For the purpose of revealing the mechanism of the reduction of yeasts ethanol production rate after entrance of post-log phase, we used microarray to study expression profiles of the yeast Saccharomyces cerevisiae during the transition from mid-log growth phase to post-log growth. The results demonstrate that the global pattern of gene expression is very stable during the mid-log phase. However, a dramatic metabolic remodeling was found when the yeast entries post-log phase, during which many of amino acid synthesis and metabolism related genes are up-regulated, moreover, ion transport, energy generation and storage related genes are also up regulated during this phase, while a large number of genes involved in transposition and DNA recombination are repressed. Central metabolic pathways also engage in metabolic remodeling, within which the genes involved in succinate and α-ketoglutarate synthesis pathways are up regulated, accordance with those of amino acid synthesis and metabolism. These results demonstrate that the increasing demand for amino acids in post-log phase lead to a metabolic transition into TCA cycle and glyoxylate cycle, which subsequently reduce the ethanol production rate. This suggests a global insight into the process of yeast ethanol fermentation.
叶燕锐,唐语谦,陈宏运,郑穗平,潘力,林影. 酿酒酵母对数生长后期代谢重构的全基因组表达谱芯片分析[J]. Chinese Journal of Biotechnology, 2008, 24(6): 962-967
Copy® 2024 All Rights Reserved