National Natural Science Foundation of China (No. 31271332), Sichuan Provincial Science & Technology Department (Nos. 2009JY0067, 2012SZ0074), Sichuan Provincial Department of Education (No. 13ZA0145), Sichuan Normal University (No. 2013-12).
9α-hydroxy-4-androstene-3,17-dione (9-OH-AD) is an important intermediate in the steroidal drugs production. 3-ketosteroid-9α-hydroxylase (KSH), a two protein system of KshA and KshB, is a key-enzyme in the microbial steroid ring B-opening pathway. KSH catalyzes the transformation of 4-androstene-3,17-dione (AD) into 9-OH-AD specifically. In the present study, the putative KshA and KshB genes were cloned from Mycobacterium smegmatis mc2155 and Gordonia neofelifaecis NRRL B-59395 respectively, and were inserted into the expression vector pNIT, the co-expression plasmids of kshA-kshB were obtained and electroporated into Mycobacterium sp. NRRL B-3805 cells. The recombinants were used to transform steroids, the main product was characterized as 9α-hydroxy-4-androstene-3,17-dione (9-OH-AD), showing that kshA and kshB were expressed successfully. Different from the original strain Mycobacterium sp. NRRL B-3805 that accumulates 4-androstene-3,17-dione, the recombinants accumulates 9α-hydroxy-4-androstene-3,17-dione as the main product. This results indicates that the putative genes kshA, kshB encode active KshA and KshB, respectively. The process of biotransformation was investigated and the results show that phytosterol is the most suitable substrate for biotransformation, kshA and kshB from M. smegmatis mc2155 seemed to exhibit high activity, because the resultant recombinant of them catalyzed the biotransformation of phytosterol to 9-OH-AD in a percent conversion of 90%, which was much higher than that of G. neofelifaecis NRRL B-59395. This study on the manipulation of the ksh genes in Mycobacterium sp. NRRL B-3805 provides a new pathway for producing steroid medicines.
袁家代,陈贵英,程世君,葛方兰,王琼,李维,李江. 3-甾酮-9α-羟基化酶基因在分枝杆菌中的异源表达与9α-羟基雄烯二酮的制备[J]. Chinese Journal of Biotechnology, 2015, 31(4): 523-533
Copy® 2024 All Rights Reserved