D-mannitol is widely used in the pharmaceutical and medical industries as an important precursor of antitumor drugs and immune stimulants. However, the cost of the current enzymatic process for D-mannitol synthesis is high, thus not suitable for commercialization. To address this issue, an efficient mannitol dehydrogenase LpGDH used for the conversion and a glucose dehydrogenase BaGDH used for NADH regeneration were screened, respectively. These two enzymes were co-expressed in Escherichia coli BL21(DE3) to construct a two-enzyme cascade catalytic reaction for the efficient synthesis of D-mannitol, with a conversion rate of 59.7% from D-fructose achieved. The regeneration of cofactor NADH was enhanced by increasing the copy number of Bagdh, and a recombinant strain E. coli BL21/pETDuet-Lpmdh-Bagdh-Bagdh was constructed to address the imbalance between cofactor amount and key enzyme expression level in the two-enzyme cascade catalytic reaction. An optimized whole cell transformation process was conducted under 30 ℃, initial pH 6.5, cell mass(OD600) 30,100 g/L D-fructose substrate and an equivalent molar concentration of glucose. The highest yield of D-mannitol was 81.9 g/L with a molar conversion rate of 81.9% in 5 L fermenter under the optimal conversion conditions. This study provides a green and efficient biotransformation method for future large-scale production of D-mannitol, which is also of great importance for the production of other sugar alcohols.
潘珊,胡孟凯,潘学玮,吕青兰,朱荣帅,张显,饶志明. 基于双酶级联协调表达策略高效催化合成D-甘露醇[J]. Chinese Journal of Biotechnology, 2022, 38(7): 2549-2565
Copy® 2024 All Rights Reserved