Enhanced porcine interferon-α production by Pichia pastoris by methanol/sorbitol co-feeding and energy metabolism shift
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

Key Agricultural Technology Program of Shanghai Science & Technology Committee (No. 073919108), National Basic Research Program of China (973 Program) (No. 2007CB714303).

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Porcine interferon-α (pIFN-α) fermentative production by recombinant Pichia pastoris was carried out in a 10-L bioreactor to study its metabolism changes and effects on fermentation under different inducing strategies, by analyzing the change patterns of the corresponding metabolism and energy regeneration. The results show that the specific activities of alcohol oxidase (AOX), formaldehyde dehydrogenase (FLD) and formate dehydrogenase (FDH) largely increased when reducing temperature from 30 °C to 20 °C under pure methanol induction, leading significant enhancements in methanol metabolism, formaldehyde dissimilatory energy metabolism and pIFN-α antiviral activity. The highest pIFN-α antiviral activity reached 1.4×106 IU/mL, which was about 10-folds of that obtained under 30 °C induction. Using methanol/sorbitol co-feeding strategy at 30 °C, the major energy metabolism energizing pIFN-α synthesis shifted from formaldehyde dissimilatory energy metabolism pathway to TCA cycle, formaldehyde dissimilatory pathway was weakened and accumulation of toxic intermediate metabolite-formaldehyde was relieved, and methanol flux distribution towards to pIFN-α synthesis was enhanced. Under this condition, the highest pIFN-α antiviral activity reached 1.8×107 IU/mL which was about 100-folds of that obtained under pure methanol induction at 30 °C. More important, enhanced pIFN-α production with methanol/sorbitol co-feeding strategy could be implemented under mild conditions, which greatly reduced the fermentation costs and improved the entire fermentation performance.

    Reference
    Related
    Cited by
Get Citation

汪汇慧,金虎,高敏杰,戴科科,董世娟,于瑞嵩,李震,史仲平. 甲醇/山梨醇共混流加诱导改变毕赤酵母生产猪α干扰素过程的代谢产能途径强化发酵性能[J]. Chinese Journal of Biotechnology, 2012, 28(2): 164-177

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 07,2011
  • Revised:
  • Adopted:
  • Online: March 02,2012
  • Published:
Article QR Code