Multicellular coupling fermentation for 3ʹ-sialyllactose conversion using N-acetyl-glucosamine and lactose
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Sialyllactose is one of the most abundant sialylated oligosaccharides in human milk oligosaccharides (HMOs), which plays an important role in the healthy development of infants and young children. However, its efficient and cheap production technology is still lacking presently. This study developed a two-step process employing multiple-strains for the production of sialyllactose. In the first step, two engineered strains, E. coli JM109(DE3)/ pET28a-BT0453 and JM109(DE3)/pET28a-nanA, were constructed to synthesize the intermediate N-acetylneuraminic acid. When the ratio of the biomass of the two engineered strains was 1:1 and the reaction time was 32 hours, the maximum yield of N-acetylneuraminic acid was 20.4 g/L. In the second step, E. coli JM109(DE3)/ pET28a-neuA, JM109(DE3)/ pET28a-nst and Baker’s yeast were added to the above fermentation broth to synthesize 3ʹ-sialyllactose (3ʹ-SL). Using optimal conditions including 200 mmol/L N-acetyl-glucosamine and lactose, 150 g/L Baker’s yeast, 20 mmol/L Mg2+, the maximum yield of 3ʹ-SL in the fermentation broth reached 55.04 g/L after 24 hours of fermentation and the conversion rate of the substrate N-acetyl-glucosamine was 43.47%. This research provides an alternative technical route for economical production of 3ʹ-SL.

    Reference
    Related
    Cited by
Get Citation

周文,游星,张洪涛,李忠霞,邓超明,许淳,黎玉. 多细胞耦合转化N-乙酰氨基葡萄糖和乳糖生产唾液酸乳糖[J]. Chinese Journal of Biotechnology, 2023, 39(11): 4621-4634

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 01,2023
  • Revised:
  • Adopted:April 27,2023
  • Online: November 16,2023
  • Published: November 25,2023
Article QR Code