National Science Fund for Excellent Young Scholars (No. 21822806), National Natural Science Foundation of China (No. 31770097).
L-tyrosine is one of three aromatic amino acids that are widely used in food, pharmaceutical and chemical industries. The transport system engineering provides an important research strategy for the metabolic engineering of Escherichia coli to breed L-tyrosine producing strain. The intracellular transport of L-tyrosine in E. coli is mainly regulated by two distinct permeases encoded by aroP and tyrP genes. The aroP and tyrP gene knockout mutants were constructed by CRISPR-Cas technique on the basis of L-tyrosine producing strain HGXP, and the effects of regulating transport system on L-tyrosine production were investigated by fermentation experiments. The fermentation results showed that the aroP and tyrP knockout mutants produced 3.74 and 3.45 g/L L-tyrosine, respectively, which were 19% and 10% higher than that of the original strain. The optimum induction temperature was determined to be 38 °C. Fed-batch fermentation was carried out on a 3-L fermentor. The L-tyrosine yields of aroP and tyrP knockout mutants were further increased to 44.5 and 35.1 g/L, respectively, which were 57% and 24% higher than that of the original strain. The research results are of great reference value for metabolic engineering of E. coli to produce L-tyrosine.
王钦,曾伟主,周景文. 大肠杆菌酪氨酸转运系统基因敲除对酪氨酸生产的影响[J]. Chinese Journal of Biotechnology, 2019, 35(7): 1247-1255
Copy® 2024 All Rights Reserved