Shanghai Pujiang Program (No. 08PJ14038), National Special Fund for State Key Laboratory of Bioreactor Engineering (No. 2060204), SRF for ROCS, SEM, Shanghai Leading Academic Discipline Project (No. B505).
Gene expression is regulated by different transcriptional regulators. The transcriptional regulator isocitrate lyase regulator (IclR) of Escherichia coli represses the expression of the aceBAK operon that codes for the glyoxylate pathway enzymes. In this study, physiological and metabolic responses of the deletion of the iclR gene in E. coli BW25113 were investigated based on the quantification and analysis of intracellular metabolic fluxes. The knockout of the iclR gene resulted in a decrease in the growth rate, glucose uptake rate and the acetate secretion rate, but a slight increase in biomass yield. The latter could be attributed to the lowered metabolic fluxes through several CO2 generating pathways, including the redirection of 33% of isocitrate directly to succinate and malate without CO2 production as well as the reduced flux through the pentose phosphate pathway. Furthermore, although the glyoxylate shunt was activated in the iclR mutant, the flux through phosphoenolpyruvate (PEP) carboxykinase kept almost unchanged, implying an inactive PEP-glyoxylate cycle and no extra loss of carbon atoms in the mutant strain. Both the reduced glucose uptake rate and the active glyoxylate shunt were responsible for the minor decrease in acetate secretion in the iclR knockout strain compared to that in the wild-type E. coli strain.
柳志杰,周利,花强. 基于代谢流量分布信息理解大肠杆菌中异柠檬酸裂解酶调节因子的代谢调控作用[J]. Chinese Journal of Biotechnology, 2012, 28(5): 565-576
Copy® 2024 All Rights Reserved