Malonic acid is an important dicarboxylic acid, which can be widely used in the fields of chemical industry, medicine and food. In this study, a recombinant Escherichia coli strain BL21(TPP)was constructed to synthesize malonate through overexpressing six genes of ppc, aspC, panD, pa0132,yneI and pyc. Under shake flask fermentation conditons, strain BL21(TPP) produced 0.61 g/L malonic acid. In a 5 L fermentor, the production of malonic acid reached 3.32 g/L by using an intermittent feeding strategy. Next, a recombinant strain BL21(SCR) was constructed by fusional expression of ppc and aspC, as well as pa0132 and yneI, respectively. As a result, the production of malonic acid increased to 0.83 g/L at the shake flask level, which was a 36% increase over the starting strain BL21(TPP).Finally, the highest malonate production reached 5.61 g/L in a 5 L fermentor, which was a 69% increase over the starting strain BL21(TPP). Production of malonic acid by metabolically engineered E. coli provides a basis for further optimization, and may also serve as a reference for the biosynthesis of other dicarboxylic acids.
付雯宣,李诗韵,赵运英,邓禹. 代谢工程改造大肠杆菌合成丙二酸[J]. Chinese Journal of Biotechnology, 2022, 38(7): 2566-2580
Copy® 2024 All Rights Reserved