Structure-guided engineering for improving the thermal stability of zearalenone hydrolase
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Zearalenone is one of the most widely polluted Fusarium toxins in the world, seriously endangering livestock and human health. Zearalenone hydrolase (ZHD) derived from Clonostachys rosea can effectively degrade zearalenone. However, the high temperature environment in feed processing hampers the application of this enzyme. Structure-based rational design may provide guidance for engineering the thermal stability of enzymes. In this paper, we used the multiple structure alignment (MSTA) to screen the structural flexibility regions of ZHD. Subsequently, a candidate mutation library was constructed by sequence conservation scoring and conformational free energy calculation, from which 9 single point mutations based on residues 136 and 220 were obtained. The experiments showed that the thermal melting temperature (Tm) of the 9 mutants increased by 0.4–5.6 ℃. The S220R and S220W mutants showed the best thermal stability, the Tm of which increased by 5.6 ℃ and 4.0 ℃ compared to that of the wild type. Moreover, the thermal half-inactivation time at 45 ℃ were 15.4 times and 3.1 times longer, and the relative activities were 70.6% and 57.3% of the wild type. Molecular dynamics simulation analysis showed that the interaction force at and around the mutation site was enhanced, contributing to the improved thermal stability of ZHD. The probability of 220-K130 hydrogen bond of the mutants S220R and S220W increased by 37.1% and 19.3%, and the probability of K130-D223 salt bridge increased by 30.1% and 12.5%, respectively. This work demonstrated the feasibility of thermal stability engineering strategy where the structural and sequence alignment as well as free energy calculation of natural enzymes were integrated, and obtained ZHD variants with enhanced thermal stability, which may facilitate the industrial application of ZHD.

    Reference
    Related
    Cited by
Get Citation

官嫒林,张萌,许菲. 结构指导的玉米赤霉烯酮水解酶的热稳定性改造[J]. Chinese Journal of Biotechnology, 2023, 39(8): 3336-3350

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 27,2022
  • Revised:February 02,2023
  • Adopted:
  • Online: August 10,2023
  • Published: August 25,2023
Article QR Code