The utilization of industrial microorganisms for the conversion of lignocellulose into high value-added chemicals is an essential pathway towards achieving carbon neutrality and promoting sustainable bioeconomy. However, the pretreated lignocellulase hydrolysate often contains various sugars, salts, phenols/aldehydes and other substances, which requires microorganisms to possess strong tolerance for direct fermentation. This study aims to investigate the tolerance of Candida krusei to substrate, salt, and high temperature shock, in order to validate its potential for utilizing the enzymatic hydrolysate of Pennisetum giganteum in seawater for fermentation. The experimental results showed that the adaptively domesticated C. krusei exhibited tolerance to glucose at a concentration of 200 g/L and became a hypertonic strain. When seawater was used instead of freshwater without sterilization, the yield of glycerol in fermentation was 109% higher than that in freshwater with sterilization. Moreover, the combined thermal shock at 32 hours of fermentation and addition of 10 Na2SO3 at 48 hours resulted in a yield of glycerol to glucose 0.37 g/g, which was 225% higher than the control group. By fermenting the enzymatic hydrolysate of P. giganteum pretreated in seawater, the total conversion rate of glucose into glycerol and ethanol reached 0.45 g/g. This study indicates that hypertonic C. krusei exhibits remarkable adaptability to substrate, salt, and temperature. It not only can directly utilize complex lignocellulosic hydrolysates, but also exhibits strong tolerance to them. Therefore, it provides a potential candidate strain for the production of bio-based chemicals using lignocellulosic processes.
吴娜莎,孙亚琴,修志龙. 耐高渗克鲁斯假丝酵母的耐受性[J]. Chinese Journal of Biotechnology, 2024, 40(3): 908-920
Copy® 2024 All Rights Reserved