• Volume 32,Issue 3,2016 Table of Contents
    Select All
    Display Type: |
    • >Review
    • Progress in nanomaterials modified anodes of microbial fuel cell

      2016, 32(3):271-283. DOI: 10.13345/j.cjb.150250 CSTR: 32114.14.j.cjb.150250

      Abstract (1637) HTML (640) PDF 6.74 M (3876) Comment (0) Favorites

      Abstract:Anode is an important part of microbial fuel cell, its performance significantly affects the electricity generation of microbial fuel cells (MFCs). Nanomaterials have excellent properties, such as good conductivity and large surface area. Therefore, nanomaterials modified anode can effectively reduce the electrode resistance, increase the amount of microbial adhesion and improve the electricity generation of MFCs. In this paper, we introduced various nanomaterials modified anodes and summarized their effects on the output performance of MFCs. Finally, the prospect of modifying nanomaterials and technologies were discussed.

    • Role of long non-coding RNA in diabetes mellitus and its complications

      2016, 32(3):284-291. DOI: 10.13345/j.cjb.150253 CSTR: 32114.14.j.cjb.150253

      Abstract (1216) HTML (1277) PDF 388.40 K (3504) Comment (0) Favorites

      Abstract:Long non-coding RNA was initially identified as “noises” of gene transcriptions. However, with the developing researches of ENCODE, it was found that the long non-coding RNAs can regulate the genomic expressions in the form of RNAs in epigenetic, transcription, and post transcriptional levels, which is involved in the regulation of diverse cellular processes and has significant influences on occurrence and precaution of human diseases. This paper introduces functions and features of the long non-coding RNAs, and sums up the internal relation between long non-coding RNAs, diabetes and diabetic complications on the basis of existing researches. These advances can provide the basis for the further understanding of molecular medicine on occurrence and evolution of diabetes.

    • Cellular delivery of modified peptide nucleic acids: a review

      2016, 32(3):292-305. DOI: 10.13345/j.cjb.150275 CSTR: 32114.14.j.cjb.150275

      Abstract (1235) HTML (1155) PDF 353.78 K (3715) Comment (0) Favorites

      Abstract:Peptide nucleic acid (PNA) is a DNA surrogate in which the phosphate deoxyribose backbone of DNA is replaced by repeating N-(2-aminoethyl)glycine units. PNA can hybridize to the complementary DNA and RNA with higher affinity than their oligonucleotide counterparts. This character of PNA not only makes it a new tool for the studies of molecular biology but also the potential candidate for gene-targeting drugs. The non-ionic backbone of PNA leads to stable hybrids with the nucleic acids, but at the same time, the neutral backbone results in poor cellular uptake. To address this problem, studies on modified PNA progress rapidly in recent years. We reviewed literature reports combined with our study about the delivery methods, including backbone modified PNA and PNA-ligand conjugates, and the cellular uptake of modified PNA. In addition, we summarized the problems and future prospect of the cellular delivery of modified PNA.

    • Application of optimized multi-enzyme combination and sample pretreatment in proteomics

      2016, 32(3):306-316. DOI: 10.13345/j.cjb.150373 CSTR: 32114.14.j.cjb.150373

      Abstract (1435) HTML (1820) PDF 257.97 K (7278) Comment (0) Favorites

      Abstract:Proteomics is a powerful subject focusing on large-scale study of protein structures and functions. A complete enzymatic digestion of protein complexes is the key step in modern high-resolution and high-throughput mass spectrometry (MS)-based identification and quantification. To achieve MS analysis, both peptide sample pretreatment and data acquisition are prerequisite?in proteomic studies. In this paper, we summarized both the enzymatic proprieties of three common proteolytic enzymes, Trypsin, Lys-C and Glu-C, the optimization of multi-enzyme combination and an advanced sample pretreatment in proteomics research.

    • >Animal and Veterinary Biotechnology
    • Cashmere goat bacterial artificial chromosome recombination and cell transfection system

      2016, 32(3):317-328. DOI: 10.13345/j.cjb.150293 CSTR: 32114.14.j.cjb.150293

      Abstract (1132) HTML (926) PDF 3.04 M (2685) Comment (0) Favorites

      Abstract:The Cashmere goat is mainly used to produce cashmere, which is very popular for its delicate fiber, luscious softness and natural excellent warm property. Keratin associated protein (KAP) and bone morphogenetic protein (BMP) of the Cashmere goat play an important role in the proliferation and development of cashmere fiber follicle cells. Bacterial artificial chromosome containing kap6.3, kap8.1 and bmp4 genes were used to increase the production and quality of cashmere. First, we constructed bacterial artificial chromosomes by homology recombination. Then Tol2 transposon was inserted into bacterial artificial chromosomes that were then transfected into Cashmere goat fibroblasts by amaxa nucleofector technology according to the manufacture’s instructions. We successfully constructed the BAC-Tol2 vectors containing target genes. Each vector contained egfp report gene with UBC promoter, Neomycin resistant gene for cell screening and two loxp elements for resistance removing after transfected into cells. The bacterial artificial chromosome-Tol2 vectors showed a high efficiency of transfection that can reach 1% to 6% with a highest efficiency of 10%. We also obtained Cashmere goat fibroblasts integrated exogenous genes (kap6.3, kap8.1 and bmp4) preparing for the clone of Cashmere goat in the future. Our research demonstrates that the insertion of Tol2 transposons into bacterial artificial chromosomes improves the transfection efficiency and accuracy of bacterial artificial chromosome error-free recombination.

    • BLG gene knockout and hLF gene knock-in at BLG locus in goat by TALENs

      2016, 32(3):329-338. DOI: 10.13345/j.cjb.150299 CSTR: 32114.14.j.cjb.150299

      Abstract (1295) HTML (644) PDF 1.48 M (3330) Comment (0) Favorites

      Abstract:To knock out β-lactoglobulin (BLG) gene and insert human lactoferrin (hLF) coding sequence at BLG locus of goat, the transcription activator-like effector nucleases (TALEN) mediated recombination was used to edit the BLG gene of goat fetal fibroblast, then as donor cells for somatic cell nuclear transfer. We designed a pair of specific plasmid TALEN-3-L/R for goat BLG exon Ⅲ recognition sites, and BLC14-TK vector containing a negative selection gene HSV-TK, was used for the knock in of hLF gene. TALENs plasmids were transfected into the goat fetal fibroblast cells, and the cells were screened three days by 2 μg/mL puromycin. DNA cleavage activities of cells were verified by PCR amplification and DNA production sequencing. Then, targeting vector BLC14-TK and plasmids TALEN-3-L/R were co-transfected into goat fetal fibroblasts, both 700 μg/mL G418 and 2 μg/mL GCV were simultaneously used to screen G418-resistant cells. Detections of integration and recombination were implemented to obtain cells with hLF gene site-specific integration. We chose targeting cells as donor cells for somatic cell nuclear transfer. The mutagenicity of TALEN-3-L/R was between 25% and 30%. A total of 335 reconstructed embryos with 6 BLG–/hLF+ targeting cell lines were transferred into 16 recipient goats. There were 9 pregnancies confirmed by ultrasound on day 30 to 35 (pregnancy rate of 39.1%), and one of 50-day-old fetus with BLG–/hLF+ was achieved. These results provide the basis for hLF gene knock-in at BLG locus of goat and cultivating transgenic goat of low allergens and rich hLF in the milk.

    • >Industrial Biotechnology
    • Lipid synthesis by an acidic acid tolerant Rhodotorula glutinis

      2016, 32(3):339-346. DOI: 10.13345/j.cjb.150318 CSTR: 32114.14.j.cjb.150318

      Abstract (1554) HTML (758) PDF 460.12 K (2806) Comment (0) Favorites

      Abstract:Acetic acid, as a main by-product generated in the pretreatment process of lignocellulose hydrolysis, significantly affects cell growth and lipid synthesis of oleaginous microorganisms. Therefore, we studied the tolerance of Rhodotorula glutinis to acetic acid and its lipid synthesis from substrate containing acetic acid. In the mixed sugar medium containing 6 g/L glucose and 44 g/L xylose, and supplemented with acetic acid, the cell growth was not inhibited when the acetic acid concentration was below 10 g/L. Compared with the control, the biomass, lipid concentration and lipid content of R. glutinis increased 21.5%, 171% and 122% respectively when acetic acid concentration was 10 g/L. Furthermore, R. glutinis could accumulate lipid with acetate as the sole carbon source. Lipid concentration and lipid yield reached 3.20 g/L and 13% respectively with the initial acetic acid concentration of 25 g/L. The lipid composition was analyzed by gas chromatograph. The main composition of lipid produced with acetic acid was palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid, including 40.9% saturated fatty acids and 59.1% unsaturated fatty acids. The lipid composition was similar to that of plant oil, indicating that lipid from oleaginous yeast R. glutinis had potential as the feedstock of biodiesel production. These results demonstrated that a certain concentration of acetic acid need not to be removed in the detoxification process when using lignocelluloses hydrolysate to produce microbial lipid by R. glutinis.

    • Effects of ggpS over-expression on glycosylglycerol and glycerol biosynthesis of Synechocystis sp. PCC 6803

      2016, 32(3):347-354. DOI: 10.13345/j.cjb.150307 CSTR: 32114.14.j.cjb.150307

      Abstract (1329) HTML (726) PDF 538.31 K (3579) Comment (0) Favorites

      Abstract:To study the roles of glucosylglycerol phosphate synthase (Ggps) in glucosylglycerol (GG) and glycerol biosynthesis, we over-expressed Ggps from either Synechocystis sp. PCC 6803 or Synechococcus sp. PCC 7002 in a Synechocystis strain with a high GG titer, and determined the GG and glycerol accumulation in the resultant mutants grown under different NaCl-stress conditions. Ion chromatography results revealed that GG yield was not improved, but glycerol production was significantly enhanced by over-expression of Ggps from Synechocystis sp. PCC 6803 (6803ggpS). In addition, increasing the NaCl concentration of medium from 600 to 900 mmol/L led to a further 75% increase of glycerol accumulation in the mutant strain with 6803ggpS over-expression. These findings show the role of ggpS in driving the carbon flux to the glycerol biosynthesis pathway, and will be helpful for further improvement of GG and glycerol production in Synechocystis.

    • Effect of N-terminal truncation of Bacillus acidopullulyticus pullulanase on enzyme properties and functions

      2016, 32(3):355-364. DOI: 10.13345/j.cjb.150322 CSTR: 32114.14.j.cjb.150322

      Abstract (1618) HTML (464) PDF 617.84 K (2800) Comment (0) Favorites

      Abstract:We constructed different N-terminal truncated variants based on Bacillus acidopullulyticus pullulanase 3D structure (PDB code 2WAN), and studied the effects of truncated mutation on soluble expression, enzymatic properties, and application in saccharification. Upon expression, the variants of X45 domain deletion existed as inclusion bodies, whereas deletion of CBM41 domain had an effective effect on soluble expression level. The variants that lack of CBM41 (M1), lack of X25 (M3), and lack both of CBM41 and X25 (M5) had the same optimal pH (5.0) and optimal temperature (60 ℃) with the wild-type pullulanase (WT). The Km of M1 and M5 were 1.42 mg/mL and 1.85 mg/ml, respectively, 2.4- and 3.1-fold higher than that of the WT. kcat/Km value of M5 was 40% lower than that of the WT. Substrate specificity results show that the enzymes exhibited greater activity with the low-molecular-weight dextrin than with high-molecular-weight soluble starch. When pullulanases were added to the saccharification reaction system, the dextrose equivalent of the WT, M1, M3, and M5 were 93.6%, 94.7%, 94.5%, and93.1%, respectively. These results indicate that the deletion of CBM41 domain and/or X25 domain did not affect the practical application in starch saccharification process. Furthermore, low-molecular-weight variants facilitate the heterologous expression. Truncated variants may be more suitable for industrial production than the WT.

    • >Marine Biotechnology
    • Expression of Pleurocidin from winter flounder in Escherichia coli and optimization of culture conditions

      2016, 32(3):365-374. DOI: 10.13345/j.cjb.150286 CSTR: 32114.14.j.cjb.150286

      Abstract (1573) HTML (910) PDF 1.88 M (3432) Comment (0) Favorites

      Abstract:To express Pleurocidin in Escherichia coli and to enhance the secretory efficiency of the fusion protein, the gene encoding Pleurocidin was ligated with Cherry DNA sequence via blunt-end ligation. Then this fusion gene was cloned into pET22b (+) vector and the recombinant plasmid was transformed into E. coli BL21 (DE3). Lactose was used to induce expression of fusion protein. The recombinant plasmid pET22b (+) -CP was successfully constructed and high-level expression of fusion protein was induced with lactose. Statistics showed that addition of glycine after 16 h of induction significantly enhanced the secretory efficiency of the fusion protein. After hydrolysis of the fusion protein by diluted hydrochloric acid and some further purification steps, r-Pleurocidin was obtained with antibacterial activity against E. coli DH5α and Bacillus subtilis BS168. In conclusion, the fusion protein was expressed in E. coli and biologically active r-Pleurocidin was obtained after hydrochloric acid cleavage and purification.

    • >Agricultural Biotechnology
    • Cloning and characterization of BmBrat in silkworm, Bombyx mori

      2016, 32(3):375-384. DOI: 10.13345/j.cjb.150330 CSTR: 32114.14.j.cjb.150330

      Abstract (1336) HTML (699) PDF 2.54 M (2265) Comment (0) Favorites

      Abstract:NHL proteins, which play important roles in regulation of cell proliferation and differentiation, have been extensively studied on mammals. Here, we cloned a member of NHL protein family namely BmBrat in silkworm. The full-length cDNA sequence of BmBrat was obtained by means of the rapid amplification of cDNA ends (RACE), including 3 614 bp. The ORF is 2 580 bp long, encoding a protein with 859 amino acid residues. The molecular weight is 94.3 kDa and the isoelectric point (pI) is 6.65. The BmBrat expression profile was detected by RT-PCR at L5D3 larval stage, and it was expressed in all tissues, including silk gland, midgut, fat body and malpighian tubule. However, it was highly expressed in ovary and head. The expression profile was also detected at different stage of embryo development, and reached a peak at the 4th and 5th days of the embryonic period. Anti-BmBrat polyclonal antibody was generated following prokaryotic expression, protein purification and mice immunization, which is highly specific and effective for recognizing BmBrat protein through Western blotting and immunofluorescence staining. Subcellular localization of BmBrat in hemocytes revealed that it was specifically expressed in cytoplasm. This study provides a foundation for further research of the biological function of BmBrat gene.

    • >Methods in Biotechnology
    • Low field nuclear magnetic resonance for rapid quantitation of microalgae lipid and its application in high throughput screening

      2016, 32(3):385-396. DOI: 10.13345/j.cjb.150489 CSTR: 32114.14.j.cjb.150489

      Abstract (1632) HTML (640) PDF 808.63 K (2533) Comment (0) Favorites

      Abstract:A rapid and accurate determination method of lipids in microalgae plays a significant role in an efficient breeding process for high-lipid production of microalgae. Using low field nuclear magnetic resonance (LF-NMR), we developed a direct quantitative method for cellular lipids in Chlorella protothecoides cells. The LF-NMR signal had a linear relationship with the lipid content in the microalgae cells for both dry cell samples and algal broth samples (R2>0.99). These results indicated that we could use this method for accurate determination of microalgal lipids. Although LF-NMR is a rapid and easy lipid determination method in comparison to conventional methods, low efficiency would limit its application in high throughput screening. Therefore, we developed a novel combined high throughput screening method for high-lipid content mutants of C. protothecoides. Namely, we initially applied Nile red staining method for semi-quantification of lipid in the pre-screening process, and following with LF-NMR method for accurate lipid determination in re-screening process. Finally, we adopted this novel screening method in the breeding process of high-lipid content heterotrophic cells of C. protothecoides. From 3 098 mutated strains 108 high-lipid content strains were selected through pre-screening process, and then 9 mutants with high-lipid production were obtained in the re-screening process. In a consequence, with heterotrophical cultivation of 168 h, the lipid concentration could reach 5 g/L, and the highest lipid content exceeded 20% (W/W), which was almost two-fold to that of the wild strain. All these results demonstrated that the novel breeding process was reliable and feasible for improving the screening efficiency.

Current Issue


Volume , No.

Table of Contents

Archive

Volume

Issue

Most Read

Most Cited

Most Downloaded