Increasing reductant NADPH content via metabolic engineering of PHB synthesis pathway in Synechocystis sp. PCC 6803
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

National Natural Science Foundation of China (No. 30970103), Natural Science Foundation of Beijing (No. 5102026).

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Cyanobacteria have become attractive hosts for renewable chemicals production. The low productivity, however, prevents it from industrial application. Reductant NAD(P)H availability is a chief hurdle for the production of reductive metabolites in microbes. To increase NADPH content in Synechocystis sp. PCC 6803, PHB synthase encoding gene phaC and phaE in Synechocystis was inactivated by replacing phaC&E genes with chloromycetin resistance cassette via homologous recombination. PCR analysis showed that mutant S.DphaC&E with complete genome segregation was generated. The comparison between growth curves of S.wt and S.DphaC&E indicated the knockout of phaC & phaE genes did not affect obviously the cell growth. Gas chromatography analysis showed that the accumulation of PHB in wild type was about 2.3% of the dry cell weight, whereas no PHB was detected in the mutant S.DphaC&E. The data indicated that inactivation of PHB synthase gene phaC and phaE interrupted the synthesis of PHB. Further comparative study of wild type and mutant demonstrated that NADPH content in S.DphaC&E was obviously increased. On the third day, the NADPH content in S.DphaC&E was up to 1.85 fold higher than that in wild type. These results indicated that deleting PHB synthase gene phaC and phaE not only can block the synthesis of PHB, but also can save NADPH to contribute reductant sink in cyanobacteria. Hence, the engineered cyanobacterial strain S.DphaC&E, in which carbon flux was redirected and NADPH was increased, will be a potential host strain for chemicals production in cyanobacteria.

    Reference
    Related
    Cited by
Get Citation

解鹃,周杰,张海峰,李寅. 阻断集胞藻6803 PHB合成途径提高胞内NADPH含量[J]. Chinese Journal of Biotechnology, 2011, 27(7): 998-1004

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 13,2010
  • Revised:
  • Adopted:
  • Online:
  • Published:
Article QR Code