Effect of ribosome engineering on butenyl-spinosyns synthesis of Saccharopolyspora pogona
Author:
Affiliation:

Clc Number:

Fund Project:

Key Program for International S&T Cooperation Projects of China (No. 0102011DFA32610), National Basic Research Program of China (973 Program) (No. 2011CB111680), National High Technology Research and Development Program of China (863 Program) (No. NC2010GA0091), Collaborative Innovation Center Project of Hunan Province (No. 20134486).

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Through introducing mutations into ribosomes by obtaining spontaneous drug resistance of microorganisms, ribosome engineering technology is an effective approach to develop mutant strains that overproduce secondary metabolites. In this study, ribosome engineering was used to improve the yield of butenyl-spinosyns produced by Saccharopolyspora pogona by screening streptomycin resistant mutants. The yields of butenyl-spinosyns were then analyzed and compared with the parent strain. Among the mutants, S13 displayed the greatest increase in the yield of butenyl-spinosyns, which was 1.79 fold higher than that in the parent strain. Further analysis of the metabolite profile of S13 by mass spectrometry lead to the discovery of Spinosyn α1, which was absent from the parent strain. DNA sequencing showed that there existed two point mutations in the conserved regions of rpsL gene which encodes ribosomal protein S12 in S13. The mutations occurred a C to A and a C to T transversion mutations occurred at nucleotide pair 314 and 320 respectively, which resulted in the mutations of Proline (105) to Glutamine and Alanine (107) to Valine. It also demonstrated that S13 exhibited genetic stability even after five passages.

    Reference
    Related
    Cited by
Get Citation

罗林根,杨燕,魏慧,穰杰,唐琼,胡胜标,孙运军,余子全,丁学知,夏立秋. 须糖多孢菌Saccharopolyspora pogona的核糖体工程改造对丁烯基多杀菌素合成的影响[J]. Chinese Journal of Biotechnology, 2016, 32(2): 259-263

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 12,2015
  • Revised:
  • Adopted:
  • Online: January 26,2016
  • Published:
Article QR Code