Yaxing Xu , Saifeng Wang , Xiaojun Zhang , Songdong Meng
2012, 28(3):261-266.
Abstract:Heat-shock protein gp96 associates with antigenic peptides derived from tumor and virus. Exogenous gp96-peptide complexes are taken up by antigen-presenting cells through interaction with its receptor CD91 on the cell surface, and cross-present antigenic peptides to MHC class I molecules by a peptide relay line in the endoplasmic reticulum for specific T-cell activation. Meanwhile, gp96 has been shown to initiate innate immune responses through interaction with toll-like receptor 2 and toll-like receptor 4. Recent studies have shown a gp96-mediated immune balance between CTL and Tregs. With the further understanding of counteracting immunosuppressive mechanisms in gp96-induced cellular immune responses, and establishment of high level production of recombinant gp96 by the yeast, gp96 appears to be a promising candidate for designing effective therapeutic vaccines against tumor and infectious diseases.
2012, 28(3):267-281.
Abstract:With the research and development of genetically engineered animals (GEAs) in breeding of new variety, xenotransplantation, bioreactor and disease model, biosafety issues of GEAs have attracted widespread attentions worldwide. So far, governments and agencies have established corresponding laws and regulations to regulate research and application of GEAs or their derived products. We reviewed research contents, evaluated principles, policies and procedures for biosafety of GEAs, also enumerated upcoming approved products of GEAs. Finally, we suggested perspectives of research and application of GEAs or their derived products.
Lanqing Ma , Chunmei Liu , Hansong Yu , Jixing Zhang , Dongyao Gao , Yanfang Li , Younian Wang
2012, 28(3):282-294.
Abstract:Salidroside, the 8-O-β-d-glucoside of tyrosol, is a novel adaptogenic drug extracted from the medicinal plant Rhodiola sachalinensis A. Bor. Due to the scarcity of R. sachalinensis and its low yield of salidroside, there is great interest in enhancing the production of salidroside by biotechnological process. Glucosylation of tyrosol is thought to be the final step in salidroside biosynthesis. In our related works, three UGT clones were isolated from the roots and the cultured cells. Our intention was to combine the catalytic specificity of these UGTs in vitro in order to change the level of salidroside in vivo by over-expression of the above UGTs. However, as the aglycone substrate of salidroside, the biosynthetic pathway of tyrosol and its regulation are less well understood. The results of related studies revealed that there are two different possibilities for the tyrosol biosynthetic pathway. One possibility is that tyrosol is produced from a p-coumaric acid precursor, which is derived mainly from phenylalanine. The second possibility is that the precursor of tyrosol might be tyramine, which is synthesized from tyrosine. Our previous work demonstrated that over-expression of the endogenous phenylalanine ammonia-lyase gene (PALrs1) and accumulation of p-coumaric acid did not facilitate tyrosol biosynthesis. In contrast, the data presented in our recent work provide in vitro and in vivo evidence that the tyrosine decarboxylase (RsTyrDC) is most likely to have an important function in the initial reaction of the salidroside biosynthesis pathway in R. Sachalinensis.
Jinxin Cui , Xin Wang , Jingchun Tang
2012, 28(3):295-304.
Abstract:Microbial fuel cell (MFC) is a new technology that can recover energy from biomass with simultaneous waste treatment. This technique has been developed fast in recent years in combining with environmental techniques such as wastewater treatment, degradation of toxic pollutants and desalination. With the increase of solid waste, applying MFC in composting is promising due to its property of waste disposal with simultaneous energy generation. In this paper, the microbial community of MFCs during composting was summarized. Four major influencing factors including electrodes, separators, oxygen supplement and configurations on the performance of composting MFCs were discussed. The characteristics of composting MFC as a new technique for reducing solid waste were as follows: high microbial biomass resulted in the high current density; adaptable to different environmental conditions; self-adjustable temperature with high energy efficiency; the transportation of proton from anode to cathode were limited by different solid substrates.
Xin Chen , Long Liu , Jianghua Li , Jie Liu , Guocheng Du , Jian Chen
2012, 28(3):305-319.
Abstract:Glucosamine (GlcN), also called amino sugar, is a compound derived from the substitution of a hydroxyl group of glucose molecule with an amino group. GlcN finds a wide-range of applications in health food and pharmaceutical industries. In our previous research, a recombinant Escherichia coli-glms-gna1 was constructed for the efficient production of GlcN and N-acetylglucosamine (GlcNAc), the latter can be readily deacetylated to GlcN under mild acidic conditions. However, the results indicated that the titer of GlcN and GlcNAc decreased significantly due to the transportation of GlcN and GlcNAc from the culture broth to the inside of cells. To alleviate or block the transportation process, nagE gene (encoding for the GlcNAc-specific transporter) and manX gene (encoding for the mannose transporter) were knocked out with the Red homologous recombination method, and two engineered strains, E. coli-glms-gna1-ΔnagE (with nagE gene deletion) and E. coli-glms-gna1-ΔnagE-ΔmanX (with nagE and manX genes deletion), were successfully constructed. The two strains were cultured in a 7-L fermentor for the production of GlcN and GlcNAc. The maximal GlcN concentration of control strain E. coli-glms-gna1 reached 4.06 g/L, and the maximal GlcNAc concentration reached 41.46 g/L. The maximal GlcN and GlcNAc concentration of E. coli-glms-gna1-?nagE reached 4.38 g/L and 71.80 g/L, respectively, which were 1.08-fold and 1.70-fold of those of E. coli-glms-gna1, respectively. The maximal GlcN and GlcNAc concentration of E. coli-glms-gna1-?nagE-?manX reached 4.82 g/L and 118.78 g/L, respectively, which were 1.20-fold and 2.86-fold of those of E. coli-glms-gna1, respectively. These results suggested that the deletion of nagE and manX could significantly increase the extracellular accumulation of GlcN and GlcNAc. The results obtained here maybe useful for the microbial GlcN production in an industrial scale.
Mengli Jiao , Rongrong Cao , Hongyan Chen , Wenfang Hao , Juan’e Dong
2012, 28(3):320-328.
Abstract:Rosmarinic acid (RA), a phenolic acid, is one of the important secondary metabolites produced in Salvia miltiorrhiza. To observe the influence of salicylic acid (SA), an elicitor, on the synthesis of RA and related enzymes, we treated the cell suspension cultures of S. miltiorrhiza with SA and L-α-aminooxy-β-phenylpropionic acid (AOPP), a competitive inhibitor of tyrosine aminotransferase (TAT). Under this condition, the activities of related enzymes, such as phenylalanine ammonia-lyase and TAT were traced and assayed; the accumulative amount of RA was measured. The results showed that the PAL activity reached the peak at 4 h, 124% higher than that of the control, and the content of RA reached its maximum ((5.914±0.296) mg/g dry weight) at 8 h, after treated by 6.25 mg/L SA on day 6 of the suspension culture. The results of treatment with 0.1 μmol/L AOPP showed that AOPP affected little on the TAT activity, while the PAL activity was significantly influenced, with 44% lower than that of the control at 6 h. Meanwhile, the reduced accumulation of RA ((4.709±0.204) mg/g dry weight) paralleled with the decrease in PAL activity. The co-treatment by 0.1 μmol/L AOPP and 6.25 mg/L SA relieved the restriction imposed by AOPP on PAL, and made the cell cultures accumulate more RA than sole treatment with AOPP, indicated that SA induced the accumulation of RA in suspension cell culture of S. miltiorrhiza, and the rate-limiting effect of PAL was stronger than TAT.
Jiaqi Liu , Xue Yang , Di Li , Hailing Yang
2012, 28(3):329-339.
Abstract:Plant betaine aldehyde dehydrogenase (BADH) is a physiologically important enzyme in response to salt or drought stress. In this study, two BADH genes (PeBADH1 and PeBADH2) were cloned from Populus euphratica. Both PeBADH1 and PeBADH2 genes encode the proteins of 503 amino acid residues, with a calculated molecular mass of 54.93 kDa and 54.90 kDa, respectively. Reverse transcription PCR showed the divergence of expression pattern between the PeBADH1 and PeBADH2 genes in P. euphratica. The recombinant PeBADH1 and PeBADH2 proteins were overexpressed in E. coli, and purified by Ni-affinity chromatography. The PeBADH2 protein had 1.5-fold higher enzymatic activity towards the substrate aldehyde than PeBADH1 protein. The PeBADH1 protein revealed higher thermal stability than PeBADH2 protein. These results indicated obvious functional divergence between the PeBADH1 and PeBADH2 genes.
Yi Lou , Zongyou Pan , Ruikai Wu , Enxing Xue , Libo Jiang , Guangyong Yang , Yang Zhou , Jianli Liu , Qing Huang , Huazi Xu
2012, 28(3):340-348.
Abstract:We examined the biocompatibility and the safety of α-calcium sulfate hemihydrate (CSH)/multi-walled carbon nanotube (MWCNT) composites for bone reconstruction application. The biocompatibility of the CSH/MWCNT composites was evaluated by the measures which taking L929 fibroblast cells cultured in the extracted liquid of the composite soaking solution and putting bone marrow stromal cells planted on the composite pellets in vitro, respectively. The cell proliferation was evaluated by MTT test and further observed using an inverted optical microscope and a scanning electric microscope. The toxicity of the composites was evaluated by acute and subacute systemic toxicity test. Long-term muscle and bone implantation in vivo tests were also conducted. L929 fibroblast cells grew well in the extracted liquid, as well as bone marrow stromal cells that could adhere on the surface of sample pellets and proliferated rapidly. MTT test showed that there were no significant differences between the experimental and control groups (P>0.05). In vivo test manifested that the composites were no toxicity, no irritation to skin and good for bone defect reconstruction. It was proved that α-calcium sulfate hemihydrate (CSH)/multi-walled carbon nanotube (MWCNT) composites exhibited excellent biocompatibility for the potential application in bone tissue engineering.
Bin Liu , Jinxing Ke , Shaoxi Cai , Xiaokun Li , Lu Zhang , Wenqi Chen , Yaoguang Zhang
2012, 28(3):349-357.
Abstract:A scaffold fabricated with lysine/nerve growth factor (NGF)/poly (lactic acid coglycolic acid) copolymer (PLGA) and acellular pigskin was evaluated in vitro as a potential artificial nerve scaffold. Properties of the scaffold such as microstructure, mechanical property, degradation behavior in PBS and water, Schwann cell adhesion property, and release of NGF were investigated. Results showed PLGA had permeated into the porous structure of acellular pigskin; its breaking strength was 8.308 MPa, breaking extensibility was 38.98%, elastic modulus was 97.27 MPa. The porosities of the scaffold ranged from 68.3% to 81.2% with densities from 0.62 g/cm3 to 0.68 g/cm3. At 4 weeks of degradation in vitro, maximum mass loss ratio was 43.3%. The release of NGF could still be detected on the 30th day, and its accumulative release rate was 38%. Lysine added into the scaffold neutralized the acidoid preventing degradation of PLGA to maintain a solution pH value. Schwann cells had grown across the scaffold after co-cultivation for 15 days. These in vitro properties of the pigskin based composite might indicate its potentiality to be an artificial nerve scaffold.
2012, 28(3):358-367.
Abstract:In recent years, Chinese hamster ovary (CHO) production vessel volume has reached more than 1 000 L in Chinese biopharms, and 10 000 L in foreign big biopharms, such as Lonza and Genetech. In general, there are some steps seed bioreactor for seed expansion, which decreases the efficiency of production process. In this work, a perfusion-based process was developed to drastically increase the split ratio during the scale-up of CHO cell cultures. Fed-batch cultures were inoculated with cells propagated in either batch or perfusion cultures that grown in disposable Cellbags using the WAVETM Bioreactor system. The higher cell concentration of 2×107 cells/mL with 95% viability allowed to increase the split ratio to about 1:50~1:100 for inoculum propagated in perfusion culture. The method described here could reduce the number of required expansion steps and eliminate two or three bioreactors. Disposable perfusion bioreactor with only a few liters working volume have the potential to directly inoculate volumes of up to 1 000 liters. This would allow to shorten process time in these bioreactors, which often are the bottleneck in plant throughput.
2012, 28(3):368-375.
Abstract:
® 2024 All Rights Reserved