Metabolic engineering of Escherichia coli for thymidine production
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Thymidine, as a crucial precursor of anti-AIDS drugs (e.g., zidovudine and stavudine), has wide application potential in the pharmaceutical industry. In this study, we introduced the thymidine biosynthesis pathway into the wild-type Escherichia coli MG1655 by systems metabolic engineering to improve the thymidine production in E. coli. Firstly, deoA, tdk, udp, rihA, rihB, and rihC were successively deleted to block the thymidine degradation pathway and salvage pathway in the wild-type E. coli MG1655. Then, the pyrimidine nucleoside operons from Bacillus subtilis F126 were introduced to enlarge the metabolic flux of the uridylic acid synthesis pathway. Finally, the expression of uridylate kinase, ribonucleoside diphosphate reductase, thymidine synthase, and 5′-nucleotidase in the thymidine biosynthesis pathway was optimized to enhance the metabolic flux from uridylic acid to thymidine. The engineered THY6-2 strain produced 11.10 g/L thymidine in a 5 L bioreactor with a yield of 0.04 g/g glucose and productivity of 0.23 g/(L·h). In this study, we constructed a strain that used glucose as the only carbon source for efficient production of thymidine and did not harbor plasmids, which provided a reference for the research on other pyrimidine nucleosides.

    Reference
    Related
    Cited by
Get Citation

姚卓越,李然,蒋帅,吴鹤云,马倩,谢希贤. 代谢工程改造大肠杆菌生产胸苷[J]. Chinese Journal of Biotechnology, 2024, 40(8): 2432-2443

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 10,2024
  • Revised:
  • Adopted:
  • Online: August 08,2024
  • Published: August 25,2024
Article QR Code