Cloning and functional analysis of heat shock protein Hsp70 from Sclerotinia sclerotiorum
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [34]
  • | | | |
  • Comments
    Abstract:

    To clarify the roles of the heat shock protein gene Hsp70 in the sclerotial formation and pathogenicity of Sclerotinia sclerotiorum, we employed reverse transcription PCR (RT-PCR) to clone Hsp70 from S. sclerotiorum and performed sequence analysis. Quantitative real-time PCR (qRT-PCR) was employed to determine the relative expression levels of Hsp70 at different growth stages and under the stress induced by cyclic adenosine monophosphate (cAMP) and low and high temperatures. The thermal stability of Hsp70 was measured. The Agrobacterium-mediated method was employed to construct the Hsp70-silenced strain. The pathogenicity and fungicide resistance of strains were tested by inoculation in detached rapeseed leaves and cultivation in the media containing procymidone and thiophanate-methyl, respectively. The results showed that the cloned Hsp70 had a total length of 1 890 bp and close relationship with the Hsp70 gene of Ciborinia. Hsp70 showcased the highest expression level in sclerotia, which was more than 30 times higher than that in hyphae. The cAMP stress significantly induced the expression of Hsp70. The expression level of Hsp70 showed an increasing-decreasing-increasing trend at 40 ℃ and no significant change at 4 ℃. Recombinant strain with high expression of Hsp70 showed good thermal stability. The Hsp70-silenced transformant did not form sclerotia, with decreased pathogenicity and fungicide resistance. This study reveals that Hsp70 plays an important role in the sclerotial formation and stress resistance of S. sclerotium, providing reference for further in-depth research on the biological roles of Hsp70 in S. sclerotium.

    Reference
    [1] HOSSAIN MM, SULTANA F, LI WQ, TRAN LS P, MOSTOFA MG. Sclerotinia sclerotiorum (Lib.) de bary: insights into the pathogenomic features of a global pathogen[J]. Cells, 2023, 12(7): 1063.
    [2] LEE S, ROH SH, LEE J, SUNG N, LIU J, TSAI FTF. Cryo-EM structures of the Hsp104 protein disaggregase captured in the ATP conformation[J]. Cell Reports, 2019, 26(1): 29-36.
    [3] BÖSL B, GRIMMINGER V, WALTER S. The molecular chaperone Hsp104-a molecular machine for protein disaggregation[J]. Journal of Structural Biology, 2006, 156(1): 139-148.
    [4] JACKSON SE, QUEITSCH C, TOFT D. Hsp90: from structure to phenotype[J]. Nature Structural & Molecular Biology, 2004, 11(12): 1152-1155.
    [5] ROY A, TAMULI R. Heat shock proteins and the calcineurin-crz1 signaling regulate stress responses in fungi[J]. Archives of Microbiology, 2022, 204(5): 240.
    [6] SHAO WY, SUN KW, MA TL, JIANG HX, HAHN M, MA ZH, JIAO C, YIN YN. SUMOylation regulates low-temperature survival and oxidative DNA damage tolerance in Botrytis cinerea[J]. New Phytologist, 2023, 238(2): 817-834.
    [7] KAUFMAN BA, KOLESAR JE, PERLMAN PS, BUTOW RA. A function for the mitochondrial chaperonin Hsp60 in the structure and transmission of mitochondrial DNA nucleoids in Saccharomyces cerevisiae[J]. Journal of Cell Biology, 2003, 163(3): 457-461.
    [8] ZHANG YL, WANG WG, WEI WQ, XIA L, GAO S, ZENG WZ, LIU S, ZHOU JW. Regulation of ethanol assimilation for efficient accumulation of squalene in Saccharomyces cerevisiae[J]. Journal of Agricultural and Food Chemistry, 2023, 71(16): 6389-6397.
    [9] LI CC, TU J, HAN GY, LIU N, SHENG CQ. Heat shock protein 90(Hsp90)/histone deacetylase (HDAC) dual inhibitors for the treatment of azoles-resistant Candida albicans[J]. European Journal of Medicinal Chemistry, 2022, 227: 113961.
    [10] ANCUCEANU R, HOVANEȚ MV, COJOCARU- TOMA M, ANGHEL AI, DINU M. Potential antifungal targets for Aspergillus sp. from the calcineurin and heat shock protein pathways[J]. International Journal of Molecular Sciences, 2022, 23(20): 12543.
    [11] ZHOU X, SU L, TANG R, DONG YX, WANG F, LI R, XIE QL, ZHANG XL, XIAO GH, LI HB. Genome-wide analysis of Hsp40 and Hsp70 gene family in four cotton species provides insights into their involvement in response to Verticillium dahliae and abiotic stress[J]. Frontiers in Genetics, 2023, 14: 1120861.
    [12] DOYLE SM, HOSKINS JR, KRAVATS AN, HEFFNER AL, GARIKAPATI S, WICKNER S. Intermolecular interactions between Hsp90 and Hsp70[J]. Journal of Molecular Biology, 2019, 431(15): 2729-2746.
    [13] PAN H, SONG T, WANG ZQ, GUO YF, ZHANG H, JI T, CAO KK, ZHANG ZC. Ectopic BH3-only protein Bim acts as a cochaperone to positively regulate Hsp70 in yeast[J]. Journal of Biochemistry, 2021, 170(4): 539-545.
    [14] 陈悦, 李海笑, 刘峥, 刘宁, 孙蔓莉, 曹志艳, 董金皋. 拟轮枝镰孢和禾谷镰孢Hsp70基因家族鉴定及其在不同温度下的表达模式[J]. 农业生物技术学报, 2022, 30(12): 2407-2416.CHEN Y, LI HX, LIU Z, LIU N, SUN ML, CAO ZY, DONG JG. Identification of Hsp70 gene family in Fusarium verticillioides & F. graminearum and their expression patterns at different temperatures[J]. Journal of Agricultural Biotechnology, 2022, 30(12): 2407-2416(in Chinese).
    [15] 郝海波, 黄建春, 王倩, 隽加香, 肖婷婷, 宋晓霞, 陈辉, 张津京. 热胁迫对双孢蘑菇抗氧化酶及热激蛋白基因的差异表达的影响[J]. 菌物学报, 2021, 40(3): 616-625.HAO HB, HUANG JC, WANG Q, JUAN JX, XIAO TT, SONG XX, CHEN H, ZHANG JJ. Effects of heat stress on the differential expression of antioxidant enzymes and heat shock protein genes of Agaricus bisporus[J]. Mycosystema, 2021, 40(3): 616-625(in Chinese).
    [16] 曾博. 铜绿假单胞菌热休克蛋白基因dnaJ对毒力的调控研究[D]. 西安: 西北大学硕士学位论文, 2020.ZENG B. Regulation of virulence by heat shock protein gene dnaJ in Pseudomonas aeruginosa[D]. Xi’an: Master’s Thesis of Northwest University, 2020(in Chinese).
    [17] LIU J, LIU Y, LI Q, LU Y. Heat shock protein 70 and Cathepsin B genes are involved in the thermal tolerance of Aphis gossypii[J]. Pest Management Science, 2023, 79(6): 2075-2086.
    [18] YU C, LEUNG SKP, ZHANG W, LAI LTF, CHAN YK, WOPNG MC, BENLEKBIR S, CUI Y, JIANG L, LAU WCY. Structural basis of substrate recognition and thermal protection by a small heat shock protein[J]. Nature Communications, 2021, 12(1): 3007.
    [19] HU X, TANG X, ZHOU YM, AHMAD B, ZHANG DL, ZENG Y, WEI JY, DENG LL, CHEN SJ, PAN Y. Bioinformatics analysis, expression profiling, and functional characterization of heat shock proteins in Wolfi-poria Cocos[J]. Bioengineering (basel), 2023, 10(3): 390.
    [20] 江明. 农杆菌介导核盘菌菌丝转化体系的建立及SsDRV下调基因Ss-CYP1的功能初步研究[D]. 武汉: 华中农业大学硕士学位论文, 2007.JIANG M. Establishment of mycelium transformation system of Sclerotinia sclerotiorum with Agrobacterium tumefaciens and preliminary study on the function of Ss-CYP1 downregulated by mycovirus SsDRV[D]. Wuhan: Master’s Thesis of Huazhong Agricultural University, 2007(in Chinese).
    [21] CHEN C, LI Q, WANG QF, LU DH, ZHANG H, WANG J, FU RT. Transcriptional profiling provides new insights into the role of nitric oxide in enhancing Ganoderma oregonense resistance to heat stress[J]. Scientific Reports, 2017, 7: 15694.
    [22] 杜巧丽, 蒋君梅, 陈美晴, 宁娜, 任明见, 李向阳, 谢鑫. 水稻热休克蛋白HSP70基因克隆、表达分析及原核表达[J]. 植物保护学报, 2021, 48(3): 620-629.DU QL, JIANG JM, CHEN MQ, NING N, REN MJ, LI XY, XIE X. Cloning, expression analysis and prokaryotic expression of heat shock protein HSP70 gene in rice[J]. Journal of Plant Protection, 2021, 48(3): 620-629(in Chinese).
    [23] 刘婷婷, 郭晶晶, 陈兆东, 刘玉芬, 井乐刚, 刘鹏, 赵文阁. 黑龙江林蛙热休克蛋白hsp70家族基因的鉴定及其在感染下的表达分析[J]. 生物工程学报, 2023, 39(4): 1710-1730.LIU TT, GUO JJ, CHEN ZD, LIU YF, JING LG, LIU P, ZHAO WG. Identification of heat shock protein hsp70 family genes from Rana amurensis and its expression profiles upon infection[J]. Chinese Journal of Biotechnology, 2023, 39(4): 1710-1730(in Chinese).
    [24] 吕蕊花, 赵爱春, 余建, 王传宏, 刘长英, 蔡雨翔, 余茂德. 桑椹肥大性菌核病病原菌生物学特性及流行性[J]. 微生物学报, 2017, 57(3): 388-398.LÜ RH, ZHAO AC, YU J, WANG CH, LIU CY, CAI YX, YU MD. Biological and epidemiological characteristics of the pathogen of hypertrophy sorosis scleroteniosis, Ciboria shiraiana[J]. Acta Microbiologica Sinica, 2017, 57(3): 388-398(in Chinese).
    [25] MICHAEL PJ, LUI KY, THOMSON LL, LAMICHHANE AR, BENNETT SJ. Impact of preconditioning temperature and duration period on carpogenic germination of diverse Sclerotinia sclerotiorum populations in southwestern Australia[J]. Plant Disease, 2021, 105(6): 1798-1805.
    [26] ZOU YJ, ZHANG MJ, QU JB, ZHANG JX. iTRAQ-based quantitative proteomic analysis reveals proteomic changes in mycelium of Pleurotus ostreatus in response to heat stress and subsequent recovery[J]. Frontiers in Microbiology, 2018, 9: 2368.
    [27] 曹华宁, 刘博, 刘太国, 高利, 陈万权. 小麦条锈菌hsp70基因的克隆及热胁迫下的表达特征分析[J]. 植物保护, 2015, 41(3): 19-24.CAO HN, LIU B, LIU TG, GAO L, CHEN WQ. Cloning of a heat shock protein gene hsp70 of Puccinia striiformis f. sp. tritici and its expression in response to high-temperature stress[J]. Plant Protection, 2015, 41(3): 19-24(in Chinese).
    [28] 苗兰天, 卢天华, 何晓亮, 周晓辉. 胡萝卜软腐果胶杆菌CpxP蛋白纯化及抑菌功能鉴定[J]. 生物工程学报, 2019, 35(5): 847-856.MIAO LT, LU TH, HE XL, ZHOU XH. Purification and bacteriostatic identification of CpxP protein from Pectobacterium carotovorum subsp. carotovorum[J]. Chinese Journal of Biotechnology, 2019, 35(5): 847-856(in Chinese).
    [29] XU LL, GAO J, GUO LZ, YU H. Heat shock protein 70(HmHsp70) from Hypsizygus marmoreus confers thermotolerance to tobacco[J]. AMB Express, 2020, 10(1): 12.
    [30] 童琪, 王春燕, 阙亚伟, 肖宇, 王政逸. 稻瘟病菌热激蛋白(HSP)40编码基因MoMHF6的鉴定及功能研究[J]. 中国水稻科学, 2023, 6: 563-576.TONG Q, WANG CY, QUE YW, XIAO Y, WANG ZY. Identification and functional study of the heat shock (HSP) 40 encoding gene MoMHF6 from Magnaporthe grisea[J]. Chinese Journal of Rice Science, 2023, 6: 563-576(in Chinese).
    [31] 杨杰. 稻瘟病菌热激蛋白复合体MoSsb1-MoSsz1- MoZuo1及SNARE蛋白MoSec22的互作蛋白在致病过程中的功能分析[D]. 南京: 南京农业大学博士学位论文, 2018.YANG J. Functional analysis of the interaction protein between heat shock protein complex Mossb1- Mossz1-Mozuo1 and SNARE protein MoSec22 of Magnaporthe grisea in the pathogenic process[D]. Nanjing: Doctoral Dissertation of Nanjing Agricultural University, 2018(in Chinese).
    [32] 陈姗姗, 郑玉欣, 王玉珂, 马全贺, 张灿, 刘西莉. 大豆疫霉PsHSP70蛋白的N-糖基化修饰对病原菌生长发育的影响, 2023年学术年会论文集[C]. 北京: 中国农业科学技术出版社, 2023: 1.CHEN SS, ZHENG YX, WANG YK, MA QH, ZHANG C, LIU XL. The effect of N-glycosylation modification of PsHSP70 protein from Phytophthora sojae on the growth and development. Proceedings of the 2023 Academic Annual Conference[C]. Beijing: China Agricultural Science and Technology Press, 2023: 1(in Chinese).
    [33] 吕俊博, 赵彦翔, 黄金光. 禾谷镰孢菌热激蛋白FGSG_05133的功能研究, 2023年学术年会论文集[C]. 中国农业科学技术出版社, 2023: 1.LÜ JB, ZHAO YX, HUANG JG. Functional study on heat shock protein FGSG_05133 of Fusarium graminearum. Proceedings of the 2023 Academic Annual Conference[C]. China Agricultural Science and Technology Press, 2023: 1(in Chinese).
    [34] 谈军军. 白念珠菌小分子热休克蛋白Fmp28的致病功能及机制初探[D]. 南昌: 南昌大学硕士学位论文, 2023.TAN JJ. Function and mechanism of small heat shock protein Fmp28 on pathogenicity in Candida albicans[D]. Nanchang: Master’s Thesis of Nanchang University, 2023(in Chinese).
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

吕蕊花,杨大群,杜雨彤,冯昭,吕瑞华,李依民,张岗. 核盘菌热休克蛋白Hsp70基因的克隆及功能分析[J]. Chinese Journal of Biotechnology, 2024, 40(10): 3677-3688

Copy
Share
Article Metrics
  • Abstract:221
  • PDF: 314
  • HTML: 119
  • Cited by: 0
History
  • Received:November 03,2023
  • Online: October 12,2024
  • Published: October 25,2024
Article QR Code