Prediction of CRISPR/Cas9 off-target activity using multi-scale convolutional neural network
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [22]
  • | | | |
  • Comments
    Abstract:

    Clustered regularly interspaced short palindromic repeat/CRISPR-associated protein 9 (CRISPR/Cas9) is a new generation of gene editing technology, which relies on single guide RNA to identify specific gene sites and guide Cas9 nuclease to edit specific location in the genome. However, the off-target effect of this technology hampers its development. In recent years, several deep learning models have been developed for predicting the CRISPR/Cas9 off-target activity, which contributes to more efficient and safe gene editing and gene therapy. However, the prediction accuracy remains to be improved. In this paper, we proposed a multi-scale convolutional neural network-based method, designated as CnnCRISPR, for CRISPR/Cas9 off-target prediction. First, we used one-hot encoding method to encode the sgRNA-DNA sequence pair, followed by a bitwise or operation on the two binary matrices. Second, the encoded sequence was fed into the Inception-based network for training and evaluating. Third, the well-trained model was applied to evaluate the off-target situation of the sgRNA-DNA sequence pair. Experiments on public datasets showed CnnCRISPR outperforms existing deep learning-based methods, which provides an effective and feasible method for addressing the off-target problems.

    Reference
    [1] ZHENG W, GU F. Progress of application and off-target effects of CRISPR/Cas9[J]. Yi Chuan, 2015, 37(10):1003-1010.
    [2] ISHINO Y, SHINAGAWA H, MAKINO K, AMEMURA M, NAKATA A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. Journal of Bacteriology, 1987, 169(12):5429-5433.
    [3] JANSEN R, EMBDEN JD, GAASTRA W, SCHOULS LM. Identification of genes that are associated with DNA repeats in prokaryotes[J]. Molecular Microbiology, 2002, 43(6):1565-1575.
    [4] JIANG WY, BIKARD D, COX D, ZHANG F, MARRAFFINI LA. RNA-guided editing of bacterial genomes using CRISPR-Cas systems[J]. Nature Biotechnology, 2013, 31(3):233-239.
    [5] 尹珅, 贺桂芳, 赖方秾, 谢凤云, 马俊宇. CRISPR/Cas9系统的脱靶效应[J]. 生物技术通报, 2016, 32(3):31-37. YIN K, HE GF, LAI FN, XIE FY, MA JY. Off-target of CRISPR/Cas9 system[J]. Biotechnology Bulletin, 2016, 32(3):31-37(in Chinese).
    [6] 徐海波. 基于机器学习的CRISPR/Cas9系统脱靶效应及靶向效率预测[D]. 桂林:桂林电子科技大学, 2020. XU HB. Off-target effect and target efficiency prediction of CRISPR/Cas9 system based on machine learning[D]. Guilin:Guilin University of Electronic Technology, 2020(in Chinese).
    [7] CHARLIER J, NADON R, MAKARENKOV V. Accurate deep learning off-target prediction with novel sgRNA-DNA sequence encoding in CRISPR-Cas9 gene editing[J]. Bioinformatics, 2021, 37(16):2299-2307.
    [8] 张晨, 雷展, 李凯, 商颖, 许文涛. CRISPR/Cas9系统中的脱靶效应及检测技术研究进展[J]. 生物技术通报, 2020, 36(3):78-87. ZHANG C, LEI Z, LI K, SHANG Y, XU WT. Research progress on off-target effects and detection techniques in CRISPR/Cas9 systems[J]. Biotechnology Bulletin, 2020, 36(3):78-87(in Chinese).
    [9] DOENCH JG, FUSI N, SULLENDER M, HEGDE M, VAIMBERG EW, DONOVAN KF, SMITH I, TOTHOVA Z, WILEN C, ORCHARD R, VIRGIN HW, LISTGARTEN J, ROOT DE. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9[J]. Nature Biotechnology, 2016, 34(2):184-191.
    [10] SINGH R, KUSCU C, QUINLAN A, QI YJ, ADLI M. Cas9-chromatin binding information enables more accurate CRISPR off-target prediction[J]. Nucleic Acids Research, 2015, 43(18):e118.
    [11] HSU PD, SCOTT DA, WEINSTEIN JA, RAN FA, KONERMANN S, AGARWALA V, LI YQ, FINE EJ, WU XB, SHALEM O, CRADICK TJ, MARRAFFINI LA, BAO G, ZHANG F. DNA targeting specificity of RNA-guided Cas9 nucleases[J]. Nature Biotechnology, 2013, 31(9):827-832.
    [12] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-444.
    [13] LIN JC, WONG KC. Off-target predictions in CRISPR-Cas9 gene editing using deep learning[J]. Bioinformatics, 2018, 34(17):i656-i663.
    [14] LIN JC, ZHANG ZL, ZHANG SX, CHEN JY, WONG KC. CRISPR-net:a recurrent convolutional network quantifies CRISPR off-target activities with mismatches and indels[J]. Advanced Science, 2020, 7(13):1903562.
    [15] CHUAI GH, MA HH, YAN JF, CHEN M, HONG NF, XUE DY, ZHOU C, ZHU CY, CHEN K, DUAN B, GU F, QU S, HUANG DS, WEI J, LIU Q. DeepCRISPR:optimized CRISPR guide RNA design by deep learning[J]. Genome Biology, 2018, 19(1):1-18.
    [16] CHEN L, WANG SP, ZHANG YH, LI JR, XING ZH, YANG JL, HUANG T, CAI YD. Identify key sequence features to improve CRISPR sgRNA efficacy[J]. IEEE Access, 2017, 5:26582-26590.
    [17] 张桂珊, 杨勇, 张灵敏, 戴宪华. 机器学习方法在CRISPR/Cas9系统中的应用[J]. 遗传, 2018, 40(9):704-723. ZHANG GS, YANG Y, ZHANG LM, DAI XH. Application of machine learning in the CRISPR/Cas9 system[J]. Yi Chuan, 2018, 40(9):704-723(in Chinese).
    [18] YU HL, MU CX, SUN CY, YANG WK, YANG XB, ZUO X. Support vector machine-based optimized decision threshold adjustment strategy for classifying imbalanced data[J]. Knowledge-Based Systems, 2015, 76:67-78.
    [19] KRIZHEVSKY A, SUTSKEVER I, HINTON GE. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90.
    [20] SZEGEDY C, LIU W, JIA YQ, SERMANET P, REED S, ANGUELOV D, ERHAN D, VANHOUCKE V, RABINOVICH A. Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 7-12, 2015, Boston, MA, USA. IEEE, 2015:1-9.
    [21] PEPE MS. Receiver operating characteristic methodology[J]. Journal of the American Statistical Association, 2000, 95(449):308-311.
    [22] 陶朝杰, 杨进. 基于BalanceCascade-GBDT算法的类别不平衡虚假评论识别方法[J]. 经济数学, 2020, 37(3):214-220. TAO CJ, YANG J. Detection of class-imbalance spam reviews based on BalanceCascade-GBDT algorithm[J]. Journal of Quantitative Economics, 2020, 37(3):214-220(in Chinese).
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

谢焕增,黄凌泽,罗烨,张桂珊. 基于多尺度卷积神经网络的CRISPR/Cas9脱靶预测方法[J]. Chinese Journal of Biotechnology, 2024, 40(3): 858-876

Copy
Share
Article Metrics
  • Abstract:262
  • PDF: 831
  • HTML: 605
  • Cited by: 0
History
  • Received:May 21,2023
  • Revised:August 08,2023
  • Online: March 25,2024
  • Published: March 25,2024
Article QR Code