China Postdoctoral Science Foundation (No. 2018M630522), Natural Science Foundation of Jiangsu Province for Youth of China (No. BK20180622).
To improve the productivity of L-phenyllactic acid (L-PLA), L-LcLDH1Q88A/I229A, a Lactobacillus casei L-lactate dehydrogenase mutant, was successfully expressed in Pichia pastoris GS115. An NADH regeneration system in vitro was then constructed by coupling the recombinant (re) LcLDH1Q88A/I229A with a glucose 1-dehydrogenase for the asymmetric reduction of phenylpyruvate (PPA) to L-PLA. SDS-PAGE analysis showed that the apparent molecular weight of reLcLDH1Q88A/I229A was 36.8 kDa. And its specific activity was 270.5 U/mg, 42.9-fold higher than that of LcLDH1 (6.3 U/mg). The asymmetric reduction of PPA (100 mmol/L) was performed at 40 °C and pH 5.0 in an optimal biocatalytic system, containing 10 U/mL reLcLDH1Q88A/I229A, 1 U/mL SyGDH, 2 mmol/L NAD+ and 120 mmol/L D-glucose, producing L-PLA with 99.8% yield and over 99% enantiomeric excess (ee). In addition, the space-time yield (STY) and average turnover frequency (aTOF) were as high as 9.5 g/(L·h) and 257.0 g/(g·h), respectively. The high productivity of reLcLDH1Q88A/I229A in the asymmetric reduction of PPA makes it a promising biocatalyst in the preparation of L-PLA.
张婷,李剑芳,胡蝶,李闯,胡博淳,邬敏辰. 干酪乳杆菌L-乳酸脱氢酶突变体在毕赤酵母中的表达及其不对称还原苯丙酮酸[J]. Chinese Journal of Biotechnology, 2020, 36(5): 959-968
Copy® 2024 All Rights Reserved