National High Technology Research and Development Program of China (863 Program) (No. 2006AA020303), Key Projects in the National Science and Technology Pillar Program during the Eleventh Five-Year Plan Period (No. 2007BAI46B02), National Basic Research Program of China (973 Program) (No. 2007CB714306), Key Program of National Natural Science Foundation of China (No. 20836003).
This study aimed to further enhance 2-keto-L-gulonic acid (2-KLG) production efficiency. A strategy for enhancing Ketogulonigenium vulgare growth and 2-KLG production by improving B. megaterium growth with sucrose was developed based on the time course of osmolality during 2-KLG industrial scale fermentation and effects of osmolality on cells growth and 2-KLG production. Results showed that the accumulation of 2-KLG and the feeding of alkaline matter led to an osmolality rise of 832 mOsmol/kg in the culture broth. High osmotic stress (1 250 mOsmol/kg) made the growth of B. megaterium and K. vulgare decreased 15.4% and 31.7%, respectively, and consequently the titer and productivity of 2-KLG reduced 67.5% and 69.3%, respectively. When supplement sucrose under high osmotic condition (1 250 mOsmol/kg), B. megaterium growth was significantly improved, with the result that 2-KLG production was increased 87%. Furthermore, by applying this sucrose addition strategy further to batch fermentation in 3 L fermentor, the productivity of 2-KLG increased 10.4%, and the duration of fermentation declined 10.8%. The results presented here provide a potential strategy for enhancing the target metabolites produced by mixed strains at environmental stress.
陈克杰,周景文,刘立明,刘杰,堵国成,陈坚. 高渗条件下利用蔗糖提升2-酮基-L-古龙酸生产效率[J]. Chinese Journal of Biotechnology, 2010, 26(11): 1507-1513
Copy® 2024 All Rights Reserved