• Volume 38,Issue 1,2022 Table of Contents
    Select All
    Display Type: |
    • >Briefing and introduction by Editor-in-Chief
    • Briefing and introduction by Editor-in-Chief

      2022, 38(1):1-4. DOI: 10.13345/j.cjb.210947 CSTR: 32114.14.j.cjb.210947

      Abstract (257) HTML (550) PDF 420.94 K (899) Comment (0) Favorites

      Abstract:

    • >Review
    • Application of nanopore sequencing in environmental microbiology research

      2022, 38(1):5-13. DOI: 10.13345/j.cjb.210085 CSTR: 32114.14.j.cjb.210085

      Abstract (569) HTML (1044) PDF 513.25 K (1775) Comment (0) Favorites

      Abstract:The development of high-throughput sequencing techniques enabled a deeper and more comprehensive understanding of environmental microbiology. Specifically, the third-generation sequencing techniques represented by nanopore sequencing have greatly promoted the development of environmental microbiology research due to its advantages such as long sequencing reads, fast sequencing speed, real-time monitoring of sequencing data, and convenient machine carrying, as well as no GC bias and no PCR amplification requirement. This review briefly summarized the technical principle and characteristics of nanopore sequencing, followed by discussing the application of nanopore sequencing techniques in the amplicon sequencing, metagenome sequencing and whole genome sequencing of environmental microorganisms. The advantages and challenges of nanopore sequencing in the application of environmental microbiology research were also analyzed.

    • The mechanism of microbial removal of Mn(Ⅱ) and its influencing factors: a review

      2022, 38(1):14-25. DOI: 10.13345/j.cjb.210371 CSTR: 32114.14.j.cjb.210371

      Abstract (411) HTML (2684) PDF 676.08 K (1533) Comment (0) Favorites

      Abstract:Manganese is an element essential for living organisms. Development of industrial technologies and exploitation of mineral resources have led to the release of large amount of Mn(Ⅱ) into the environment, posing a serious threat to human health. Bioremediation can remove the Mn(Ⅱ) from the environment rapidly and effectively without generating secondary pollution, thus received increasing attention. This review summarized the diversity and distribution of Mn(Ⅱ) removal microorganisms and the associated mechanisms, followed by discussing the effect of environmental factors on microbial Mn(Ⅱ) removal. Finally, the challenges and prospects for bioremediation of Mn(Ⅱ) polluted wastewater were proposed.

    • Plant prime editing technique: a new genome editing tool for plants

      2022, 38(1):26-33. DOI: 10.13345/j.cjb.210291 CSTR: 32114.14.j.cjb.210291

      Abstract (626) HTML (3208) PDF 512.95 K (1370) Comment (0) Favorites

      Abstract:The CRISPR/Cas9 based prime editing (PE) technique enables all 12 types of base substitutions and precise small DNA deletions or insertions without generating DNA double-strand breaks. Prime editing has been successfully applied in plants and plays important roles in plant precision breeding. Although plant prime editing (PPE) can substantially expand the scope and capabilities of precise genome editing in plants, its editing efficiency still needs to be further improved. Here, we review the development of PPE technique, and introduce structural composition, advantages and limitations of PPE. Strategies to improve the PPE editing efficiency, including the Tm-directed PBS length design, the RT template length, the dual-pegRNA strategy, the PlantPegDesigner website, and the strategies for optimizing the target proteins of PPE, were highlighted. Finally, the prospects of future development and application of PPE were discussed.

    • Regulation of crop agronomic traits and abiotic stress responses by brassinosteroids: a review

      2022, 38(1):34-49. DOI: 10.13345/j.cjb.210236 CSTR: 32114.14.j.cjb.210236

      Abstract (694) HTML (1366) PDF 617.19 K (1539) Comment (0) Favorites

      Abstract:Plant adaptation to adverse environment depends on transmitting the external stress signals into internal signaling pathways, and thus forming a variety of stress response mechanisms during evolution. Brassinosteroids (BRs) is a steroid hormone and widely involved in plant growth, development and stress response. BR is perceived by cell surface receptors, including the receptor brassinosteroid-insensitive 1 (BRI1) and the co-receptor BRI1-associated-kinase 1 (BAK1), which in turn trigger a signaling cascade that leads to the inhibition of BIN2 and activation of BES1/BZR1 transcription factors. BES1/BZR1 can directly regulate the expression of thousands of downstream responsive genes. Studies in the model plant Arabidopsis thaliana have shown that members of BR biosynthesis and signal transduction pathways, particularly protein kinase BIN2 and its downstream transcription factors BES1/BZR1, can be extensively regulated by a variety of environmental factors. In this paper, we summarize recent progresses on how BR biosynthesis and signal transduction are regulated by complex environmental factors, as well as how BR and environmental factors co-regulate crop agronomic traits, cold and salt stress responses.

    • Advances of salt stress-responsive transcription factors in plants

      2022, 38(1):50-65. DOI: 10.13345/j.cjb.210135 CSTR: 32114.14.j.cjb.210135

      Abstract (881) HTML (1804) PDF 1.08 M (1530) Comment (0) Favorites

      Abstract:Salt stress may cause primary osmotic stress and ion toxicity, as well as secondary oxidative stress and nutritional stress in plants, which hampers the agricultural production. Salt stress-responsive transcription factors can mitigate the damage of salt stress to plants through regulating the expression of downstream target genes. Based on the soil salinization and its damage to plants, and the central regulatory role of transcription factors in the plant salt stress-responsive signal transduction network, this review summarized the salt stress-responsive signal transduction pathways that the transcription factors are involved, and the application of salt stress-responsive transcription factors to enhance the salt tolerance of plants. We also reviewed the transcription factors-regulated complex downstream gene network which is formed by forming homo- or heterodimers between transcription factors and by forming complexes with regulatory proteins. This paper provides a theoretical basis for understanding the role of salt stress-responsive transcription factors in the salt stress regulatory network, which may facilitate the molecular breeding for improved stress resistance.

    • Advances in the research of microRNA in Orchidaceae

      2022, 38(1):66-76. DOI: 10.13345/j.cjb.210118 CSTR: 32114.14.j.cjb.210118

      Abstract (365) HTML (1221) PDF 535.03 K (1224) Comment (0) Favorites

      Abstract:As a class of small non-coding RNAs, microRNA (miRNA) is widely present and plays important regulatory roles in plant growth, development and stress response. Based on the mechanism of miRNAs in plants, we review the identification of miRNAs in some genera of Orchidaceae, the specific functions of several miRNAs and other relevant studies on miRNAs in the last decade, in order to provide a reference for better understanding function and regulatory network of small RNAs in orchids.

    • The physiology of plant seed aging: a review

      2022, 38(1):77-88. DOI: 10.13345/j.cjb.210128 CSTR: 32114.14.j.cjb.210128

      Abstract (541) HTML (1734) PDF 483.89 K (2040) Comment (0) Favorites

      Abstract:Seed quality plays an important role in the agricultural and animal husbandry production, the effective utilization of genetic resources, the conservation of biodiversity and the restoration and reconstruction of plant communities. Seed aging is a common physiological phenomenon during storage. It is a natural irreversible process that occurs and develops along with the extension of seed storage time. It is not only related to the growth, yield and quality of seed and seedling establishment, but also has an important effect on the conservation, utilization and development of plant germplasm resources. The physiological mechanisms of seed aging are complex and diverse. Most studies focus on conventional physiological characterization, while systematic and comprehensive in-depth studies are lacking. Here we review the recent advances in understanding the physiology of seed aging process, including the methods of seed aging, the effect of aging on seed germination, and the physiological and molecular mechanisms of seed aging. The change of multiple physiological parameters, including seed vigor, electrical conductivity, malondialdehyde content and storage material in the seed, antioxidant enzyme activity and mitochondrial structure, were summarized. Moreover, insights into the mechanism of seed aging from the aspects of transcriptome, proteome and aging related gene function were summarized. This study may facilitate the research of seed biology and the conservation and utilization of germplasm resources.

    • The role of SnRK2 in the response to stress, the growth and development of plants

      2022, 38(1):89-103. DOI: 10.13345/j.cjb.210267 CSTR: 32114.14.j.cjb.210267

      Abstract (837) HTML (1250) PDF 729.46 K (1601) Comment (0) Favorites

      Abstract:Sucrose non-fermenting-1-related protein kinase 2 (SnRK2) is a specific Ser/Thr protein kinase in plants. SnRK2 can regulate the expression of downstream genes or transcription factors through phosphorylation of substrates to achieve stress resistance regulation in different tissue parts, and make plants adapt to adverse environment. SnRK2 has a small number of members and a molecular weight of about 40 kDa, and contains a conserved N-terminal kinase domain and a divergent C-terminal regulatory domain, which plays an important role in the expression of enzyme. This review summarized the recent research progresses on the discovery, structure, and classification of SnRK2, and its function in response to various stresses and in regulating growth and development, followed by prospecting the future research direction of SnRK2. This review may provide a reference for genetic improvement of crop stress resistance.

    • Advances in the preparation of alginate oligosaccharides and its biological functions

      2022, 38(1):104-118. DOI: 10.13345/j.cjb.210377 CSTR: 32114.14.j.cjb.210377

      Abstract (705) HTML (1734) PDF 793.61 K (1462) Comment (0) Favorites

      Abstract:Alginate is a group of polyuronic saccharides that are widely used in pharmaceutical and food industry due to its unique physicochemical properties and beneficial health effects. However, the low water solubility and high viscosity of alginate hampered its application. Alginate oligosaccharide (AOS) is a decomposition product of alginate and has received increasing attention due to its low molecular weight, high water solubility, safety, and non-toxicity. The wide-ranging biological functions of AOS are closely related to its structural diversity. AOS with distinct structures and biological functions can be obtained by different methods of preparation. This review summarized the biological functions of AOS reported to date, including anti-tumor, immunomodulatory, anti-inflammatory, antioxidant, prebiotic, and anti-diabetes. The preparation of AOS, as well as the relationship between the structure and biological functions of AOS were discussed, with the aim to provide a reference for further development and application of AOS.

    • The effect of fat mass and obesity associated proteins mediated mRNA m6A modification on animal fat deposition and its application prospects

      2022, 38(1):119-129. DOI: 10.13345/j.cjb.210290 CSTR: 32114.14.j.cjb.210290

      Abstract (298) HTML (1349) PDF 577.96 K (1130) Comment (0) Favorites

      Abstract:In the process of animal fat deposition, the proliferation and differentiation of pre-adipocytes and the change of lipid droplet content in adipocytes are regulated by a series of transcription factors and signal pathways. Although researchers have conducted in-depth studies on the transcriptional regulation mechanisms of adipogenesis, there are relatively few reports on post-transcriptional modification on mRNA levels. The modification of mRNA m6A regulated by methyltransferase, demethylase and methylation reading protein is a dynamic and reversible process, which is closely related to fat deposition in animals. Fat mass and obesity associated proteins (FTO) act as RNA demethylases that affect the expression of modified genes and play a key role in fat deposition. This article summarized the mechanism of FTO-mediated demethylation of mRNA m6A in the process of animal fat deposition, suggesting that FTO may become a target for effective treatment of obesity. Moreover, this review summarized the development of FTO inhibitors in recent years.

    • >Animal and Veterinary Biotechnology
    • Preparation of bovine viral diarrhea disease virus 1 virus-like particles and evaluation of its immunogenicity in a guinea pig model

      2022, 38(1):130-138. DOI: 10.13345/j.cjb.210196 CSTR: 32114.14.j.cjb.210196

      Abstract (334) HTML (1284) PDF 880.97 K (962) Comment (0) Favorites

      Abstract:In order to obtain virus-like particles (VLPs) for prevention of bovine viral diarrhea virus 1 (BVDV-1), the C-Erns-E1-E2 region was cloned into a pFastBacDaul vector for generating the recombinant Bacmid-BVDV-1 in DH10Bac Escherichia coli. The recombinant baculovirus Baculo-BVDV-1 was produced by transfecting the Sf9 cells with Bacmid-BVDV-1. The expressed protein and the assembled VLPs were determined by immunofluorescence, Western blotting and electron microscopy. Guinea pigs were immunized with inactivated VLPs coupled with the Montanide ISA-201 adjuvant. The immunogenicity of VLPs was evaluated by monitoring the humoral immune response with neutralizing antibody titer determination, as well as by analyzing the cell-mediated immune response with lymphocyte proliferation assay. The protective efficacy of VLPs was evaluated by challenging with 106 TCID50 virulent BVDV-1 strain AV69. The results showed that the recombinant Baculo-BVDV-1 efficiently expressed BVDV structural protein and form VLPs in infected Sf9 cells. The immunization of guinea pigs with VLPs resulted in a high titer (1:144) of neutralizing antibody, indicating an activated cellular immunity. Significantly lower viral RNA in the blood of the post-challenged immunized guinea pigs was observed. The successful preparation of BVDV VLPs with insect cell expression system and the observation of the associated immunogenicity may facilitate further development of a VLPs-based vaccine against BVD.

    • Expression and refolding of OLA Ⅰ protein with peptides derived from sheeppox virus

      2022, 38(1):139-147. DOI: 10.13345/j.cjb.210164 CSTR: 32114.14.j.cjb.210164

      Abstract (230) HTML (585) PDF 570.62 K (786) Comment (0) Favorites

      Abstract:The aim of this study was to refold the OvisAries leukocyte antigen (OLA) class Ⅰ protein with peptides derived from sheeppox virus (SPPV) to identify SPPV T cell epitopes. Two pairs of primers were designed based on the published sequence of a sheep major histocompatibility complex Ⅰ to amplify the heavy chain gene of OLA Ⅰ α-BSP and the light chain gene of OLA Ⅰ-β2m. Both genes were cloned into a pET-28a(+) expression vector, respectively, and induced with ITPG for protein expression. After purification, the heavy chain and light chain proteins as well as peptides derived from SPPV were refolded at a ratio of 1:1:1 using a gradual dilution method. Molecular exclusion chromatography was used to test whether these peptides bind to the OLA Ⅰ complex. T-cell responses were assessed using freshly isolated PBMCs from immunized sheep through IFN-γ ELISPOT with peptides derived from SPPV protein. The results showed that the cloned heavy chain and light chain expressed sufficiently, with a molecular weight of 36.3 kDa and 16.7 kDa, respectively. The protein separated via a SuperdexTM 200 increase 10/300 GL column was collected and verified by SDS-PAGE after refolding. One SPPV CTL epitope was identified after combined refolding and functional studies based on T-cell epitopes derived from SPPV. An OLA Ⅰ/peptide complex was refolded correctly, which is necessary for the structural characterization. This study may contribute to the development of sheep vaccine based on peptides.

    • Prokaryotic expression of the GapC protein of Streptococcus uberis and prediction, identification of its B-cell epitopes

      2022, 38(1):148-159. DOI: 10.13345/j.cjb.210285 CSTR: 32114.14.j.cjb.210285

      Abstract (307) HTML (870) PDF 1.10 M (817) Comment (0) Favorites

      Abstract:The GapC protein of Streptococcus uberis located on the surface of bacteria is a protein with glyceraldehyde-3-phosphate dehydrogenase activity. It participates in cellular processes and exhibits a variety of biological activities. In addition, it has good antigenicity. The aim of this study was to predict the possible B-cell epitopes of the GapC protein and verify the immunogenicity of candidate epitope peptides. The gapC gene of S. uberis isolate RF5-1 was cloned into a recombinant expression plasmid pET-28a-GapC and inducibly expressed. The purified protein was used to immunize experimental rabbits to produce anti-GapC polyclonal antibodies. The three-dimensional structure and three-dimensional location of the GapC B-cell epitopes and the homology comparison of the GapC protein and its B-cell epitopes were carried out using bioinformatics softwares. The results showed that the 44-kDa GapC protein had a good immunological reactivity. Six linear and 3 conformational dominant B-cell epitopes against the GapC protein were selected and synthesized. Three dimensional analysis indicated that the selected peptides have better antigen epitope formation potential. Rabbit anti-GapC polyclonal antibodies were generated after immunized with the purified GapC protein, and the polyclonal antibodies were used to identify the epitope peptide by an indirect ELISA. The ELISA results showed that all of the 9 epitope peptides could react with anti-GapC polyclonal antibodies with varying titers. Among them, the epitope polypeptide 266AANDSYGYTEDPIVSSD282 reacted with the polyclonal antibodies significantly stronger than with other epitope peptides. This study laid an experimental foundation for in-depth understanding of the immunological properties and utilizing effective epitopes of the GapC protein of S. uberis.

    • Characterization of a monoclonal antibody against the hemagglutinin stem of H7N9 subtype avian influenza virus

      2022, 38(1):160-173. DOI: 10.13345/j.cjb.210173 CSTR: 32114.14.j.cjb.210173

      Abstract (300) HTML (1000) PDF 972.75 K (834) Comment (0) Favorites

      Abstract:The conserved hemagglutinin (HA) stem region of avian influenza virus (AIV) is an important target for designing broad-spectrum vaccines, therapeutic antibodies and diagnostic reagents. Previously, we obtained a monoclonal antibody (mAb) (5D3-1B5) which was reactive with the HA stem epitope (aa 428–452) of H7N9 subtype AIV. To systematically characterize the mAb, we determined the antibody titers, including the HA-binding IgG, hemagglutination-inhibition (HI) and virus neutralizing (VN) titers. In addition, the antigenic epitope recognized by the antibody as well as the sequence and structure of the antibody variable region (VR) were also determined. Moreover, we evaluated the cross-reactivity of the antibody with influenza virus strains of different subtypes. The results showed that the 5D3-1B5 antibody had undetectable HI and VN activities against H7N9 virus, whereas it exhibited strong reactivity with the HA protein. Using the peptide-based enzyme-linked immunosorbent assay and biopanning with a phage-displayed random peptide library, a motif with the core sequence (431W-433Y-437L) in the C-helix domain in the HA stem was identified as the epitope recognized by 5D3-1B5. Moreover, the mAb failed to react with the mutant H7N9 virus which contains mutations in the epitope. The VR of the antibody was sequenced and the complementarity determining regions in the VR of the light and heavy chains were determined. Structural modeling and molecular docking analysis of the VR verified specific binding between the antibody and the C-helix domain of the HA stem. Notably, 5D3-1B5 showed a broad cross-reactivity with influenza virus strains of different subtypes belonging to groups 1 and 2. In conclusion, 5D3-1B5 antibody is a promising candidate in terms of the development of broad-spectrum virus diagnostic reagents and therapeutic antibodies. Our findings also provided new information for understanding the epitope characteristics of the HA protein of H7N9 subtype AIV.

    • Molecular design and biological activity analysis of antimicrobial peptide RIKL

      2022, 38(1):174-184. DOI: 10.13345/j.cjb.210219 CSTR: 32114.14.j.cjb.210219

      Abstract (437) HTML (1304) PDF 911.38 K (1391) Comment (0) Favorites

      Abstract:Natural antimicrobial peptides have strong bactericidal activities. An obstacle of the development of antimicrobial peptides resides in the difficulty of developing peptides with high biocompatibility. In this study, molecular dynamics analysis was employed to assess the structural characteristics and biological activities of peptides. A (RXKY)2(YRY)2 structure was used as a template to design an antimicrobial peptide RIKL of high-efficiency and low-toxicity, where X represents Ile and Y represents Leu. The secondary structure of the antimicrobial peptide was detected by circular dichroism (CD), and the structures of RIKL in water and in POPC/POPG membrane environment were measured using molecular dynamics. The biological activity of RIKL was further studied by assessing its antimicrobial activity, hemolytic activity, eukaryotic cytotoxicity, and salt ion stability. CD results showed that RIKL presented an α-helical structure in a simulated bacterial membrane environment. Molecular dynamics simulation predicted that the secondary structure of RIKL could be partly retained in water and POPG environment, while this secondary structure was weakened in the POPC environment. Antimicrobial test suggested that RIKL had high antimicrobial activities, and the geometric mean of the Minimum Inhibitory Concentration (MIC) was 3.1 μmol/L. The hemolysis indicated that RIKL had no hemolytic activity within the detection range, and cytotoxicity test suggested the cytotoxicity of RIKL was low. Stability test showed that RIKL maintained antimicrobial activities under different pH, serum concentrations and salt environments. Based on the above results, RIKL has high cell selectivity and has the potential as a highly effective antibacterial drug.

    • Development of a double-antibody sandwich ELISA targeting the receptor binding domain of TcdB toxin of ST11 type Clostridium difficile of porcine origin

      2022, 38(1):185-195. DOI: 10.13345/j.cjb.210363 CSTR: 32114.14.j.cjb.210363

      Abstract (199) HTML (729) PDF 638.29 K (1023) Comment (0) Favorites

      Abstract:Clostridium difficile is an important zoonotic intestinal pathogen, which is widely present in humans and a variety of animals. The ST11 type C. difficile is one of the most widespread and harmful subtypes in the world. As a large country in pig farming, China lacks efficient methods for detecting C. difficile of porcine origin, leaving hidden dangers for the prevention and control of C. difficile. The aim of this study was to develop a specific and sensitive double-antibody sandwich ELISA for the epidemiological investigation of ST11 type C. difficile of porcine origin. Firstly, a 97 kDa receptor binding domain (RBD) was expressed in a prokaryotic host and purified. A hybridoma cell line AE2D3 capable of stably secreting monoclonal antibody targeting the RBD was screened, and the antibody subtype was determined to be IgG2b (κ). Secondly, a double antibody sandwich ELISA method was developed, where the monoclonal antibody targeting the RBD was used as a detection antibody, and the rabbit polyclonal antibody was used as a capture antibody. The chessboard method was used to determine the matching concentration of the capture antibody and the detection antibody, the antigen coating conditions, the blocking conditions, the incubation conditions for detection antibody and samples to be tested, as well as the reaction conditions of HRP-conjugated and reaction conditions of TMB chromogenic solution. The negative cutoff OD450 was 0.152, and no cross-reaction with 13 strains of non-ST11 type C. difficile was found. The minimum detection concentration of RBD was 8.83 ng/mL. This specific and sensitive double-antibody sandwich ELISA provides a reliable serological detection method for epidemiological investigation of the ST11 type C. difficile in pig industry.

    • Construction of transgenic mice with Δ15 Des enzyme activity by using a PiggyBac transposon

      2022, 38(1):196-206. DOI: 10.13345/j.cjb.210210 CSTR: 32114.14.j.cjb.210210

      Abstract (236) HTML (1086) PDF 751.68 K (1153) Comment (0) Favorites

      Abstract:Essential fatty acids are those that could not be synthesized by the body itself but crucial for health and life. Studies have shown that ω-3 fatty acids may facilitate human physiological functions. Mammals lack ω-3 desaturase gene, and the Δ15 fatty acid desaturase (Δ15 Des) from Caenorhabditis elegans can transform the ω-6 polyunsaturated fatty acids (PUFAs) into ω-3 PUFAs. Transgenic mice expressing Δ15 Des enzyme activity was constructed by using a PiggyBac transposon (PB). Homozygous transgenic mice with stable inheritance was bred in a short time, with a positive rate of 35.1% achieved. The mice were fed with 6% ω-6 PUFAs and the changes of fatty acids in mice were detected by gas chromatography (GC). The expression level of Δ15 Des in mice was detected by quantitative PCR (qPCR) and Western blotting (WB). qPCR and GC analysis revealed that the percentage of positive mice harboring the active gene was 61.53%. Compared with traditional methods, the transformation efficiency and activity of Δ15 Des were significantly improved, and homozygotes showed higher activity than that of heterozygotes. This further verified the efficient transduction efficiency of the PiggyBac transposon system.

    • >Environmental Biotechnology
    • Characterization of Humicola insolens cutinase-tachystatin A2 fusion protein and its application in treatment of recycled paper stickies

      2022, 38(1):207-216. DOI: 10.13345/j.cjb.210031 CSTR: 32114.14.j.cjb.210031

      Abstract (345) HTML (1205) PDF 668.82 K (994) Comment (0) Favorites

      Abstract:With the decrease of forest timber resources, the recycling of waste paper has received increasing attention. However, the stickies produced in the process of waste paper recycling may negatively affect the production of recycled paper. The biological decomposition of stickies, which has the advantages of high efficiency, high specificity and pollution-free, is achieved mainly through the enzymatic cleavage of the ester bond in the stickies components to prevent flocculation. Cutinase is a serine esterase that can degrade some components of the stickies. Previous research indicated that the anchor peptide tachystatin A2 (TA2) is able to bind polyurethane. In this study, the cutinase HiC derived from Humicola insolens was used to construct a fusion protein HiC-TA2 by megaprimer PCR of the whole plasmid (MEGAWHOP). The enzymatic properties and the degradation efficiency of the fusion protein on poly(ethyl acrylate) (PEA), a model substrate of stickies component, were determined. The results showed that the degradation efficiency, the size decrease of PEA particle, and the amount of ethanol produced by HiC-TA2 were 1.5 times, 6.8 times, and 1.4 times of that by HiC, respectively. These results demonstrated that TA2 improved the degradation efficiency of HiC on PEA. This study provides a useful reference for biological decomposition of stickies produced in the process of recycled paper production.

    • The application of carbohydrate binding module-Thermobifida fusca cutinase fusion protein in polyethylene terephthalate degradation

      2022, 38(1):217-225. DOI: 10.13345/j.cjb.210036 CSTR: 32114.14.j.cjb.210036

      Abstract (360) HTML (911) PDF 627.54 K (1144) Comment (0) Favorites

      Abstract:With the development of global economy, the dramatically increased production of polyethylene terephthalate (PET) plastics has led to a remarkably increased amount of plastic waste. PET waste can be treated by landfill, incineration, or biodegradation. While landfilling and incineration may cause secondary pollution, biodegradation has since received increased attentions due to its environmental friendliness. Recent studies have indicated that the carbohydrate binding module (CBM) can effectively enhance the binding of PET degrading enzymes to PET, and consequently increasing PET degradation rate. Here we constructed a fusion protein BaCBM2-Tfuc containing the BaCBM2 from Bacillus anthraci and the cutinase Tfuc from Thermobifida fusca, by megaprimer PCR of whole plasmids (MEGAWHOP). Notabaly, the PET film degradation efficiency (at 60 ℃) of BaCBM2-Tfuc was 2.8 times that of Tfuc. This study may provide technical support for constructing fusion proteins capable of efficiently degrading PET.

    • Enhanced heterologous expression of the cytochrome c from uncultured anaerobic methanotrophic archaea

      2022, 38(1):226-237. DOI: 10.13345/j.cjb.210193 CSTR: 32114.14.j.cjb.210193

      Abstract (296) HTML (1236) PDF 933.92 K (918) Comment (0) Favorites

      Abstract:Cytochrome c is a type of heme proteins that are widely distributed in living organisms. It consists of heme and apocytochrome c, and has potential applications in bioelectronics, biomedicine and pollutant degradation. However, heterologous overexpression of cytochrome c is still challenging. To date, expression of the cytochrome c from uncultured anaerobic methanotrophic archaea has not been reported, and nothing is known about the function of this cytochrome c. A his tagged cytochrome c was successfully expressed in E. coli by introducing a thrombin at the N-terminus of CytC4 and co-expressing CcmABCDEFGH, which is responsible for the maturation of cytochrome c. Shewanella oneidensis, which naturally has enzymes for cytochrome c maturation, was then used as a host to further increase the expression of CytC4. Indeed, a significantly higher expression of CytC4 was achieved in S. oneidensis when compared with in E. coli. The successful heterologous overexpression of CytC4 will facilitate the exploitation of its physiological functions and biotechnological applications.

    • Identification of heat stress transcription factors gene family in Setcreasea purpurea and analysis of its expression pattern under Cu2+ stress

      2022, 38(1):238-251. DOI: 10.13345/j.cjb.210012 CSTR: 32114.14.j.cjb.210012

      Abstract (221) HTML (749) PDF 1.49 M (954) Comment (0) Favorites

      Abstract:Heat stress transcription factors (Hsf) family is one of the most important transcription factor families in plants, and plays an important role in the growth and development of plants when encountering abiotic stresses such as heat, drought, and heavy metals. In this study, 20 SpbHsf genes were identified from the full-length transcriptome database of Setcreasea purpurea, and the structure and function of the Hsf gene family were analyzed using bioinformatics tools and qRT-PCR. The results showed that all SpbHsf proteins were hydrophilic. There were 12 SpbHsf proteins located in the nucleus, and the content of α-helix and random coil in the secondary structure of all SpbHsf proteins was high. The SpbHsf genes are divided into three subfamilies, each of which contains unique conserved motifs. All SpbHsf proteins contain DBD and HR-A/B domains. Phylogenetic analysis showed that OsHsf in Oryza sativa protein had the highest homology with SpbHsf protein. All the 20 SpbHsf genes were expressed in the root tissues of S. purpurea. Among them, 8 were significantly up-regulated while 8 were significantly down-regulated under Cu2+ stress. This study may help better understand the function and expression pattern of the S. purpurea Hsf gene family.

    • >Agricultural Biotechnology
    • Comprehensive evaluation of salt-alkali tolerance of rice germplasms at germination and seedling stages and analysis of salt-tolerant genes

      2022, 38(1):252-263. DOI: 10.13345/j.cjb.210401 CSTR: 32114.14.j.cjb.210401

      Abstract (469) HTML (1550) PDF 735.83 K (1155) Comment (0) Favorites

      Abstract:Cultivating salt-alkali tolerant rice varieties is one of the important ways to meet the increasing food demand of growing global population. In this study, twenty-one rice germplasms with different salt-alkali tolerance were treated with six salt-alkali concentrations at germination and seedling stages. The germination potential, germination rate, shoot length, root length, root number, fresh weight of shoot and seedlings were measured. The average value of salt damage rate was used to evaluate the salt-alkali tolerance. As the salt-alkali concentration increases, the inhibition on seed germination and growth became more obvious. Upon treatment with 1% NaCl plus 0.25% NaHCO3, the salt damage rate of germination rate has the largest variation, ranging from 0% to 89.80%. The salt damage rate of each trait shows a similar trend at all concentrations. Four germplasm resources with strong salt-alkali tolerance (Dajiugu, Nippobare, Mowanggu and 02428) and 7 sensitive germplasms were screened. The salt-tolerant gene sequence of 4 salt-alkali tolerant varieties and 3 sensitive germplasms were analyzed. OSHAL3 and OsRR22 were identical among the 7 germplasms, but SKC1 and DST showed clear variations between the salt-alkali tolerant and sensitive germplasms. Besides the salt-alkali tolerant germplasm resources, this study can also serve as a reference for mining of genes involved in salt-alkali tolerance and breeding of salt-alkali tolerant rice varieties.

    • Identification of laccase gene family members in peach and its relationship with chilling induced browning

      2022, 38(1):264-274. DOI: 10.13345/j.cjb.210381 CSTR: 32114.14.j.cjb.210381

      Abstract (256) HTML (1074) PDF 945.13 K (889) Comment (0) Favorites

      Abstract:The laccase (PpLAC) gene family members in peach fruit were identified and the relationship between their expression pattern and chilling induced browning were investigated. The study was performed using two varieties of peaches with different chilling tolerance, treated with or without exogenous γ-aminobutyric acid (GABA) during cold storage. Twenty-six genes were screened from the peach fruit genome. These genes were distributed on 6 chromosomes and each contained 5–7 exons. The PpLAC gene family members shared relatively similar gene structure and conserved motifs, and they were classified into 7 subgroups based on the cluster analysis. Transcriptome sequencing revealed that the expression levels of PpLAC7 and PpLAC9 exhibited an increasing pattern under low temperature storage, and displayed a similar trend with the browning index of peach fruit. Notably, GABA treatment reduced the degree of browning and inhibited the expression of PpLAC7 and PpLAC9. These results suggested that PpLAC7 and PpLAC9 might be involved in the browning of peach fruit during cold storage.

    • Cloning, structure analysis and functional verification of MYB10 in Ribes L.

      2022, 38(1):275-286. DOI: 10.13345/j.cjb.210123 CSTR: 32114.14.j.cjb.210123

      Abstract (268) HTML (703) PDF 1.19 M (827) Comment (0) Favorites

      Abstract:This study aims to investigate the molecular mechanism of the transcription factor MYB10, which is involved in anthocyanin biosynthesis, in different colors of Ribes L. fruitification. Rapid amplification of cDNA ends (RACE) was used to clone the MYB10 genes from Ribes nigrum L. (RnMYB10), Ribes rubrum L. (RrMYB10), and Ribes album L. (RaMYB10), respectively. Phylogenetic analysis showed that RnMYB10 and RrMYB10 were evolutionarily homologous. Real-time quantitative PCR (RT-qPCR) showed that the expression of MYB10 in the fruits of Ribes nigrum L. was higher than that of Ribes rubrum L. and much higher than that of Ribes album L. The expression of RnMYB10 and RrMYB10 increased at first and then decreased as the fruit diameter increased and the fruit color deepened (the maximum expression level was reached at 75% of the fruit color change), while the expression level of RaMYB10 was very low. Overexpression of RnMYB10 and RrMYB10 in Arabidopsis thaliana resulted in purple petioles and leaves, whereas overexpression of RaMYB10 resulted in no significant color changes. This indicates that MYB10 gene plays an important role in the coloration of Ribes L. fruit.

    • Arbuscular mycorrhizal fungi enhanced cadmium uptake in Photinia frase through altering root transcriptomes and root-associated microbial communities

      2022, 38(1):287-302. DOI: 10.13345/j.cjb.210177 CSTR: 32114.14.j.cjb.210177

      Abstract (305) HTML (1192) PDF 1.02 M (979) Comment (0) Favorites

      Abstract:As a non-essential metal, cadmium (Cd) pollution poses severe threats to plant growth, environment, and human health. Phytoextraction using nursery stocks prior to their transplantation is a potential useful approach for bioremediation of Cd contaminated soil. A greenhouse pot experiment was performed to investigate the growth, Cd accumulation, profiles of transcriptome as well as root-associated microbiomes of Photinia frase in Cd-added soil, upon inoculation of two types of arbuscular mycorrhizal fungi (AMF) Sieverdingia tortuosa and Funneliformis mosseae. Compared with the control, inoculation of F. mosseae increased Cd concentrations in root, stem and leaf by 57.2%, 44.1% and 71.1%, respectively, contributing to a total Cd content of 182 μg/plant. KEGG pathway analysis revealed that hundreds of genes involved in 'Mitogen-activated protein kinase (MAPK) signaling pathway', 'plant hormone signal transduction', 'biosynthesis of secondary metabolites' and 'glycolysis/gluconeogenesis' were enriched upon inoculation of F. mosseae. The relative abundance of Acidobacteria was increased upon inoculation of S. tortuosa, while Chloroflexi and Patescibacteria were increased upon inoculation of F. mosseae, and the abundance of Glomerales increased from 23.0% to above 70%. Correlation analysis indicated that ethylene-responsive transcription factor, alpha-aminoadipic semialdehyde synthase, isoamylase and agmatine deiminase related genes were negatively associated with the relative abundance of Glomerales operational taxonomic units (OTUs) upon inoculation of F. mosseae. In addition, plant cysteine oxidase, heat shock protein, cinnamoyl-CoA reductase and abscisic acid receptor related genes were positively associated with the relative abundance of Patescibacteria OTUs upon inoculation of F. mosseae. These finding suggested that AMF can enhance P. frase Cd uptake by modulating plant gene expression and altering the structure of the soil microbial community. This study provides a theoretical basis for better understanding the relationship between root-associated microbiomes and root transcriptomes of P. frase, from which a cost-effective and environment-friendly strategy for phytoextraction of Cd in Cd-polluted soil might be developed.

    • Transcriptome analysis reveals the role of withering treatment in flavor formation of oolong tea (Camellia sinensis)

      2022, 38(1):303-327. DOI: 10.13345/j.cjb.210276 CSTR: 32114.14.j.cjb.210276

      Abstract (335) HTML (832) PDF 1.70 M (920) Comment (0) Favorites

      Abstract:Oolong tea is a semi-fermented tea with strong flavor, which is widely favored by consumers because of its floral and fruity aroma as well as fresh and mellow taste. During the processing of oolong tea, withering is the first indispensable process for improving flavor formation. However, the molecular mechanism that affects the flavor formation of oolong tea during withering remains unclear. Transcriptome sequencing was used to analyze the difference among the fresh leaves, indoor-withered leaves and solar-withered leaves of oolong tea. A total of 10 793 differentially expressed genes were identified from the three samples. KEGG enrichment analysis showed that the differentially expressed genes were mainly involved in flavonoid synthesis, terpenoid synthesis, plant hormone signal transduction and spliceosome pathways. Subsequently, twelve differentially expressed genes and four differential splicing genes were identified from the four enrichment pathways for fluorescence quantitative PCR analysis. The results showed that the expression patterns of the selected genes during withering were consistent with the results in the transcriptome datasets. Further analysis revealed that the transcriptional inhibition of flavonoid biosynthesis-related genes, the transcriptional enhancement of terpenoid biosynthesis-related genes, as well as the jasmonic acid signal transduction and the alternative splicing mechanism jointly contributed to the flavor formation of high floral and fruity aroma and low bitterness in solar-withered leaves. The results may facilitate better understanding the molecular mechanisms of solar-withering treatment in flavor formation of oolong tea.

    • Chloroplast genome phylogeny and codon preference of Docynia longiunguis

      2022, 38(1):328-342. DOI: 10.13345/j.cjb.210298 CSTR: 32114.14.j.cjb.210298

      Abstract (313) HTML (1092) PDF 1.23 M (1034) Comment (0) Favorites

      Abstract:Docynia longiunguis is a plant uniquely present in China and is of high edible and medicinal value. The analysis of its chloroplast genome will help clarify the phylogenetic relationship among Docynia and facilitate the development and utilization of D. longiunguis resources. Based on the alignment of chloroplast genome sequences of related species, the phylogeny and codon preference were analyzed. The total length of D. longiunguis chloroplast genome sequence was 158 914 bp (GenBank accession number is MW367027), with an average GC content of 36.7%. The length of the large single-copy (LSC), the small single-copy (SSC), and inverted repeats (IRs) are 87 020 bp, 19 156 bp, and 26 369 bp, respectively. A total of 102 functional genes were annotated, including 72 protein-coding genes, 26 tRNA genes, and 4 rRNA genes. The best model for constructing phylogenetic tree was TVM+F+R2. D. longiunguis and Docynia indica were clustered into a single group, while Docynia and Malus were clustered into a single group. Comparison of the chloroplast genome sequences of D. longiunguis and its five related species revealed that trnY (GUA)-psbD, ndhC-trnV (UAC), accD-psaI, psbZ-trnfM (CAU), ndhF-trnL gene regions varied greatly. The nucleic acid diversity analysis showed that there were 11 high variation areas with nucleotide variability > 0.01, all were located in the LSC and SSC regions. Except for D. longiunguis, the trnH genes in other sequences were located at the IRs/LSC junction and did not cross the boundary. Codon preference analysis showed that D. longiunguis chloroplast genome has the largest number of isoleucine (Ile) codons, up to 1 205. D. longiunguis has the closest genetic relationship with Malus baccata, Malus sieboldii, Malus hupehensis and Chaenomeles sinensis. Its chloroplast genome codon prefers to end with A/T. The chloroplast genome of D. longiunguis and other Rosaceae chloroplast genomes showed great differences in gene distribution in four boundary regions, while relatively small differences from the chloroplast genomes of Docynia delavayi and D. indica of the same genus were observed. The genome annotation, phylogenetic analysis and sequence alignment of chloroplast genome of D. longiunguis may facilitate the identification, development and utilization of this species.

    • Identification and analysis of the TALE transcription factor family in radish

      2022, 38(1):343-358. DOI: 10.13345/j.cjb.210321 CSTR: 32114.14.j.cjb.210321

      Abstract (427) HTML (1358) PDF 1.31 M (1451) Comment (0) Favorites

      Abstract:Three-amino acid loop extension (TALE) transcription factors play important roles in plant growth and cell differentiation. There are plenty of studies on TALE transcription factors in several model plants, but not in radish (Raphanus sativas). A genome-wide bioinformatics analysis identified 33 TALE family genes in the Xiang-Ya-Bai (XYB) radish, These genes, are distributed on nine chromosomes and all contain 4-6 exons. The 33 TALE genes in radish showed a co-linearity relationship with the 17 homologous genes in Arabidopsis thaliana. Moreover, a large number of stress response cis-elements were found in the promoter regions of these genes. Expression analysis showed that four genes in the BELL subfamily were highly expressed in roots, and two genes in the KNOX subfamily were highly expressed in shoots of bolting plants and callus. All radish TALE genes contain sequences encoding the conserved HOX domain, except for the gene RSA10037940, which is homologous to Arabidopsis KNATM. The deduced 3D structures of the TALE proteins irrespective of subtypes are highly similar. All the encoded proteins were weakly acidic and hydrophilic. The radish TALE gene family is relatively evolutionarily conserved, which was consistent with results from Arabidopsis, but quite different from that of rice. This study provides important clues for studying the biological functions of TALE transcription factors in radish.

    • Genome-wide identification of CsCCD gene family in tea plant (Camellia sinensis) and expression analysis of the oolong tea processing with supplementary LED light

      2022, 38(1):359-373. DOI: 10.13345/j.cjb.210455 CSTR: 32114.14.j.cjb.210455

      Abstract (299) HTML (1062) PDF 1014.88 K (1036) Comment (0) Favorites

      Abstract:Carotenoid cleavage dioxygenase (CCD) family is important for production of volatile aromatic compounds and synthesis of plant hormones. To explore the biological functions and gene expression patterns of CsCCD gene family in tea plant, genome-wide identification of CsCCD gene family was performed. The gene structures, conserved motifs, chromosome locations, protein physicochemical properties, evolutionary characteristics, interaction network and cis-acting regulatory elements were predicted and analyzed. Real time-quantitative reverse transcription PCR (RT-qPCR) was used to detect the relative expression level of CsCCD gene family members under different leaf positions and light treatments during processing. A total of 11 CsCCD gene family members, each containing exons ranging from 1 to 11 and introns ranging from 0 to 10, were identified. The average number of amino acids and molecular weight were 519 aa and 57 643.35 Da, respectively. Phylogenetic analysis showed the CsCCD gene family was clustered into 5 major groups (CCD1, CCD4, CCD7, CCD8 and NCED). The CsCCD gene family mainly contained stress response elements, hormone response elements, light response elements and multi-factor response elements, and light response elements was the most abundant (142 elements). Expression analysis showed that the expression levels of CsCCD1 and CsCCD4 in elder leaves were higher than those in younger leaves and stems. With the increase of turning over times, the expression levels of CsCCD1 and CsCCD4 decreased, while supplementary LED light strongly promoted their expression levels in the early stage. The expression level of NCED in younger leaves was higher than that in elder leaves and stems on average, and the expression trend varied in the process of turning over. NCED3 first increased and then decreased, with an expression level 15 times higher than that in fresh leaves. In the late stage of turning over, supplementary LED light significantly promoted its gene expression. In conclusion, CsCCD gene family member expressions were regulated by mechanical force and light. These understandings may help to optimize tea processing techniques and improve tea quality.

    • Cloning and functional analysis of the phenylalaninammo-nialyase gene from Rhododendron fortunei

      2022, 38(1):374-385. DOI: 10.13345/j.cjb.210325 CSTR: 32114.14.j.cjb.210325

      Abstract (381) HTML (986) PDF 1001.98 K (1056) Comment (0) Favorites

      Abstract:Phenylalaninammo-nialyase (PAL) is a key enzyme in the synthesis of methyl benzoate - a plant aroma compound. In order to understand the function of this enzyme in the formation of fragrance in the scented Rhododendron species-Rhododendron fortunei, we cloned a gene encoding this enzyme and subsequently examined the gene expression patterns and the profile of enzyme activity during development in various tissues. The full length of RhPAL gene was cloned by reverse transcription-PCR (RT-PCR) and rapid amplification of cDNA ends (RACE) techniques. The expression levels of RhPAL gene were measured by real-time quantitative reverse transcription PCR (qRT-PCR) and the amount of phenylalanine and cinnamic acid were assayed with LC-MS. The results showed that the ORF sequence of RhPAL gene amplified from the cDNA templates of flower buds had 2 145 bp, encoding 715 amino acids, and shared 90% homology to the PAL amino acid sequences from other species. qRT-PCR analysis showed that the expression of RhPAL in petals during flowering kept in rising even until the flowers wilted. The expression of RhPAL in pistil was much higher than that in stamen, while the expression in the younger leaves was higher than in old leaves. However, the expression level was relatively lower in petal and stamen compared to that in leaves. We also measured the PAL activity by Enzyme-linked immuno sorbent assay in the petals of flowers at different flowering stages. The results showed that PAL activity reached the highest at the bud stage and then decreased gradually to the lowest when the flowers wilted, which followed a similar trend in the emission of the flower fragrance. The phenylalanine and cinnamic acid contents measured by LC-MS were highly correlated to the expression level of RhPAL in various tissues and at different flowering stages, implying that RhPAL plays an important role in the formation of the flower fragrance. This work may facilitate the breeding and improvement of new fragrant Rhododendron cultivars.

    • Cloning, expression and activity analysis of cutinase from Sclerotinia sclerotiorum

      2022, 38(1):386-395. DOI: 10.13345/j.cjb.210691 CSTR: 32114.14.j.cjb.210691

      Abstract (396) HTML (806) PDF 676.13 K (976) Comment (0) Favorites

      Abstract:Cutinase can degrade aliphatic and aromatic polyesters, as well as polyethylene terephthalate. Lack of commercially available cutinase calls for development of cost-effective production of efficient cutinase. In this study, eight cutinase genes were cloned from Sclerotinia sclerotiorum. The most active gene SsCut-52 was obtained by PCR combined with RT-PCR, expressed in Escherichia coli BL21 and purified by Ni-NTA affinity chromatography to study its characteristics and pathogenicity. Sscut-52 had a total length of 768 bp and 17 signal peptides at the N terminals. Phylogenetic analysis showed that its amino acid sequence had the highest homology with Botrytis keratinase cutinase and was closely related to Rutstroemia cutinase. Sscut-52 was highly expressed during the process of infecting plants by Sclerotinia sclerotiorum. Moreover, the expression level of Sscut-52 was higher than those of other cutinase genes in the process of sclerotia formation from mycelium. The heterologously expressed cutinase existed in the form of inclusion body. The renatured SsCut-52 was active at pH 4.0–10.0, and mostly active at pH 6.0, with a specific activity of 3.45 U/mg achieved. The optimum temperature of SsCut-52 was 20–30 ℃, and less than 60% of the activity could be retained at temperatures higher than 50 ℃. Plant leaf infection showed that SsCut-52 may promote the infection of Banlangen leaves by Sclerotinia sclerotiorum.

Current Issue


Volume , No.

Table of Contents

Archive

Volume

Issue

Most Read

Most Cited

Most Downloaded