Fermentation optimization for production of lactoferrin N-lobe by recombinant Bacillus subtilis
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To achieve an efficient preparation of lactoferrin N-lobe, we optimized the fermentation process for a recombinant Bacillus subtilis pMA0911-D60Y/Y92D producing lactoferrin N-lobe. The IOD of the lactoferrin N-lobe reached 68.03% under the optimized cultural conditions, that is using glucose and tryptone as the best carbon and nitrogen source, respectively, and conduct the fermentation under pH 7.0, 28 ℃, for 25.5 h. An optimized fermentation process was obtained through fermentation optimization on a 10 L fermenter. That is, culturing the recombinant strain at 30 ℃, pH 7.5 within 0-7 h, and switching to induction at 28 ℃, pH 7.5 within 7-25 h for production of lactoferrin N-lobe,using an agitation speed of 300 r/min throughout the fermentation. After the fermentation, the cells were collected and disrupted, followed by purification of the lactoferrin N-lobe to homogeneity by using HisTrap HP-affinity and a SuperdexTM 200(10/300 GL)-affinity chromatography. The purified lactoferrin N-lobe proteins with over 94% purity were obtained. One liter culture of recombinant B. subtilis pMA0911-D60Y/Y92D produced 23.5 mg of pure protein. This study may facilitate the fermentative production of the recombinant lactoferrin N-lobe.

    Reference
    Related
    Cited by
Get Citation

金亮,李利宏,张荣珍,徐岩. 重组枯草芽孢杆菌发酵生产乳铁蛋白N叶工艺优化[J]. Chinese Journal of Biotechnology, 2022, 38(7): 2628-2638

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 13,2021
  • Revised:
  • Adopted:
  • Online: July 25,2022
  • Published:
Article QR Code