysis of the J. sambac TPS (DJTPS) gene family and determined the physical and chemical properties, subcellular location, protein-protein interactions, phylogenetic relationship, subfamily classification, chromosomal location and collinearity, gene structure, conserved motifs, and promoter cis-acting elements. The expression patterns of DJTPSs in different tissues and in response to MeJA treatment were analyzed based on the transcriptome data combined with quantitative real-time PCR (qRT-PCR). We identified 32 intact DJTPS genes in the genome of J. sambac, which presented uneven distribution across nine chromosomes. All the deduced proteins were hydrophilic, predominantly localized in the cytoplasm. The phylogenetic analysis classified the DJTPS genes into five subfamilies: TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g. The results of the collinearity analysis showed a total of 10 sets of replication events in DJTPSs, most of which underwent purifying selection. A comparative analysis of TPS homologous gene pairs was performed among J. sambac var. Fuzhou bifoliatum and other six species, which revealed different number of homologous gene pairs. The number of exons and motifs was conserved within the same subfamily. DJTPS genes carried multiple elements that may be involved in the response to MeJA. In addition, the transcriptome and qRT-PCR data unveiled that several TPS genes exhibited tissue-specific expression patterns, and the genes with specific expression in flowers were the most. Upon exposure to MeJA, 14 TPS genes showcased upregulated expression 5 h or 6 h post-treatment, and DJTPS03, DJTPS04 and DJTPS21 showed significantly increased expression levels after MeJA treatment. This study provides preliminary evidence that MeJA possesses the ability to enhance the expression of DJTPS genes during the critical flowering stage, which will facilitate the synthesis of terpenoids and improve the quality of floral fragrance.

Keywords: *Jasminum sambac* var. *Fuzhou bifoliatum*; terpene synthase gene family; methyl jasmonate; expression pattern

萜烯类化合物作为植物次生代谢物中最为 丰富和多样的类别,是植物香气研究中最为关 注的组分,主要包括单萜、二萜、倍半萜和多 萜化合物^[1]。萜烯类合成酶(terpene synthases, TPSs)直接催化花香物质的合成,是植物香气组 分形成的关键因素之一^[2]。杜鹃花(Rhododendron simsii Planch.)中6个TPS基因的表达量与多种萜 类物质含量呈显著性正相关,参与花香调控^[3]。 水芹[Oenanthe javanica (Blume) DC.]中关键酶 基因 OiTPS1 的过表达能促进花香气味成分 β-石竹烯的合成^[4]。TPS 基因家族在植物响应生物 胁迫中也发挥重要作用。甘蔗割手密(Saccharum spontaneum L.)被草地贪夜蛾咬食、病原体感染 后,多个 TPS 基因表达水平上调^[5]。此外, TPS 基因还能够响应高温^[6]、黑暗、低温和高盐^[7] 等非生物胁迫。因此, TPS 基因家族不仅参与 植物花香组分的合成途径,对植物的抗逆境胁 迫也起到一定作用。TPS 基因家族可分为 TPS-a、TPS-b、TPS-c、TPS-d、TPS-e/f、TPS-g 和 TPS-h 共 7 个亚家族。其中 TPS-d 亚家族主 要存在于裸子植物中,而 TPS-h 亚家族迄今为 止仅在卷柏(Selaginella tamariscina)中发现, TPS-a、TPS-b 和 TPS-g 为被子植物特有的亚家 族^[8]。在对众多植物进行 TPS 基因家族鉴定时, 均利用 TPS 蛋白 N 端和 C 端保守结构域的隐马 尔可夫模型(Hidden Markov Model, HMM)进行预 测(Pfam ID 分别为 PF01397 和 PF03936)^[3,5,9-10]。 根据功能和序列特征可把 TPSs 分为I类和II类, I类 C 端具有最典型的富含天冬氨酸残基的 DDXXD 基序,其参与了二价离子和水分子的 配位并对活性位点的稳定起一定作用^[11],而 II类 C 端包含 DXDD 基序,其对质子化的起始 反应起关键作用^[12]。除此之外,还有其他一些

典型的保守基序,如 RXR 基序、N 端的 RRX8W 基序和 C 端的 NSE/DTE 基序,也在 TPSs 的催化活性中发挥重要作用^[13]。研究人 员在茶树(*Camellia sinensis*)^[9]和欧薄荷(*Mentha longifolia*)^[10]等植物中分析了这些保守基序与 亚家族之间关系。TPSs 的多功能性及其结构已 经得到了广泛研究,显示出其在应用研究领域 的广阔前景。

茉莉酸甲酯(methyl jasmonate, MeJA)是一 种内源植物激素,最早从茉莉花中提取,是茉 莉酸的挥发性酯类衍生物,广泛存在于各类植 物中。MeJA 具有多种生理功能, 它不仅对植物 的根系生长、种子萌发、块茎形成、叶片衰老 等过程具有一定的诱导和调控作用[14],也在植 物应对干旱、高温、盐渍化等逆境胁迫下作为 关键的内源信号分子发挥作用,这一机制增强 了植物的抗逆性^[15]。此外, MeJA 能预防果蔬 采摘后的生理病害^[16],有助于改善鲜果的色泽、 提高其抗腐性以及延长贮藏期^[17]。MeJA 还是 一种促花激素,能促进花卉中次级代谢产物的 积累、改善花卉香气。吴琦等发现百合(Lilium 'Siberia')中萜烯类、醇类、醛类等物质的释放 量随着 MeJA 含量增加而提高^[18]。进一步研究 发现, MeJA 能诱导植物 TPS 基因表达上调, 从而积累萜类代谢物质,提高果实挥发性风味 品质^[19]。类似地,李蔚发现外源 MeJA 可促进 "蛇龙珠"葡萄(Cabernet Gernischt)及葡萄酒中 单萜类化合物含量和种类的增加,有利于果实 中键合态香气物质的转变和释放^[20]。随着对 MeJA 作用和机理的深入研究,其在农业生产中 的应用也将成为一个研究热点。但目前关于 MeJA 调控茉莉花香气成分的研究及其在茉莉 花栽培和生产上的应用鲜见报道。

茉莉[Jasminum sambac (L.) Aiton]为双子 叶木犀科素馨属直立或攀援灌木,其花朵是窨 制花茶、提取精油浸膏的原料,其根和叶可以 入药。根据花冠层数的不同一般分为单瓣茉莉 (Jasminum sambac var. unifoliatum)、双瓣茉莉 (Jasminum sambac var. bifoliatum)和多瓣(重瓣) 茉莉(Jasminum sambac var. trifoliatum),均具有 重要的观赏价值和经济价值^[21]。其中双瓣茉莉 抗寒和抗湿性强、易栽培、产花量高,是目前我 国窨茶茉莉的主栽品种^[2],在我国福建、广西、 四川、云南、海南、台湾等省、自治区广泛种植。 福州作为世界茉莉花茶的发源地,其窨制花茶工 艺已有逾千年历史。福州茉莉花茶以其品质卓 越、香气鲜灵持久而著称^[22],茉莉鲜花及花茶 品质均位居全国前列^[23],在国内享有盛誉。 香气是评价茉莉花茶品质和经济价值的重要指 标^[14], 萜烯类化合物作为一种茉莉花芳香挥发 物的主要组分,对茉莉花的香气品质和茉莉精油 质量有重要影响^[24], TPSs 是萜类化合物生物合 成的直接催化酶,受到研究者们广泛的关注。目 前,研究主要集中在分析茉莉花开放过程中香气 成分的动态变化[24-25]以及香气合成相关酶基因 的克隆与表达的分析[26-28]。尽管已有研究对茉莉 TPS 基因在全基因组或转录组水平上进行了初 步的鉴定,以及对部分编码基因进行了克隆和表 达分析^[26,28-29],但福州双瓣茉莉全基因组 TPS 基 因家族的结构和进化分析少见全面研究。同时, 对于茉莉 TPS 基因家族在 MeJA 信号下的表达 模式和调控机制的研究也相当匮乏。

本课题组前期完成了福州单瓣、双瓣和多 瓣茉莉的基因组破译工作,该基因组资源为在 全基因组水平进行茉莉花 TPS 基因家族的生物 信息预测、进化分析及茉莉花遗传育种改良提 供重要的参考信息(成果尚未发表)。本研究对福 州双瓣茉莉的 TPS 基因家族进行了成员鉴定、 理化性质、亚家族分类、基因结构及进化关系 等分析,初步探讨了 TPS 基因家族响应 MeJA 的表达动态变化,旨在阐明 MeJA 如何诱导茉 莉花香气的释放与形成,并揭示其背后的生物 学过程及分子调控机制,以期为茉莉花茶窨制 工艺的改良提供科学指导,具有重要的理论意 义和实践价值。

1 材料与方法

1.1 实验材料和数据获取

本研究以栽培于福州闽榕茶业有限公司长 乐基地的福州双瓣茉莉为实验材料,选取长势 好、形态发育健硕的成熟植株。并根据 Wang 等^[30] 对茉莉花发育过程 6 个阶段的划分(S1-S6), 收 集双瓣茉莉 S1-S6 的花朵样本以及根、茎和叶 不同组织,进行 RNA 提取和转录组测序。取样 后迅速放入液氮中速冻,在干冰中保存和运输。 在 16:00 选取当晚有较多花苞开放的植株进行 100 µmol/L 的 MeJA 喷施, 对照组进行蒸馏水 喷施。采用叶背喷施法处理茉莉植株,确保叶 片表面形成即将滴落的液滴,从而促进植株有 效地吸收 MeJA。每个处理均设置 3 次重复。 在当天 16:00 立即开始采样,此后每隔 2 h进 行一次采样。茉莉花在 20:00 进入花香释放盛 期^[31],因此在 21:00 增加一次采样,即在 16:00、 18:00、20:00、21:00 和 22:00 (蒸馏水和 MeJA 分别处理 0、2、4、5、6h 后)进行花苞取样, 用于 RNA 提取和转录组测序分析。所采花苞 为花发育 S4 和 S5 阶段。其中, 16:00 所采的 花苞还未成熟,为 S4; 18:00 后花苞陆续达到 生理性成熟, 18:00-22:00 所采的花苞为 S5。 取样后迅速放入液氮中速冻,保存于-80℃冰 箱备用。从国家基因组科学数据中心(National Genomics Data Center, NGDC) (https://ngdc. cncb.ac.cn/?lang=zh)下载丁香(Syringa oblata

Lindl.) 和桂花 (Osmanthus fragrans cultivar Liuyejingui)全基因组、编码序列(coding sequence, CDS)、蛋白序列和基因注释文件;从 Ensembl Plants 数据库 (https://plants.ensembl.org/index. html)中下载水稻(Oryza sativa L.)和拟南芥 [Arabidopsis thaliana (L.) Heynh.]的数据;单瓣、 双瓣和虎头多瓣茉莉的基因组数据来源于本课 题组的前期组装注释;从拟南芥信息资源数据库 (TAIR, https://www.arabidopsis.org/index.jsp)中 下载拟南芥 TPS 蛋白序列。

1.2 方法

1.2.1 DJTPS 家族成员的筛选与鉴定

在蛋白家族数据库(Pfam, http://pfam.xfam. org/)中下载 TPS 蛋白 N 端结构域(Pfam 登录号: PF01397)和C端结构域(Pfam登录号: PF03936) 的隐马尔可夫模型文件,利用软件 HMMER (v3.3.2)^[32]基于 HMM 文件对双瓣茉莉的蛋白序 列进行结构域鉴定,其中参数设置如下: E-value<1e-5。以双瓣茉莉的蛋白序列构建数据 库,使用 BLASTP 基于拟南芥的 32 个 TPS 蛋 白序列对所构建的双瓣茉莉蛋白数据库进行比 对鉴定,其中参数设置如下: E-value<1e-5、 identity>40%、coverage>30%。将 HMMER 和 BLASTP 分别鉴定到的蛋白序列 ID 进行合并取 交集,利用软件 Seqtk 根据蛋白序列 ID 从双瓣 茉莉的蛋白序列中提取得到候选的 TPS 蛋白序 列。将候选序列提交至 NCBI 保守结构域数据库 (NCBI-CDD, https://www.ncbi.nlm.nih.gov/cdd/) 和 Pfam 数据库中进行结构域的进一步验证,去 除不包含 TPS 基因家族 N 端和 C 端的保守结构 域的序列,保留在两个数据库中均得到验证的 蛋白序列,即最终鉴定为双瓣茉莉的 TPS 基因家 族成员。

1.2.2 DJTPS 家族蛋白理化性质、亚细胞定位 及蛋白互作分析

利用在线网站 ExPASy^[33] (http://web.expasy.

org/protparam/)分析 DJTPS 家族的氨基酸数目、 相对分子量、理论等电点、不稳定系数和亲水 性。利用在线网站 SignalP 4.1 (https://services. healthtech.dtu.dk/services/SignalP-4.1/)分析 DJTPS 家族的信号肽。利用 CELLO v.2.5 (http://cello. life.nctu.edu.tw/)在线网站预测 DJTPS 家族亚细 胞定位。利用 STRING 在线数据库(https://cn.stringdb.org/)进行 DJTPS 家族蛋白相互作用预测。

1.2.3 DJTPS 家族的系统进化分析和亚家族 分类

利用软件 Muscle^[34] (v3.8.1551)将拟南芥中 TPS 蛋白与双瓣茉莉 DJTPS 蛋白进行多序列比 对。运用 RAxML^[35]基于最大似然法(maximum likelihood, ML)构建拟南芥 TPS 蛋白和 DJTPS 家 族 JTT 模型系统发育树,自展值设置为1 000。 利用在线网站 iTOL (https://itol.embl.de/)美化构 建好的进化树。DJTPS 家族根据拟南芥 TPS 亚 家族(TPS-a、TPS-b、TPS-c、TPS-e/f 和 TPS-g) 进行分类。

1.2.4 DJTPS 家族的染色体定位和共线性分析

提取 DJTPS 家族的基因注释信息,利用软件 TBtools^[36]进行染色体定位。利用 1.2.1 鉴定 *TPS* 基因的方法对单瓣茉莉、虎头多瓣茉莉、 拟南芥、桂花、丁香和水稻进行 TPS 基因家族 鉴定,并使用软件 MCScanX^[37]对 DJTPS 家族 进行种内共线性分析,使用 TBtools 对双瓣茉莉 DJTPS 家族与上述 6 种植物进行种间共线性 分析,检索各组之间的共线性对。使用 TBtools 的 Simple *Ka/Ks* Calculator 程序计算双瓣茉莉 TPS 基因家族共线性对以及与其他物种之间共 线性对的 *Ka/Ks* 值^[38]。

1.2.5 DJTPS 家族的基因结构分析、启动子顺 式作用元件预测和保守基序分析

利用软件 TBtools 和基因注释信息文件对 DJTPS 家族进行基因结构的可视化。利用软件 TBtools 提取 DJTPS 家族成员基因上游 2 000 bp 序列,提交至 PlantCARE (https://bioinformatics. psb.ugent.be/webtools/plantcare/html/)预测启动 子顺式作用元件,最后用 TBtools 进行可视化。 利用在线网站 MEME^[39] (https://meme-suite.org/ meme/tools/meme)检索 DJTPS 家族保守基序 (motif),预测 motif 的数量设置为 20 个, motif 最小宽度为 6,最大宽度为 200,并用软件 TBtools 对上述 motif 预测结果进行可视化。

1.2.6 转录组数据分析 DJTPS 家族的表达模式

将待测样品按照 FastPure Universal Plant Total RNA Isolation Kit (Vazyme)试剂盒提取 RNA,送至北京贝瑞和康生物技术有限公司进 行转录组测序。将测定的各组数据分别与双瓣 茉莉参考基因组进行序列比对,得到基于每千个 碱基的转录每百万映射读取的片段数(fragments per kilobase million, FPKM)算法的基因转录表 达水平,标准化后作为表达分析数据,再从中 提取代表 DJTPS 家族基因表达水平的 FPKM 值。使用 TBtools 软件分别绘制 DJTPS 家族在 花发育不同时期和根、茎、叶组织中以及花苞 在 MeJA 处理前后不同时间点的表达热图,其 中对 MeJA 处理前后的转录组表达数据进行均 一化处理。

1.2.7 DJTPS 家族在 MeJA 处理下的实时荧光 定量 PCR 分析

根据 HiScript III 1st Strand cDNA Synthesis Kit (+gDNA wiper) (Vazyme)反转录试剂盒说明 书将上述 1.2.6 所提取的 RNA 反转录成 cDNA。

表1 本研究	所用的 qPCR 引物
--------	-------------

Table 1 aPCR primers used in this study

将待测基因 DNA 序列提交至生工生物工程(上海)股份有限公司的引物设计网站上进行 DJTPS 家族特异性引物设计(表 1),并合成引物。以茉莉肌动蛋白基因 *Js-actin* 作为内参基因。实时荧光定量 PCR (quantitative real-time PCR, qRT-PCR)扩增在 CFX Connect 仪器上进行,按照 PerfectStartGreen qPCR SuperMix (TransGen Biotech)试剂盒说明书进行实验,具体程序为: 94 \circ 30 s; 94 \circ 5 s, 60 \circ 30 s, 共 40 个循环。 每组样品分别取 3 个独立的生物重复和 3 个技术重复。采用 2^{-AACt}法计算双瓣茉莉 *TPS* 基因的相对表达水平。

2 结果与分析

2.1 32 个 DJTPS 家族成员的理化性质分析

根据 TPS 基因家族的 2 个 Pfam 模型,利 用 HMM 软件对双瓣茉莉的蛋白序列进行比对 搜索, PF01397 模型鉴定得到 35 条 TPS 候选蛋 白, PF03936 模型鉴定得到 37 条 TPS 候选蛋白。 根据拟南芥的 32 个 TPS 蛋白序列,利用 BLASTP 软件比对搜索双瓣茉莉蛋白质数据库鉴定得到 25 条 TPS 候选蛋白。将上述得到的候选蛋白序 列全部合并后提交到 NCBI-CDD 和 Pfam 在线 网站中进行进一步验证,去除 TPS 家族保守结 构域不完整的候选蛋白,将验证结果合并取交 集,最终在双瓣茉莉中共鉴定得到 32 个 TPS 基因家族成员,并根据基因在染色体上的位置 依次命名为 DJTPS01-DJTPS32 (表 2)。

······································							
Gene name	Forward primer sequence $(5' \rightarrow 3')$	Reverse primer sequence $(5' \rightarrow 3')$					
DJTPS03	CCCAACAACAGCAGGATCTCAAGG	CGACCACAGAAAACTCTCCACCAC					
DJTPS19	CCTGTGTTGGCGTACCTAGAAAGC	CGGAAACTGTTGCAGAGGGTGAC					
DJTPS23	CAAGCAAAACGAGGACCTTCACAC	TTGTTGAACACGACACATGGAACG					
DJTPS24	TGAAGTTGCTCGACGCTCTGTAAC	GCTCCTCATGGCTCGATATTTCCG					
Js-actin	ATGTTTGGCGGGATTGCTGATAGG	ACTGAGAGAGGCGAGAATGGAACC					

http://journals.im.ac.cn/cjbcn

表 2	双瓣茉莉	DJTPS	家族的理化性质

Table 2 Physicochemical properties of the DJTPS gene family of Jasminum sambac var. Fuzhou bifoliatum

Gene	Gene	Protein	Molecular	Isoelectric	Instability	Hydrophilic	Signal	Subcellular
name	ID	length (aa)	weight (Da)	point	index	coefficient	peptide	location
DJTPS01	DJ02276	521	60 571.17	5.42	49.34	-0.331	No	Cytoplasmic
DJTPS02	DJ02277	599	69 661.76	5.87	54.66	-0.347	No	Cytoplasmic
DJTPS03	DJ02562	540	62 514.62	5.48	48.99	-0.245	No	Cytoplasmic
DJTPS04	DJ09702	580	67 122.36	5.82	35.48	-0.390	No	Nuclear
DJTPS05	DJ12077	510	59 934.59	5.22	39.67	-0.347	No	Cytoplasmic
DJTPS06	DJ12079	550	63 915.12	5.36	43.46	-0.281	No	Cytoplasmic
DJTPS07	DJ12081	551	64 670.90	5.61	43.99	-0.404	No	Cytoplasmic
DJTPS08	DJ20665	744	87 307.85	6.14	42.37	-0.481	No	Cytoplasmic
DJTPS09	DJ21908	551	64 071.37	5.28	47.60	-0.301	No	Cytoplasmic
DJTPS10	DJ21918	774	88 897.42	6.03	39.75	-0.280	No	Cytoplasmic
DJTPS11	DJ24023	808	93 021.25	6.70	39.84	-0.334	Yes	Mitochondrial
DJTPS12	DJ24034	800	92 102.95	5.76	41.58	-0.312	No	Cytoplasmic
DJTPS13	DJ24610	381	44 436.01	5.29	37.74	-0.253	No	Cytoplasmic
DJTPS14	DJ24612	389	45 292.08	5.33	30.50	-0.205	No	Cytoplasmic
DJTPS15	DJ24615	461	53 725.77	5.49	35.51	-0.255	No	Cytoplasmic
DJTPS16	DJ24621	378	44 338.13	5.34	41.45	-0.180	No	Cytoplasmic
DJTPS17	DJ26466	582	66 879.85	5.32	54.82	-0.215	No	Cytoplasmic
DJTPS18	DJ26724	649	74 557.55	5.63	41.20	-0.317	No	Cytoplasmic
DJTPS19	DJ26725	844	96 917.48	6.03	45.91	-0.337	No	Cytoplasmic
DJTPS20	DJ26937	783	88 674.09	5.45	41.97	-0.155	No	Plasma membrane
DJTPS21	DJ26940	425	49 483.85	5.18	54.34	-0.216	No	Cytoplasmic
DJTPS22	DJ27259	559	64 601.96	5.72	46.86	-0.263	No	Cytoplasmic
DJTPS23	DJ27261	519	60 519.91	5.12	52.00	-0.155	No	Cytoplasmic
DJTPS24	DJ27262	552	64 030.47	5.26	46.44	-0.204	No	Cytoplasmic
DJTPS25	DJ27264	450	52 712.79	5.46	46.95	-0.177	No	Plasma membrane
DJTPS26	DJ27613	463	54 419.55	5.23	44.61	-0.337	No	Nuclear
DJTPS27	DJ27615	405	47 602.78	4.85	37.21	-0.251	No	Cytoplasmic
DJTPS28	DJ27616	425	50 374.18	4.85	43.78	-0.541	No	Cytoplasmic
DJTPS29	DJ27617	560	64 539.40	5.31	34.23	-0.327	No	Nuclear
DJTPS30	DJ28714	704	81 565.60	5.90	38.57	-0.432	No	Cytoplasmic
DJTPS31	DJ31387	557	64 690.71	5.15	47.87	-0.294	No	Cytoplasmic
DJTPS32	DJ31390	566	65 465.86	5.43	44.17	-0.274	No	Cytoplasmic

对 32 个双瓣茉莉 TPS 基因家族成员进行 理化性质分析(表 2),结果表明双瓣茉莉 TPS 基因家族编码的蛋白质氨基酸序列在 378 aa (DJTPS16)至 844 aa (DJTPS19)之间;分子量在 44.34 kDa (DJTPS16)至 96.92 kDa (DJTPS19)之间, 平均分子量为65.89 kDa;等电点在4.85 (DJTPS27, DJTPS28)至 6.70 (DJTPS11)之间,平均等电点 为 5.50,均是酸性蛋白质(pI<7);不稳定系数在 30.50 (DJTPS14)至 54.82 (DJTPS17)之间,平均 不稳定系数为 43.53,其中 DJTPS14 等 10 个 TPS 蛋白不稳定系数小于 40,为稳定蛋白质,DJTPS17 等 22 个 TPS 蛋白不稳定系数大于 40,为不稳 定蛋白质;亲水性在-0.541 (DJTPS28)至-0.155 (DJTPS23)之间,均为亲水性蛋白;信号肽预测 分析结果显示只有 DJTPS11 存在信号肽。亚细 胞定位预测显示,DJTPS11 定位于线粒体, 3567

DJTPS20和 DJTPS25定位于细胞膜,DJTPS04、 DJTPS26和 DJTPS29定位于细胞核,其余的 TPS 基因家族成员编码的蛋白质定位于细胞质中。

2.2 DJTPS 家族内部复杂的蛋白互作关系 双瓣茉莉 TPS 家族蛋白互作分析的结果显示,在 32 个 DJTPS 蛋白中 DJTPS08、
DJTPS10-12、DJTPS18-20 和 DJTPS30 存在互作关系,DJTPS04、DJTPS09、DJTPS13-16 和
DJTPS29 存在互作关系,蛋白 DJTPS01-02、
DJTPS05、DJTPS07、DJTPS26 和 DJTPS27 存在
互作关系,其余 11 个 DJTPS 蛋白与其他 TPS 蛋 白不存在互作关系(图 1)。此外共预测到 5 个非 DJTPS 家族蛋白与 DJTPS 家族蛋白之间存在着复 杂的互作关系,它们的蛋白 ID 及功能注释分别为 GWHPBFHJ00436 和 GWHPBFHJ018505——香叶 基香叶基二磷酸还原酶(geranylgeranyl diphosphate reductase, GGPPR)、GWHPBFHJ014598——细 胞色素 P450 (cytochrome P450, CYP450),而 GWHPBFHJ018982 和 GWHPBFHJ020324—— 法尼基焦磷酸合酶(farnesyl diphosphate synthase, FPPS)与香叶基香叶基焦磷酸合酶(geranylgeranyl diphosphate synthase, GGPPS)。互作网络分析揭

图 1 DJTPS 家族蛋白互作分析网络图

Figure 1 Network diagram for protein interaction analysis of the DJTPS family.

示了这 5 个蛋白很可能作为潜在的枢纽蛋白, 它们在 DJTPS 蛋白之间形成一个复杂的互作 网络。

2.3 DJTPS 家族的系统进化分析与亚家族 分类

利用拟南芥和双瓣茉莉 TPS 家族蛋白序列

构建系统发育树。参考拟南芥的 TPS 亚家族的 分类,并根据与拟南芥 TPS 蛋白的聚类情况, 将 DJTPS 家族分为 TPS-a、TPS-b、TPS-c、 TPS-e/f 和 TPS-g 共 5 个亚家族(图 2),成员个 数分别为 12、9、4、4 和 3 个,成员的亚家族 分类和位置信息见表 3。

图 2 双瓣茉莉和拟南芥的 TPS 家族蛋白的系统进化分析

Figure 2 Phylogenetic analysis of TPS family proteins from *Jasminum sambac* var. *Fuzhou bifoliatum* and *Arabidopsis thaliana*.

窗: 010-64807509

	Subtaining classification and loc		of the DJ115 failing		
Gene ID	Subfamily classification	Chromosome	Starting position	Ending position	
DJTPS01	TPS-b	Chr01	38 329 386	38 332 344	
DJTPS02	TPS-b	Chr01	38 350 051	38 359 664	
DJTPS03	TPS-b	Chr01	41 432 806	41 436 152	
DJTPS04	TPS-g	Chr04	8 180 199	8 183 566	
DJTPS05	TPS-b	Chr05	3 266 403	3 269 337	
DJTPS06	TPS-b	Chr05	3 282 699	3 285 237	
DJTPS07	TPS-b	Chr05	3 304 762	3 309 201	
DJTPS08	TPS-c	Chr08	15 038 418	15 043 839	
DJTPS09	TPS-a	Chr09	2 216 869	2 219 760	
DJTPS10	TPS-e/f	Chr09	2 340 296	2 345 581	
DJTPS11	TPS-c	Chr10	1 980 548	1 989 278	
DJTPS12	TPS-c	Chr10	2 050 614	2 058 536	
DJTPS13	TPS-a	Chr10	10 012 811	10 018 121	
DJTPS14	TPS-a	Chr10	10 116 220	10 119 996	
DJTPS15	TPS-a	Chr10	10 179 120	10 183 189	
DJTPS16	TPS-a	Chr10	10 360 875	10 365 127	
DJTPS17	TPS-g	Chr11	15 145 594	15 150 597	
DJTPS18	TPS-e/f	Chr11	20 255 674	20 268 253	
DJTPS19	TPS-e/f	Chr11	20 300 651	20 305 889	
DJTPS20	TPS-e/f	Chr11	23 431 506	23 435 963	
DJTPS21	TPS-a	Chr11	23 488 878	23 492 554	
DJTPS22	TPS-a	Chr11	27 071 781	27 074 202	
DJTPS23	TPS-a	Chr11	27 092 778	27 097 533	
DJTPS24	TPS-a	Chr11	27 159 118	27 162 219	
DJTPS25	TPS-a	Chr11	27 230 641	27 233 738	
DJTPS26	TPS-b	Chr11	30 488 715	30 497 116	
DJTPS27	TPS-b	Chr11	30 509 894	30 512 721	
DJTPS28	TPS-b	Chr11	30 530 196	30 535 623	
DJTPS29	TPS-g	Chr11	30 540 274	30 543 341	
DJTPS30	TPS-c	Chr12	10 708 951	10 713 696	
DJTPS31	TPS-a	Chr13	27 762 364	27 765 211	
DJTPS32	TPS-a	Chr13	27 807 958	27 810 417	

表 3 DJTPS 家族的亚家族分类及位置信息

Table 3 Subfamily classification and location information for the DITPS family

2.4 纯化选择可能在 DJTPS 基因家族进化 中占主导作用

染色体定位结果显示, 32个 TPS 基因不均 匀且成簇地分布在 9 条染色体上(图 3), 其中 11 号染色体上 TPS 基因分布最多,有 13 个 (DJTPS17-DJTPS29), 4、8 和 12 号染色体都只 分布1个TPS基因(分别为DJTPS04、DJTPS08 和 DJTPS30), 而 2、3、6 和 7 号染色体上没有 TPS 基因的分布。

根据双瓣茉莉种内共线关系结果发现共有 9对 TPS 基因对(16个 TPS 基因)来源于串联复 制事件(图 3), 来自 TPS-a、TPS-b 和 TPS-e/f 亚家族; 而 DJTPS08 和 DJTPS10 基因对来源于 片段复制事件(图 4A)。因此,本研究共发现双 瓣茉莉种内 TPS 基因家族 10 组复制事件, 共涉 及18个基因,占全部 TPS 基因的 56.25%,这些 复制事件使得 DJTPS 家族成员的数目增加。双 瓣茉莉与单瓣茉莉、虎头茉莉、桂花、丁香、

3571

Figure 3 Chromosomal localization of the DJTPS family. Genes with tandem clusters are marked in red.

Figure 4 Co-collinearity analysis of DJTPS family. A: Intraspecific co-collinearity analysis of DJTPS family of *Jasminum sambac* var. *Fuzhou bifoliatum*. Gene pairs with segmental duplications (SDs) are indicated by red lines. B: Co-collinearity analysis of *TPS* genes of *Jasminum sambac* var. *Fuzhou bifoliatum* with *Jasminum sambac* var. *unifoliatum*, *Jasminum sambac* var. *trifoliatum*, *Osmanthus fragrans* cultivar *Liuyejingui*, *Syringa oblata*, *Arabidopsis thaliana*, and *Oryza sativa*. Grey lines in the background indicate the collinear blocks with two genomes, and red lines highlight the syntenic *TPS* gene pairs.

http://journals.im.ac.cn/cjbcn

拟南芥和水稻之间的共线性分析表明,分别有24、21、14、11、3和0个同源基因对(图4B)。

根据 TBtools 计算的双瓣茉莉 TPS 基因家 族种内各个重复基因对 Ka/Ks 值, Ka 值的变化范 围为 0.04-0.75, Ks 值的变化范围为 0.07-1.19, Ka/Ks 值的变化范围为 0.20-1.05 (表 4)。除了 DJTPS27-DJTPS28 这一基因对的 Ka/Ks 值大于 1,其余均小于1。双瓣茉莉与其他物种之间基 因对的 Ka/Ks 值计算结果显示,只有 3 个基因 对(DJTPS06-SJ12531.1、DJTPS11-SJ25241.1 和 DJTPS13-SJ25854.1)的 Ka/Ks 值大于1,其余基 因对 Ka/Ks 值均小于1(表 4)。

2.5 DJTPS 家族基因结构、保守基序与顺 式作用元件的统一性和多样性

为了研究双瓣茉莉 TPS 家族系统进化关系 和结构多样性,本研究构建了双瓣茉莉 TPS 家 族的系统发育树(图 5A)。双瓣茉莉 TPS 基因家 族成员的基因结构比较结果如图 5B 所示,成员 的外显子数目在 5-15 个之间,其中外显子数目 最少的为 *DJTPS27*,最多的为 *DJTPS12*;同时 还发现 32 个成员中只有 5 个基因(*DJTPS03*、 *DJTPS04*、*DJTPS07*、*DJTPS17*和 *DJTPS20*)含 有非编码区域(non-coding regions, UTR)。TPS-a 亚家族中 10 个成员包含 7 个外显子,其余为 *DJTPS13*(6个)和 *DJTPS15*(8个);TPS-b 亚家 族的外显子数目为 5-8个;TPS-c 亚家族的外显 子数目为 12-15 个;TPS-e/f 亚家族的外显子数 目为 10-14 个;TPS-g 亚家族均含 7 个外显子。

对 DJTPS 家族的启动子序列进行预测并 得到 3 220 个顺式作用元件,共有 40 种元件, 包括环境胁迫、激素响应、植物生长发育、光 响应、启动子基础功能等相关调控元件,选择 其中的激素响应、光响应和环境胁迫相关的顺 式作用元件进行可视化(图 5C)。其中数量最多 的是核心启动子元件 TATA-box (1 677 个),其次 是启动子和增强子中常见的顺式作用元件 CAAT-box (647个), 二者均为启动子基础元件。 与光响应相关的元件总共预测到 422 个。在激 素响应类的元件中共预测到 108 个 MeJA 响应 元件,除 DJTPS02、DJTPS12、DJTPS13、 DJTPS25 和 DJTPS27 外, DJTPS 家族成员的启 动子区域均包含2-10个此类元件(包含正负链), 其中 DJTPS03 和 DJTPS18 数目最多(10个)。此外, 还预测到 94 个与脱落酸响应相关元件, 28 个 DJTPS 基因的启动子含有这些元件; 23 个生长 素响应相关的元件在 16 个 DJTPS 基因中被预 测到;以及15个赤霉素相关的响应元件存在于 12个 DJTPS 基因中。这些发现表明双瓣茉莉的 TPS 基因家族可能受到多种激素的调控, 且很 可能极易受 MeJA 调控。在环境胁迫类元件分 析中, 预测到 70 个厌氧诱导相关、19 个低温 胁迫相关、10个与防御和应激相关、7个缺氧 特异性诱导的增强元件以及 2 个损伤响应元 件。这一结果表明, 双瓣茉莉 TPS 基因家族在 其逆境胁迫响应中可能扮演关键角色。除了上 述 TPS 基因家族中常见的几大类元件外,还预 测到13个水杨酸响应、6个参与昼夜节律、6个 参与胚乳表达和1个细胞周期调节等特定生物 过程的顺式作用元件。综上, 双瓣茉莉 TPS 基 因家族可能在多种代谢通路调控中发挥功能。

DJTPS 家族的保守基序结果显示(图 6A),家 族中的蛋白除了 DJTPS21 以外均含有 motif 3, 除了 DJTPS13 和 DJTPS27 以外均含有 motif 2。 这表明 motif 2 和 motif 3 在双瓣茉莉 TPS 家族 中较为保守且分布较广,可能发挥着十分重要 的作用。同一亚家族成员保守基序的种类、个 数和顺序有较强的相似性,说明同一亚家族中 蛋白功能具有一定保守性。在某些亚家族中存 在着特异性的 motif,例如,motif 7、motif 15 和 motif 20 都只存在于 TPS-a、TPS-b 和 TPS-g

表 4 DJTPS 家族共线基因对的 Ka/Ks 值(NaN 表示该值无法计算)

Table 4 Ka/Ks values for DJTPS family co-linear gene pairs (NaN indicates that the value cannot be calculated)

Gene pair	Ka	Ks	Ka/Ks	Gene pair	Ka	Ks	Ka/Ks
DJTPS01-DJTPS02	0.07	0.24	0.28	DJTPS12-HT24276.1	0.01	0.01	0.73
DJTPS06-DJTPS07	0.24	1.19	0.20	DJTPS13-HT24888.1	0.01	0.03	0.46
DJTPS08-DJTPS10	0.75	3.17	0.24	DJTPS17-HT26761.1	0.00	0.02	0.15
DJTPS13-DJTPS14	0.05	0.16	0.29	DJTPS18-HT27070.1	0.01	0.03	0.41
DJTPS14-DJTPS15	0.07	0.25	0.28	DJTPS20-HT27295.1	0.00	0.01	0.15
DJTPS18-DJTPS19	0.09	0.31	0.29	DJTPS21-HT27298.1	0.04	0.07	0.62
DJTPS23-DJTPS24	0.04	0.07	0.61	DJTPS22-HT27660.1	0.24	0.88	0.27
DJTPS24-DJTPS25	0.12	0.29	0.40	DJTPS23-HT27661.1	0.19	0.48	0.39
DJTPS27-DJTPS28	0.09	0.08	1.05	DJTPS26-HT28021.1	0.00	0.00	NaN
DJTPS31-DJTPS32	0.13	0.28	0.47	DJTPS29-HT09801.1	0.34	1.41	0.24
DJTPS01-SJ02341.1	0.01	0.03	0.26	DJTPS29-HT28026.1	0.00	0.01	0.84
DJTPS05-SJ12556.1	0.08	0.28	0.29	DJTPS30-HT29579.1	0.01	0.02	0.38
DJTPS05-SJ12529.1	0.00	0.02	0.18	DJTPS31-HT31951.1	0.00	0.01	0.28
DJTPS06-SJ12531.1	0.01	0.01	1.13	DJTPS01-LYG008024	0.12	0.43	0.28
DJTPS08-SJ23017.1	0.37	1.38	0.27	DJTPS01-LYG012492	0.16	0.69	0.23
DJTPS08-SJ21711.1	0.00	0.01	0.27	DJTPS05-LYG016911	0.14	0.63	0.22
DJTPS09-SJ23009.1	0.01	0.02	0.23	DJTPS08-LYG033200	0.26	1.00	0.26
DJTPS10-SJ23018.1	0.02	0.03	0.72	DJTPS10-LYG004882	0.75	3.39	0.22
DJTPS11-SJ25241.1	0.00	0.00	1.01	DJTPS11-LYG018429	0.11	0.48	0.23
DJTPS11-SJ25161.1	0.01	0.01	0.58	DJTPS11-LYG038478	0.09	0.58	0.15
DJTPS12-SJ25251.1	0.03	0.05	0.64	DJTPS18-LYG003821	0.17	0.58	0.30
DJTPS12-SJ25172.1	0.01	0.02	0.76	DJTPS18-LYG036818	0.19	0.55	0.34
DJTPS13-SJ25854.1	0.02	0.01	1.30	DJTPS23-LYG003352	0.24	0.84	0.29
DJTPS17-SJ27737.1	0.00	0.02	0.10	DJTPS26-LYG036769	0.15	0.61	0.25
DJTPS18-SJ28041.1	0.01	0.03	0.52	DJTPS29-LYG002894	0.30	1.11	0.27
DJTPS20-SJ28276.1	0.00	0.02	0.09	DJTPS29-LYG003764	0.13	0.62	0.21
DJTPS21-SJ28280.1	0.04	0.06	0.68	DJTPS30-LYG035592	0.16	0.44	0.36
DJTPS22-SJ28637.1	0.01	0.03	0.38	DJTPS01-Ob0209030.1	0.13	0.44	0.31
DJTPS23-SJ28639.1	0.03	0.03	0.94	DJTPS05-Ob0232411.1	0.20	0.85	0.24
DJTPS26-SJ28982.1	0.02	0.04	0.55	DJTPS08-Ob0242022.1	0.74	NaN	NaN
DJTPS29-SJ28984.1	0.00	0.01	0.47	DJTPS10-Ob0206565.1	0.72	NaN	NaN
DJTPS29-SJ10119.1	0.34	1.46	0.23	DJTPS11-Ob0247964.1	0.32	0.87	0.36
DJTPS30-SJ30533.1	0.01	0.03	0.16	DJTPS11-Ob0251093.1	0.10	0.52	0.19
DJTPS31-SJ32938.1	0.00	0.01	0.14	DJTPS18-Ob0205252.1	0.19	0.62	0.31
DJTPS01-HT02259.1	0.00	0.01	0.53	DJTPS18-Ob0252959.1	0.18	0.56	0.31
DJTPS03-HT28020.1	0.59	NaN	NaN	DJTPS22-Ob0204095.1	0.21	0.65	0.32
DJTPS05-HT12109.1	0.07	0.25	0.27	DJTPS26-Ob0252875.1	0.15	0.59	0.26
DJTPS08-HT20892.1	0.01	0.01	0.67	DJTPS29-Ob0200283.1	0.30	1.20	0.25
DJTPS09-HT22136.1	0.00	0.00	NaN	DJTPS11-AT4G02780.1	0.36	NaN	NaN
DJTPS10-HT20892.1	0.75	3.45	0.22	DJTPS18-AT1G61120.1	0.44	2.19	0.20
DJTPS10-HT22147.1	0.00	0.00	NaN	DJTPS29-AT1G61680.1	0.45	2.46	0.18
DJTPS11-HT24265.1	0.01	0.01	0.58				

http://journals.im.ac.cn/cjbcn

图 5 DJTPS 家族系统发育树(A)、基因结构(B)和顺式作用元件(C)分析 Figure 5 Phylogenetic tree (A), gene structure (B) and *cis*-element (C) analysis of DJTPS family.

3577

图 6 DJTPS 家族保守基序分析

Figure 6 Conserved motif analysis of DJTPS family.

中, motif 10、motif 11 和 motif 16 均只存在于 TPS-c 和 TPS-e/f 中, motif 19 只存在于 TPS-e/f 中, motif 9 和 motif 12 均只存在于 TPS-a 中, 而 TPS-c 中不存在 motif 6。20 个 motif 中最为 显著的为 motif 1 (P-value 为 5.61e-81), 其包含 了I类 TPS 蛋白 C 端保守结构域中的 DDXXD 活性位点基序。N 端保守结构域中的 RRX8W 活性位点基序可在 motif 12 中找到, 而 NSE/DTE 基序存在于 motif 19 中(图 6B)。分别 对 RRX8W、DDXXD/DXDD、NSE/DTE 以及 RXR 保守基序的结构进一步解析,结果如图 6C 所示,不同的基序在各个亚家族中的保守程度 有明显差异, RRX8W 基序在 TPS-a 和 TPS-b 亚家族部分成员中是保守的。DDXXD 和 NSE/DTE 基序在除了 TPS-c 以外的亚家族中都 十分保守。TPS-c 亚家族作为II类 TPSs, 含有 DXDD 基序。而 RXR 基序只在 TPS-a 和 TPS-b 亚家族中是保守的。以上结果表明 TPS 蛋白不 同亚家族的功能多样性,同时进一步验证了前 期亚家族分类的准确性。

2.6 DJTPS 家族在不同花发育阶段及组织的表达模式分析

基于转录组数据分析双瓣茉莉 TPS 基因在 不同花发育阶段(S1-S6)、根、茎和叶中的表达 模式(图 7)。表达量高低根据 FPKM 值大小确 定,FPKM<1 表示基因不表达,1≤FPKM<10 为 低表达,10≤FPKM<100 为高表达,100≤FPKM <1 000 为超高表达,FPKM≥1 000 为极高表达。 结果显示,TPS 基因在所有检测的组织中均有 表达。值得注意的是,不同 TPS 基因在花发育 前期(S1-S4)与中后期(S5,S6)呈现不同的表达 趋势。例如,DJTPS13、DJTPS16、DJTPS17 和 DJTPS18 这 4 个基因在花发育前期表达水平 高于中后期。相反,DJTPS01、DJTPS03、 DJTPS07、DJTPS19、DJTPS23、DJTPS24 和 DJTPS29 等基因在花发育的中后期表达量显著 升高,尤其是 *DJTPS07* 和 *DJTPS24* 在 S5 阶段 FPKM 值超过了 10 000,表明它们在此时期活 跃程度特别高。

本研究还发现同一 TPS 基因在不同组织中 差异表达,不同 TPS 亚家族成员在这些组织中 也显示出不同的表达模式,揭示了它们在特 定萜类物质合成途径中的功能分化^[13](图 7)。 TPS-a 亚家族成员主要参与倍半萜的生物合成, 有3个成员在根和茎中高表达,有2个成员在 花的 S5 和 S6 阶段有着很高的表达,其余 7 个 成员在各个组织中低表达或不表达。例如, DJTPS14和 DJTPS31分别在根和茎中高表达, DJTPS09 在根和茎中均高表达, DJTPS23 和 DJTPS24 在花的 S5 或 S6 中高表达、超高表达 或极高表达,表明这些基因可能在根、茎或开 花后期的倍半萜生物合成中发挥重要作用,同 时该亚家族可能在叶的倍半萜合成中发挥的作 用较弱。TPS-b 亚家族成员主要参与环状单萜 的生物合成,其中1个成员(DJTPS06)在根中超 高表达,1个成员(DJTPS03)在茎中高表达,2个 成员(DJTPS03 和 DJTPS07)在花的 S5 和 S6 阶 段达到超高及以上表达量,提示这4个基因在 根、茎或开花后期的环状单萜合成中扮演核心 角色,该亚家族可能在叶的环状单萜合成中所 起的作用较小。TPS-c和 TPS-e/f亚家族成员主 要承担双萜生物合成的角色,除了 DJTPS18 在 早期花的 S2 和 S3 阶段高表达, DJTPS19 在花 的 S5 和 S6 阶段高表达以外,其余成员在各个 组织中低表达或不表达,表明这两个亚家族可 能只有部分成员参与花中双萜合成的过程。 TPS-g 亚家族成员主要负责非环状萜类的生物 合成, 有趣的是, 有1个成员(DJTPS17)在各个 组织中均有较高的表达量,其在根、叶和花的 S1-S3 中超高表达,在茎中高表达,表明该基 因在各个组织中可能在非环状萜类合成途径中 发挥了重要作用。

3579

图 7 DJTPS 家族在不同组织中的表达模式分析

Figure 7 Expression pattern analysis of DJTPS family in different tissues.

此外还发现多个基因表现出组织特异性表达。例如, DJTPS05和 DJTPS08在根中特异性表达; DJTPS26在茎中特异性表达; DJTPS15 仅在叶中检测到表达; 9个基因(DJTPS02、 DJTPS04、DJTPS11、DJTPS13、DJTPS18、 DJTPS19、DJTPS22、DJTPS23和 DJTPS24)在 花中特异性表达。

2.7 DJTPS 家族部分成员能够响应 MeJA 处理而上调表达

本研究还比较分析了 TPS 基因在一定浓度 MeJA 处理前后表达模式的差异。在去除所有采 样时间点均未表达的基因后,双瓣茉莉 13 个 TPS 基因在 MeJA 处理前后不同时间点的表达 模式如图 8 所示。聚类结果显示这 13 个基因可

划分为 2 个显著不同的表达模式类群(G1 和 G2)。其中,5个基因(DJTPS02、DJTPS07、 DJTPS20、DJTPS23 和 DJTPS24)展现出大致相 似的表达趋势,属于 G1。除了 DJTPS20 外, 这些基因在开花前期(0-2 h)的表达量高于开花 后期(5-6 h)。另一组包含 8 个基因的聚类(G2), 在开花后期(4-6 h)显示出较开花前期(0-2 h)更 高的表达水平。分析对照组(CK)中 TPS 基因在 开花进程中的表达模式,结果显示大多数有表 达的基因(FPKM≥1)在开花的最初2h内表达水 平普遍上升。G2 中除 DJTPS22 外,其余基因 表达量均在 2-6 h 内整体大致呈现上升的趋势。 相反,G1中的DJTPS02、DJTPS07、DJTPS23 和 DJTPS24 在 2 h 时表达量达到最高, 随后表 达量在 2-6 h 内持续下降。通过对 MeJA 处理 和对照组(CK)的比较分析,发现共有 10 个 DJTPS 基因(DJTPS03、DJTPS04、DJTPS07、 DJTPS19 DJTPS20 DJTPS21 DJTPS23 DJTPS24、DJTPS25 和 DJTPS29)在 MeJA 处理 5h后表达水平升高。同时,在MeJA处理6h 后,有4个 DJTPS 基因(DJTPS01、DJTPS02、 DJTPS25和 DJTPS29)表达也上调。值得注意的 是,DJTPS25和 DJTPS29在 MeJA 处理5h和 6h后均表达上调。相比之下,在处理2h和4h 后,大多数基因的表达水平并未出现显著上调, 这表明 MeJA 可能在双瓣茉莉开花中后期发挥 作用。在开花中后期,多个 TPS 基因响应 MeJA 处理而上调表达,这一过程很可能通过促进萜 烯类代谢物的生成来提升花香品质。

2.8 qRT-PCR 验证转录组数据的准确性

为了进一步验证转录组数据的可靠性,在 上述基因中挑选4个基因(*DJTPS03、DJTPS19、 DJTPS23*和*DJTPS24*)进行qRT-PCR实验验证。 结果显示,*DJTPS19*的表达量在开花的进程中 总体呈现上升趋势(图9),而*DJTPS03、DJTPS23* 和*DJTPS24*表达量则先上升后下降,这与 2.6 中转录组数据的趋势大致相符。在 MeJA 处理 实验中,与对照组相比,*DJTPS03*在 MeJA 处 理 5 h 后其表达量显著增加,与转录组分析结 果一致,表明*DJTPS03*能够响应 MeJA 处理并

3581

图 9 DJTPS03、DJTPS19、DJTPS23 和 DJTPS24 在 MeJA 处理下表达模式的 qRT-PCR 验证 使用 显著性差异字母标记法,标有同一字母的数据表示差异不显著

Figure 9 qRT-PCR validation of the expression patterns of *DJTPS03*, *DJTPS19*, *DJTPS23* and *DJTPS24* under MeJA treatment. Using the significant difference letter labeling method, data labeled with the same letter indicate a non-significant difference.

上调,且在 5 h 时效果最为显著;尽管 DJTPS19、 DJTPS23 和 DJTPS24 在 MeJA 处理后未显示出 显著的表达上调,但它们在 5 h 处理组的表达 量均高于对照组。这些结果表明 MeJA 对这 4 个 基因均有一定的促进作用,且它们的表达模式 与转录组数据基本吻合,进一步验证了转录组 数据的可靠性。

3 讨论与结论

萜烯类合成酶 TPS 基因家族广泛存在于各 种植物中,参与花香组分萜类化合物的合成、 植物的生长发育、生物和非生物胁迫响应。目 前仅有基于转录组数据进行茉莉 TPS 基因家族 鉴定的报道,共鉴定出 8 个 TPS 基因^[29],而基 于福州双瓣茉莉的全基因组序列进行 TPS 基因 家族鉴定报道较少。本研究采用生物信息学的 分析方法对福州双瓣茉莉 TPS 基因家族进行鉴 定和特征分析。经过序列比对、结构域比对和 二次结构域验证最后成功鉴定出 32 个 DJTPS 完整基因。不同物种 TPS 基因家族成员的数量 存在差异,如香豌豆(Lathyrus odoratus) 8个^[40], 铁皮石斛(Dendrobium officinale) 32 个^[41],桃 (Prunus persica) 40个^[42], 欧薄荷 63个^[10], 紫 苏(Perilla frutescens) 118 个^[43]。造成物种间 TPS 基因家族成员数目差异的原因可能是在进 化过程中发生了不同程度的基因复制或丢失事 件。如本研究中双瓣茉莉共线性分析表明 16 个 TPS 基因参与串联复制事件, 2 个基因参与片段 复制事件:割手密有 12 个 TPS 基因参与片段复 制事件^[5]:紫苏中共有 26 对旁系同源基因^[43]。 根据系统进化分析结果显示 DJTPS 家族被分为 5 个亚家族,即 TPS-a、TPS-b、TPS-c、TPS-e/f

和TPS-g(图2),与其他物种的分类方式一致^[7,43]。 不同物种的亚家族成员数目存在差异,例如,本 研究中双瓣茉莉分别含有 12、9、4、4 和 3 个亚 家族成员, 而绞股蓝(Gvnostemma pentaphyllum) 分别含有 2、15、1、1 和 5 个亚家族成员^[7], 欧薄荷分别含有 13、22、5、19 和 4 个亚家族 成员^[10]。该差异可能是因为物种分泌的主要代 谢物不同。香杨(Populus koreana) TPS-a/b 成员在 很大程度上促进了大量倍半萜和单萜的合成^[44]。 因此推测双瓣茉莉所产生的萜类化合物中也含 有较大比例的倍半萜和单萜,这与前人的研究 结果一致^[31]。蛋白互作结果表明 GGPPR、 CYP450、GGPPS、FPPS 与 DJTPS 蛋白之间存 在着复杂的相互作用关系(图 1),法尼基焦磷酸 (farnesyl diphosphate, FPP)与香叶基香叶基焦磷酸 (geranylgeranyl diphosphate, GGPP)是萜类物质合 成途径的前体物质,而后经 TPSs 催化后生成 萜烯类化合物^[45]。CYP450 是一种单加氧催化蛋 白酶,参与萜类化合物的生物合成^[46]。薰衣草 (Lavandula sp.)中单萜和倍半萜通常被 CYP450 修 饰为羟基化产物,最终生成酯类^[47];谷子(Setaria italica)中的 CYP450 能与 SiTPS8 形成基因簇, 直接催化 SiTPS8 的产物最终生成萜类物质^[48]。 因此这些与 DJTPS 蛋白有着复杂互作关系的蛋 白在双瓣茉莉花香组分合成中也是十分重要 的。种间共线性结果与物种间亲缘关系相吻合 (图 4B), 单子叶植物水稻与双子叶植物双瓣茉 莉的亲缘关系最远,没有同源基因对; 拟南芥 在双子叶物种中与双瓣茉莉的亲缘关系最远, 同源基因对最少;其余4个物种均为木犀科植 物,与双瓣茉莉有一定数量的同源基因对,推 测双瓣茉莉和单瓣茉莉的亲缘关系最近, 虎头 茉莉次之。DJTPS11、DJTPS18 和 DJTPS29 这 3个基因与5个物种(水稻除外)之间都形成了基 因对, 这表明这3个基因具有较高的保守性,

在这些植物物种分化之前可能就已经存在并 且没有丢失,此外共有18个*DJTPS*基因与单瓣 茉莉、虎头茉莉基因均具有共线性关系,表明 这些基因在3个品种的茉莉分化之前就已经存 在,在茉莉花生命活动中扮演不可或缺的角 色。*Ka/Ks*计算结果(表4)表明大部分双瓣茉莉 TPS 基因家族的重复基因对在进化过程中受 到了纯化选择,纯化选择在*TPS*基因进化中 占主导作用。

基因结构(图 5B)和保守基序(图 6A)分析结 果表明同一亚家族的 DJTPS 基因的结构和蛋白 保守基序有一定的保守性,与其他物种的研究 结果一致^[49],大多数聚类在一组的 TPS 基因有 相似的外显子-内含子结构和 motif。不同亚家 族的蛋白含有特异的 motif, 如本研究中 motif 9、 motif 12 和 motif 19 等基序,表明 DJTPS 不同亚 家族成员可能参与特有的生理调节途径。对 32 个 TPS 蛋白的保守基序结构进行解析(图 6C),发现 同一基序只在特定的某些亚家族中保守。如本 研究中 RRX8W 基序仅存在于 TPS-a 和 TPS-b 亚家族中。在欧薄荷的研究中发现, RRX8W 基序只在 TPS-b 亚家族中保守, 其在 TPS-a 亚家族中第二个精氨酸是不保守的^[10],表明 不同物种之间的保守基序存在差异。RRX8W基 序参与环化异构反应的起始过程^[50], 双瓣茉莉 倍半萜和环状单萜合成过程中的异构化环化反 应可能与该基序有关。倍半萜合酶中有一个对 酶催化中心的"开启"与"关闭"起着至关重要的 部位,该部位由 DDXXD、NSE/DTE 和部分底 物磷酸复合物组成^[51],本研究发现 DDXXD 和 NSE/DTE 在 TPS-a、TPS-b、TPS-e/f 和 TPS-g 中都是十分保守的, 推测大部分萜类合酶可能 都含有控制酶催化反应的关键部位。顺式作用 元件分析结果显示(图 5C),除了启动子等常规 的基础元件外,数目最多的是光响应的元件,

表明 DJTPS 家族可能受光的调控;在逆境胁迫 响应类的元件中,数量最多的是厌氧诱导响应 元件;在激素响应类元件中,响应 MeJA 元件的 数目最多,其次是脱落酸响应元件,这与前人的 分析结果趋于一致,例如在荆芥(Schizonepeta tenuifolia) TPS 家族植物激素响应元件中同样 预测到最多的响应脱落酸和 MeJA 元件^[49],甘 蔗割手密 TPS 家族大部分成员都含有 MeJA 响 应元件,这表明 TPS 基因很可能会响应 MeJA 等激素胁迫^[5]。

根、茎、叶和 6 个不同时期花的表达模式 分析结果表明 DJTPS 基因在不同组织中差异表 达(图 7),且部分 DJTPS 具有组织表达特性, 表明 DJTPS 家族具有多种生理功能,参与不同 组织器官的代谢过程。大部分有表达的 TPS 基 因在花中表现比较活跃,表达量高于根、茎和 叶,其中包括 6 个 TPS-a 和 4 个 TPS-b 亚家族 成员,这两个亚家族主要参与倍半萜和环状单 萜合成,推测这些基因与双瓣茉莉花产生含量 较多的萜类化合物中倍半萜和单萜相关,在铃 兰(Convallaria keiskei)中同样发现参与倍半萜 和单萜合成的 TPS 基因在花中的表达量高于根 和茎^[52]。

植物激素在协调与外部刺激相关的调节网络和信号转导通路中起着至关重要的作用, MeJA 是目前研究较为热门的植物激素,具有促花、增强抗逆性和调节植物香气等多种生理功能,近年来被广泛应用于农业生产中^[14]。猕猴桃(Actinidia chinensis)的果实和叶片在经过MeJA处理后萜烯类化合物含量增加^[53];MeJA增强了大多数茶树 CsTPS 基因的表达^[9]。本研究比较了MeJA处理双瓣茉莉前后表达模式的变化(图 8)。分析发现DJTPS05 等 20 个基因无论是在MeJA处理前还是处理后在开花各个阶段均不表达或低表达,这些基因可能在茉莉开 花过程中作用不大,且对 MeJA 的响应不明显。 DJTPS01 等 8 个基因在开花后期的表达量会高 于前期。茉莉花的香型随着开花过程由淡雅型 逐渐转变为浓郁型^[2],在不同花发育阶段,花 朵释放的挥发物质的种类和含量有显著的差 别, 推测这些基因在开花过程中对花香合成与 释放起到关键作用。此外,多数有表达的 DJTPS 基因在 MeJA 处理 5h 后(21:00)显示上调,处理 6 h 后(22:00)也有部分基因上调, 茉莉花的花蕾 通常是在当天 18:00-23:00 期间达到生理性成 熟,而 20:00 至次日 2:00 是开放吐香盛期^[31], 20:00-22:00 是吐香的最关键时期,这里涵盖了 我们取样点5h和6h,结果表明这些基因在花 朵全盛且吐香最关键时间能够积极响应外源 MeJA 的处理并上调表达。在5h时上调的10个 基因中分别有 4 个 TPS-a、2 个 TPS-b、2 个 TPS-e/f 和 2 个 TPS-g 亚家族成员, 推测 MeJA 对各类萜类化合物尤其是单萜和倍半萜的合成 都有一定的调控作用。在其他物种中也发现 MeJA 对单萜和倍半萜的释放有明显的促进作 用, 芳樟醇是花中常见的一类单萜化合物, qRT-PCR 分析结果显示橡胶树(Hevea brasiliensis) 树皮中的芳樟醇合酶基因 HbTPS20 在经过 MeJA 处理后表达量为对照组的 250 倍^[54];铁 皮石斛的转录因子基因 DobHLH4 能够被 MeJA 诱导而显著上调,而芳樟醇合酶基因 DoTPS10 的表达量与 DobHLH4 呈正相关,最终 DoTPS10 上调,增加了芳樟醇的释放量^[41]; MeJA 的处理 显著增加了假俭草(Eremochloa ophiuroides)多种单 萜和倍半萜化合物的排放^[55]。结合顺式作用元 件分析结果,在5h上调表达的 DJTPS 基因中 除了 DJTPS25 外均含有响应 MeJA 的元件,其 中 DJTPS03 含有 10 个该元件, 是 DJTPS 基因 家族中包含响应 MeJA 元件数目最多的基因之 一, qRT-PCR 结果显示 DJTPS03 在经 MeJA 处

理 5 h 后显著上调,未来可作为 DJTPS 家族响应 MeJA 的 靶标 基因。转录组数据显示 DJTPS04、DJTPS21与 DJTPS03的表达模式相似,在 MeJA 处理 5 h 后上调,且 DJTPS04和 DJTPS21均预测到 6 个响应 MeJA 元件,也有作为双瓣茉莉响应 MeJA 上调的关键 TPS 基因的潜质。

本研究全面鉴定了福州双瓣茉莉 TPS 基因 家族成员,并进行理化性质、亚细胞定位、系 统进化发育、共线性、基因结构、蛋白互作、 保守基序和顺式作用元件等生物信息学分析, 以及 DJTPS 基因在不同组织器官和响应 MeJA 的表达模式分析。最终在福州双瓣茉莉基因组 序列中鉴定出 32 个 DJTPS 基因, 共分为 5 个 亚家族(TPS-a、TPS-b、TPS-c、TPS-e/f和TPS-g), 同一亚家族的成员有相似的结构,在植物激素 响应元件中,响应 MeJA 的元件最多(108 个)。 转录组数据表明 DJTPS 在不同的组织中特异性 表达, MeJA 能够上调部分 DJTPS 基因的表达, 其中 DJTPS03、DJTPS04 和 DJTPS21 可能可以 作为双瓣茉莉 TPS 基因响应 MeJA 上调表达的 关键基因,为后续利用亚细胞定位、异源表达 或基因敲除/过表达等分子生物学实验进行功 能验证提供靶标基因。本研究初步探究了双瓣 茉莉萜烯类合成酶 TPS 基因响应 MeJA 的表达 谱动态变化,揭示了促进花香萜烯类化合物合 成的潜在候选基因,未来可联合代谢组和蛋白 组数据进一步探究双瓣茉莉响应 MeJA 促进花 香合成的分子机制,为进一步改善茉莉花香品 质提供理论依据。

REFERENCES

 王云. 茉莉花香成分测定及内源茉莉酸调控研究[D]. 扬州: 扬州大学硕士学位论文, 2022.
 WANG Y. Floral volatile compounds and regulation of endogenous JA in *Jasminum sambac*[D]. Yangzhou: Master's Thesis of Yangzhou University, 2022 (in Chinese).

- [2] 张芊. 双瓣茉莉开花过程中挥发性物质变化及花香 基因差异表达分析[D]. 福州: 福建农林大学硕士学 位论文, 2015.
 ZHANG Q. Studies on volatile substances and fragrance-related gene expression during flowering period in *Jasminum sambac*[D]. Fuzhou: Master's Thesis of Fujian Agriculture and Forestry University, 2015 (in Chinese).
- [3] 杨国霞,蒋宝鑫,何凡,吕思佳,李东宾,贾永红,朱平,谢晓鸿,吴月燕. 杜鹃花 TPS 基因家族鉴定及 与萜类物质代谢的关系分析[J]. 生物工程学报, 2022, 38(10): 3740-3756.
 YANG GX, JIANG BX, HE F, LÜ SJ, LI DB, JIA YH, ZHU P, XIE XH, WU YY. Identification of terpene synthase gene family members in *Rhododendron* and its relationship with terpenoid metabolism[J]. Chinese Journal of Biotechnology, 2022, 38(10): 3740-3756 (in Chinese).
 [4] FENG K, KAN, XX, VAN, YL, WANG, Y, SUN, N.
- [4] FENG K, KAN XY, YAN YJ, WANG Y, SUN N, YANG ZY, ZHAO SP, WU P, LI LJ. Identification and characterization of terpene synthase OjTPS1 involved in β-caryophyllene biosynthesis in *Oenanthe javanica* (Blume) DC[J]. Industrial Crops and Products, 2023, 192: 115998.
- [5] 林焕泰,张天杰,史梦婷,郭燕芳,高三基,王锦达. 割手密萜烯合成酶(TPS)基因家族分析及其在生物胁 迫下的表达分析[J]. 作物学报,2022,48(12): 3029-3044.
 LIN HT, ZHANG TJ, SHI MT, GUO YF, GAO SJ, WANG JD. Genome-wide analysis of terpene synthase (TPS) gene family and its expression under biological stress in Saccharum spontaneum[J]. Acta Agronomica Sinica, 2022, 48(12): 3029-3044 (in Chinese).
- [6] 庞强强,蔡兴来,孙晓东,张文,周曼.大白菜 TPS 基因家族鉴定及其在高温胁迫下的表达分析[J].分 子植物育种,2020,18(8):2452-2459.
 PANG QQ, CAI XL, SUN XD, ZHANG W, ZHOU M. Identification of TPS gene family in Chinese cabbage (Brassica campestris L.) and its expression under heat stress[J]. Molecular Plant Breeding, 2020, 18(8): 2452-2459 (in Chinese).
- [7] 零唯, 覃艳红, 黄鼎, 明如宏, 谭勇. 绞股蓝萜类合成酶(TPS)基因家族鉴定及其在非生物胁迫下的表达分析[J]. 中国中药杂志, 2023, 48(4): 930-938.
 LING W, QIN YH, HUANG D, MING RH, TAN Y. Identification of terpene synthase gene family in

Gynostemma pentaphyllum and expression pattern analysis under abiotic stresses[J]. China Journal of Chinese Materia Medica, 2023, 48(4): 930-938 (in Chinese).

- [8] JIA QD, BROWN R, KÖLLNER TG, FU JY, CHEN XL, WONG GKS, GERSHENZON J, PETERS RJ, CHEN F. Origin and early evolution of the plant terpene synthase family[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(15): e2100361119.
- [9] ZHOU HC, SHAMALA LF, YI XK, YAN Z, WEI S. Analysis of terpene synthase family genes in *Camellia sinensis* with an emphasis on abiotic stress conditions[J]. Scientific Reports, 2020, 10: 933.
- [10] CHEN ZQ, VINING KJ, QI XW, YU X, ZHENG Y, LIU ZQ, FANG HL, LI L, BAI Y, LIANG CY, LI WL, LANGE BM. Genome-wide analysis of terpene synthase gene family in *Mentha longifolia* and catalytic activity analysis of a single terpene synthase[J]. Genes, 2021, 12(4): 518.
- [11] GAO Y, HONZATKO RB, PETERS RJ. Terpenoid synthase structures: a so far incomplete view of complex catalysis[J]. Natural Product Reports, 2012, 29(10): 1153-1175.
- [12] PRISIC S, XU JJ, COATES RM, PETERS RJ. Probing the role of the DXDD motif in class II diterpene cyclases[J]. Chembiochem: a European Journal of Chemical Biology, 2007, 8(8): 869-874.
- [13] CHEN F, THOLL D, BOHLMANN J, PICHERSKY E. The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom[J]. The Plant Journal: for Cell and Molecular Biology, 2011, 66(1): 212-229.
- [14] 廖毓森,林少青,陈钦常,钟彩荣,曾瑜,方静平. 外源茉莉酸甲酯对植物香气影响的研究进展[J]. 福 建师范大学学报(自然科学版), 2023, 39(4): 46-56.
 LIAO YS, LIN SQ, CHEN QC, ZHONG CR, ZENG Y, FANG JP. Research progress on the effect of exogenous methyl jasmonate on plant aroma[J]. Journal of Fujian Normal University (Natural Science Edition), 2023, 39(4): 46-56 (in Chinese).
- [15] BERTINI L, PALAZZI L, PROIETTI S, POLLASTRI S, ARRIGONI G, POLVERINO de LAURETO P, CARUSO C. Proteomic analysis of MeJa-induced defense responses in rice against wounding[J]. International Journal of Molecular Sciences, 2019, 20(10): 2525.

- [16] MIN DD, LI FJ, ALI M, ZHANG XH, LIU YG. Application of methyl jasmonate to control disease of postharvest fruit and vegetables: a meta-analysis[J]. Postharvest Biology and Technology, 2024, 208: 112667.
- [17] 许铵颀,辛守鹏,侯旭东. 茉莉酸甲酯在鲜果生产中应用的研究进展[J]. 北方果树,2023(6):1-4.
 XU AQ, XIN SP, HOU XD. Research progress in application of methyl jasmonate in fresh fruit production[J]. Northern Fruits, 2023(6): 1-4 (in Chinese).
- [18] 吴琦,付字辰,闫子飞,王少杰,冷平生,胡增辉. 喷施茉莉酸甲酯对百合花香的影响[J]. 江苏农业科 学,2018,46(6):100-104.
 WU Q, FU YC, YAN ZF, WANG SJ, LENG PS, HU ZH. Effect of methyl jasmonate (MeJA) on floral scent of *Lilium "Siberia*"[J]. Jiangsu Agricultural Sciences, 2018, 46(6):100-104 (in Chinese).
- [19] 马海云,张忠林,霍静.外源施用茉莉酸甲酯对番茄 果实挥发性风味成分及含量的影响[J].食品科学, 2023: 1-14.
 MA HY, ZHANG ZL, HUO J. External application of appropriate concentration of methyl jasmonate could improve the volatile flavor components and content of tomato fruit[J]. Food Science, 2023: 1-14 (in Chinese).
- [20] 李蔚. 外源茉莉酸甲酯对'蛇龙珠'酿酒葡萄单萜化 合物和 β-葡萄糖苷酶的影响[D]. 兰州: 甘肃农业大 学硕士学位论文, 2017.
 LI W. Effects of exogenous methyl jasmonate on monoterpenes and β-glucosidase in cabernet gernischt grapes[D]. Lanzhou: Master's Thesis of Gansu
- Agricultural University, 2017 (in Chinese). [21] 洪雅萍, 谷梦雅, 高婷, 杨文文, 林宏政, 金珊, 王 鹏杰, 叶乃兴. 福州单瓣茉莉和双瓣茉莉不同器官 的广泛靶向代谢组学分析[J]. 食品科学, 2023, 44(8): 184-193. HONG YP, GU MY, GAO T, YANG WW, LIN HZ, JIN S, WANG PJ, YE NX. Widely targeted metabolomic analysis of different organs of single-and double-petal jasmine[J]. Food Science, 2023, 44(8): 184-193 (in Chinese).
- [22] 李先玉. 高品质茉莉花茶加工技术及品质影响关键 因素的研究现状[J]. 福建轻纺, 2019(3): 30-34.
 LI XY. Research status of processing technology and key factors affecting quality of high-quality jasmine tea[J]. The Light & Textile Industries of Fujian, 2019(3): 30-34 (in Chinese).
- [23] 安会敏, 欧行畅, 熊一帆, 张扬波, 李适, 黄建安. 茉莉花茶挥发性成分在窨制过程中的变化研究[J].

茶叶通讯, 2020, 47(1): 67-74.

AN HM, OU XC, XIONG YF, ZHANG YB, LI S, HUANG JA. Study on the changes of volatile components in jasmine tea during the scenting process[J]. Journal of Tea Communication, 2020, 47(1): 67-74 (in Chinese).

- [24] YU Y, LYU SH, CHEN D, LIN Y, CHEN JJ, CHEN GX, YE NX. Volatiles emitted at different flowering stages of *Jasminum sambac* and expression of genes related to α-farnesene biosynthesis[J]. Molecules, 2017, 22(4): 546.
- [25] 陈梅春,朱育菁,刘晓港,陈峥,刘波. 茉莉鲜花
 [Jasminum sambac (L.) aiton]香气成分研究[J]. 热带
 作物学报, 2017, 38(4): 747-751.
 CHEN MC, ZHU YJ, LIU XG, CHEN Z, LIU B.

Characteristic of the aroma compounds of *Jasminum* sambac (L.) aiton[J]. Chinese Journal of Tropical Crops, 2017, 38(4): 747-751 (in Chinese).

- [26] 俞滢,陈丹,孙君,吕恃衡,陈桂信,叶乃兴. 茉莉花萜类合成酶基因 JsTPS 的克隆及其表达分析[J]. 园艺学报,2016,43(2):356-364.
 YU Y, CHEN D, SUN J, LÜ SH, CHEN GX, YE NX. Cloning and expression analysis of terpene synthase gene from Jasminum sambac[J]. Acta Horticulturae Sinica, 2016, 43(2): 356-364 (in Chinese).
- [27] 熊青, 宋姣敏, 崔萌, 许颖妍, 俞滢, 叶乃兴, 陈桂 信. 茉莉花 JsPAL2 基因的克隆与表达分析[J]. 热带 作物学报, 2018, 39(7): 1359-1366.
 XIONG Q, SONG JM, CUI M, XU YY, YU Y, YE NX, CHEN GX. Cloning and expression analysis of JsPAL2 gene from Jasminum sambac[J]. Chinese Journal of Tropical Crops, 2018, 39(7): 1359-1366 (in Chinese).
- [28] 陈笛,陈雪津,郭永春,王鹏杰,岳川,陈桂信,叶乃兴. 茉莉花芳樟醇生物合成关键基因的克隆与表达分析[J].西北植物学报,2019,39(8):1344-1352.
 CHEN D, CHEN XJ, GUO YC, WANG PJ, YUE C, CHEN GX, YE NX. Cloning and expression analysis of *JsNEL/LINS* from *Jasminum sambac*[J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(8): 1344-1352 (in Chinese).
- [29] 洪雅萍,陈雪津,王鹏杰,谷梦雅,高婷,叶乃兴. 茉莉花萜类合成酶基因的转录组鉴定及响应外源激 素的表达研究[J]. 生物技术通报,2022,38(3):41-49.
 HONG YP, CHEN XJ, WANG PJ, GU MY, GAO T, YE NX. Transcriptome identification of terpenoid synthase genes in *Jasminum sambac* and their expressions responding to exogenous hormones[J]. Biotechnology Bulletin, 2022, 38(3): 41-49 (in Chinese).

- [30] WANG PJ, GU MY, YANG WW, HONG YP, JIANG MW, LIN HZ, LIAO ZY, CHEN S, JIN S, SHE WQ, YANG JF, ZHANG X, YE NX. High-resolution transcriptome and volatile assays provide insights into flower development and aroma formation in singleand double-petal jasmines (*Jasminum sambac*)[J]. Industrial Crops and Products, 2022, 189:115846.
- [31] 李鹤. 茉莉花开放过程香气成分动态变化研究[D]. 福州: 福建农林大学硕士学位论文, 2012.
 LI H. The research on the dynamic changes of aroma components in the open process of *Jasminum sambac*[D]. Fuzhou: Master's Thesis of Fujian Agriculture and Forestry University, 2012 (in Chinese).
- [32] POTTER SC, LUCIANI A, EDDY SR, PARK Y, LOPEZ R, FINN RD. HMMER web server: 2018 update[J]. Nucleic Acids Research, 2018, 46(W1): W200-W204.
- [33] GASTEIGER E, GATTIKER A, HOOGLAND C, IVANYI I, APPEL RD, BAIROCH A. ExPASy: the proteomics server for in-depth protein knowledge and analysis[J]. Nucleic Acids Research, 2003, 31(13): 3784-3788.
- [34] EDGAR RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput[J]. Nucleic Acids Research, 2004, 32(5): 1792-1797.
- [35] STAMATAKIS A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies[J]. Bioinformatics, 2014, 30(9): 1312-1313.
- [36] CHEN CJ, CHEN H, ZHANG Y, THOMAS HR, FRANK MH, HE YH, XIA R. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202.
- [37] WANG YP, TANG HB, DEBARRY JD, TAN X, LI JP, WANG XY, LEE TH, JIN HZ, MARLER B, GUO H, KISSINGER JC, PATERSON AH. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Research, 2012, 40(7): e49.
- [38] HURST LD. The Ka/Ks ratio: diagnosing the form of sequence evolution[J]. Trends in Genetics: TIG, 2002, 18(9): 486.
- [39] BAILEY TL, BODEN M, BUSKE FA, FRITH M, GRANT CE, CLEMENTI L, REN JY, LI WW, NOBLE WS. MEME SUITE: tools for motif discovery and searching[J]. Nucleic Acids Research, 2009, 37(Web Server issue): W202-W208.

- [40] BAO TT, SHADRACK K, YANG S, XUE XX, LI SY, WANG N, WANG QY, WANG L, GAO X, CRONK Q. Functional characterization of terpene synthases accounting for the volatilized-terpene heterogeneity in *Lathyrus odoratus* cultivar flowers[J]. Plant & Cell Physiology, 2020, 61(10): 1733-1749.
- [41] YU ZM, ZHAO CH, ZHANG GH, TEIXEIRA Da SILVA JA, DUAN J. Genome-wide identification and expression profile of *TPS* gene family in *Dendrobium* officinale and the role of *DoTPS10* in linalool biosynthesis[J]. International Journal of Molecular Sciences, 2020, 21(15): 5419.
- [42] LI XW, HU Y, SU MS, ZHANG MH, DU JH, ZHOU HJ, ZHANG XN, YE ZW. Genome-wide analysis of terpene synthase gene family to explore candidate genes related to disease resistance in *Prunus persica*[J]. Frontiers in Plant Science, 2022, 13: 1032838.
- [43] 杨仕梅. 紫苏 TPS 基因鉴定及功能分析[D]. 贵阳: 贵州大学硕士学位论文, 2020.
 YANG SM. Identification and functional analysis of *TPS* gene in *Perilla frutescens*[D]. Guiyang: Master's Thesis of Guizhou University, 2020 (in Chinese).
- [44] SHEN L, DING CJ, ZHANG WX, ZHANG TQ, LI ZH, ZHANG J, CHU YG, SU XH. The *Populus koreana* genome provides insights into the biosynthesis of plant aroma[J]. Industrial Crops and Products, 2023, 197: 116453.
- [45] 张长波,孙红霞, 巩中军,祝增荣. 植物萜类化合物的天然合成途径及其相关合酶[J]. 植物生理学通讯,2007,43(4):779-786.
 ZHANG CB, SUN HX, GONG ZJ, ZHU ZR. Plant terpenoid natural metabolism pathways and their synthases[J]. Plant Physiology Communications, 2007,43(4):779-786 (in Chinese).
- [46] MUNRO AW, McLEAN KJ, GRANT JL, MAKRIS TM. Structure and function of the cytochrome P450 peroxygenase enzymes[J]. Biochemical Society Transactions, 2018, 46(1): 183-196.
- [47] LI JR, WANG YM, DONG YM, ZHANG WY, WANG D, BAI HT, LI K, LI H, SHI L. The chromosome-based lavender genome provides new insights into Lamiaceae evolution and terpenoid biosynthesis[J]. Horticulture Research, 2021, 8: 53.
- [48] KARUNANITHI PS, BERRIOS DI, WANG S, DAVIS J, SHEN T, FIEHN O, MALOOF JN, ZERBE P. The foxtail millet (*Setaria italica*) terpene synthase gene

family[J]. The Plant Journal: for Cell and Molecular Biology, 2020, 103(2): 781-800.

- [49] 贾聪玲, 舒娟, 党静洁, 王雪, 吴啟南, 刘潺潺. 荆 芥萜类合成酶(TPS)基因家族鉴定与分析[J]. 中国中 药杂志, 2023, 48(22): 6039-6050.
 JIA CL, SHU J, DANG JJ, WANG X, WU QN, LIU CC. Identification and analysis of terpene synthase (TPS) gene family in Schizonepeta tenuifolia[J]. China Journal of Chinese Materia Medica, 2023, 48(22): 6039-6050 (in Chinese).
- [50] WILLIAMS DC, McGARVEY DJ, KATAHIRA EJ, CROTEAU R. Truncation of limonene synthase preprotein provides a fully active 'pseudomature' form of this monoterpene cyclase and reveals the function of the amino-terminal arginine pair[J]. Biochemistry, 1998, 37(35): 12213-12220.
- [51] QUIN MB, FLYNN CM, SCHMIDT-DANNERT C. Traversing the fungal terpenome[J]. Natural Product Reports, 2014, 31(10): 1449-1473.
- [52] CLAUDE SJ, RAMAN G, PARK SJ. Comparative analysis and identification of terpene synthase genes in *Convallaria keiskei* leaf, flower and root using RNA-sequencing profiling[J]. Plants, 2023, 12(15): 2797.
- [53] WANG W, WANG MY, ZENG YL, CHEN XY, WANG XY, BARRINGTON AM, TAO JM, ATKINSON RG, NIEUWENHUIZEN NJ. The terpene synthase (*TPS*) gene family in kiwifruit shows high functional redundancy and a subset of *TPS* likely fulfil overlapping functions in fruit flavour, floral bouquet and defence[J]. Molecular Horticulture, 2023, 3(1): 9.
- [54] TRAN HTD, NGUYEN HTT, HUYNH TB, NGUYEN HN, NGUYEN LT, TRAN NU, PHAM BTM, NGUYEN DH, TRAN T, NGUYEN TTH. Functional characterization of a bark-specific monoterpene synthase potentially involved in wounding- and methyl jasmonate-induced linalool emission in rubber (*Hevea* brasiliensis)[J]. Journal of Plant Physiology, 2023, 282: 153942.
- [55] LEE GW, CHUNG MS, LEE SS, CHUNG BY, LEE S. Transcriptome-guided identification and functional characterization of key terpene synthases involved in constitutive and methyl jasmonate-inducible volatile terpene formation in *Eremochloa ophiuroides* (Munro) Hack[J]. Plant Physiology and Biochemistry, 2019, 141: 193-201.

(本文责编 陈宏宇)