• Volume 40,Issue 5,2024 Table of Contents
    Select All
    Display Type: |
    • >Review
    • Advances in base editing systems

      2024, 40(5):1271-1292. DOI: 10.13345/j.cjb.230615 CSTR: 32114.14.j.cjb.230615

      Abstract (632) HTML (764) PDF 1.09 M (1027) Comment (0) Favorites

      Abstract:Programmable nucleases-based genome editing systems offer several advantages, such as high editing efficiency, high product purity, and fewer editing by-products. They have been widely used in biopharmaceutical research and crop engineering. Given the diverse needs for research and application, developing functional base editors has become a major focus in the field of genome editing. Currently, genome editing systems derived from clustered regularly interspaced short palindromic repeats and CRISPR-associated (CRISPR-Cas) and transcription activator-like effector (TALE) systems include single base editors, dual base editors, mitochondrial base editors, and CRISPR-related transposase systems. This review provides a comprehensive overview of the development of base editing systems, summarizes the characteristics, off-target effects, optimization, and improvement strategies of various base editors, and provides insights for further improvement and application of genome editing systems.

    • Advances in the application of fecal microbiota transplantation for the treatment of nervous system diseases

      2024, 40(5):1293-1308. DOI: 10.13345/j.cjb.230448 CSTR: 32114.14.j.cjb.230448

      Abstract (309) HTML (309) PDF 661.56 K (753) Comment (0) Favorites

      Abstract:The intestinal microbiota exhibits a strong correlation with the function of the central nervous system, exerting influence on the host brain through neural pathways, immune pathways, and microbial metabolites along the gut-brain axis. Disorders in the composition of the intestinal microbial are closely associated with the onset and progression of neurological disorders, such as depression, Alzheimer’s disease, and Parkinson’s disease. It has been proven that fecal microbiota transplantation can improve symptoms in animal models of neurological diseases and clinical patients. This paper provides a comprehensive review of the composition and function of the human intestinal microbiota, as well as the intricate the relationship between the human intestinal microbiota and nervous system diseases through the gut-brain axis. Additionally, it delves into the research advancements and underlying mechanism of fecal microbiota transplantation in the treatment of nervous system diseases. These findings offer novel insights and potential avenues for clinical interventions targeting nervous system diseases.

    • Effects of biomechanics on colorectal organoid culture

      2024, 40(5):1309-1322. DOI: 10.13345/j.cjb.230694 CSTR: 32114.14.j.cjb.230694

      Abstract (220) HTML (315) PDF 770.85 K (660) Comment (0) Favorites

      Abstract:In recent years, organoids have become a crucial model for studying the physiopathological processes in tissues and organs. The emergence of organoids has promoted the research on the mechanisms of the occurrence and clinical translation of diseases. Among these organoid models, colorectal organoid models are increasingly mature. Colorectal cancer is a common gastrointestinal malignant tumor worldwide, posing a serious threat to human health. Colorectal organoids provide a new model for studying the pathophysiology, drug sensitivity, and precision medicine of colorectal cancer. The conventional culture systems of colorectal organoids focus more on the role of biochemical factors, neglecting the fact that the gut is also influenced by biophysical signals in vivo. Therefore, in this review, we discuss the theories related to colorectal organoids and biomechanics and expound the effects of biomechanics on colorectal organoid culture.

    • Cell membrane-coated nanoparticles in disease therapy

      2024, 40(5):1323-1337. DOI: 10.13345/j.cjb.230533 CSTR: 32114.14.j.cjb.230533

      Abstract (225) HTML (718) PDF 714.03 K (870) Comment (0) Favorites

      Abstract:Nanotechnology has attracted increasing attention in the field of medical applications due to its significant potential for development. However, one major challenge that has emerged with nanoparticles is their tendency to activate the host immune clearance system, which hampers the achievement of desired therapeutic outcomes and may lead to harmful side effects. In recent years, membrane-coated nanoparticles have emerged as a promising solution, demonstrating their effectiveness in evading immune system clearance. These innovative nanoparticles inherit essential biological attributes from natural cell membranes, such as anchoring proteins and antigens. Consequently, membrane-coated nanoparticles exhibit unique capabilities such as immune evasion, prolonged circulation, targeted drug release, and immune modulation, substantially enhancing their versatility and prospects within the realm of biomedical applications. This review provides a comprehensive overview of the current applications of cell membrane-coated nanoparticles in disease therapy, highlighting their immense potential in this rapidly evolving platform. Additionally, the review outlines the promising prospects of this technology in disease therapy.

    • Application of mRNA nano-delivery system in CAR-T tumor immunotherapy

      2024, 40(5):1338-1351. DOI: 10.13345/j.cjb.230541 CSTR: 32114.14.j.cjb.230541

      Abstract (264) HTML (602) PDF 716.88 K (1016) Comment (0) Favorites

      Abstract:Chimeric antigen receptor T cells (CAR-T) immunotherapy, which activates immunity specific to the system in order to achieve antitumor effects, has experienced exciting progress in recent years. mRNA nano-delivery systems, which encapsulate tumor immunotherapy-related antigen mRNA with nanoparticles, have shown great potential in CAR-T tumor immunotherapy. On one hand, these systems can directly target T cells to generate CAR-T cells that directly act upon the corresponding tumor cells. On the other hand, they can be delivered to antigen-presenting cells through targeting, thereby enhancing the function of CAR-T cells and further inducing specific immune responses against tumor cells. This review summarizes the synthesis of mRNA nano-delivery systems and their application in CAR-T tumor immunotherapy.

    • Detection and analysis technologies for single biological nanoparticles

      2024, 40(5):1352-1364. DOI: 10.13345/j.cjb.230877 CSTR: 32114.14.j.cjb.230877

      Abstract (219) HTML (531) PDF 587.23 K (897) Comment (0) Favorites

      Abstract:In recent years, nanoscale detection has played an increasingly important role in the research on viruses, exosomes, small bacteria, and organelles. The small size and complex biological natures of these particles, with the smallest known virus particle measuring only 17 nm in diameter and exosomes ranging from 30 nm to 150 nm in size, pose challenges to the classical large-scale (typically micron-scale) characterization methods, which has become a major obstacle in the research. The emergence of nanoscale detection and analysis technologies has filled the gap of optical microscopy, a conventional technique in this field. These technologies enable the sensitive and robust detection of objects that exceed the lower limit of optical detection, revealing the molecular composition and biological roles simultaneously. Currently, several commercialized instruments based on nanotechnology have emerged, providing complete single-particle detection solutions and achieving unique functionality based on their respective technological advantages. However, it is inevitable that these technologies have limitations in terms of application and detection capabilities, as they continue to evolve. This paper offers a thorough overview of the principles, advantages, limitations, and future development trends of several mainstream commercial instruments, aiming to serve researchers in selecting and utilizing these technologies.

    • Advances of CAR-T cell therapy in treating colorectal cancer

      2024, 40(5):1365-1379. DOI: 10.13345/j.cjb.230741 CSTR: 32114.14.j.cjb.230741

      Abstract (303) HTML (329) PDF 753.60 K (639) Comment (0) Favorites

      Abstract:Globally, colorectal cancer (CRC) ranks as the third most common cancer and the second leading cause of cancer-related fatalities. According to the World Health Organization, there are over 1.9 million annual cases of CRC diagnosed worldwide, resulting in more than 900 000 deaths. In recent years, chimeric antigen receptor T (CAR-T) cell therapy has shown clinical success in treating certain hematological malignancies and is now being explored for its potential in targeting solid tumors like CRC. Currently, CAR-T cell therapies targeting carcinoembryonic antigen (CEA), natural killer group 2, member D ligand (NKG2DL), and other markers have achieved remarkable results in clinical trials, albeit encountering significant challenges. This review summarizes the promising targets of CAR-T cell therapy for CRC and highlights progress made in clinical trials and preclinical studies. Additionally, the review discusses the challenges faced by CAR-T cell therapy in CRC treatment, including a shortage of tumor-specific antigens, cytokine release syndrome, adverse tumor microenvironment, and limited infiltration of CAR-T cells. In summary, this review provides an overview of the latest research progress and challenges in CAR-T cell therapy for CRC, aiming to contribute fresh insights for the clinical treatment of this disease.

    • Advances in paclitaxel biosynthesis and transcriptional regulation mechanisms

      2024, 40(5):1380-1405. DOI: 10.13345/j.cjb.230850 CSTR: 32114.14.j.cjb.230850

      Abstract (405) HTML (707) PDF 1.10 M (946) Comment (0) Favorites

      Abstract:Paclitaxel, a rare diterpene extracted from the bark of Chinese yew (Taxus chinensis), is renowned for its anti-cancer activity and serves as a primary drug for treating cancers. Due to the exceptionally low content of paclitaxel in the bark, a semi-synthetic method that depletes Chinese yew resources is used in the production of paclitaxel, which, however, fails to meet the escalating clinical demand. In recent years, researchers have achieved significant progress in heterologous biosynthesis and metabolic engineering for the production of paclitaxel. This article comprehensively reviews the advancements in paclitaxel production, encompassing chemical synthesis, heterologous biosynthesis, and cell engineering. It provides an in-depth introduction to the biosynthetic pathway and transcriptional regulation mechanisms of paclitaxel, aiming to provide a valuable reference for further research on paclitaxel biosynthesis.

    • Advances in the application of AlphaFold2: a protein structure prediction model

      2024, 40(5):1406-1420. DOI: 10.13345/j.cjb.230677 CSTR: 32114.14.j.cjb.230677

      Abstract (457) HTML (471) PDF 946.29 K (2926) Comment (0) Favorites

      Abstract:Protein structure prediction is an important research field in life sciences and medicine, and it is also a key application scenario of artificial intelligence in scientific research. AlphaFold2 is a protein structure prediction system developed by DeepMind based on deep learning, capable of efficiently generating the atomic-scale spatial structure of a protein from the amino acid sequence. It has demonstrated superior performance in the prediction of protein structures since its inception, thus attracting much attention and research. This paper introduces the model architecture, highlights, limitations, and application progress of AlphaFold2. Furthermore, it briefs the capabilities, highlights, and limitations of several other types of protein structure prediction models and prospects the future development direction in this field.

    • Research advances in nucleic acid drugs developed based on circular RNAs

      2024, 40(5):1421-1430. DOI: 10.13345/j.cjb.230810 CSTR: 32114.14.j.cjb.230810

      Abstract (219) HTML (462) PDF 661.79 K (1819) Comment (0) Favorites

      Abstract:The development and clinical application of nucleic acid drugs has been a trendy field. One of the notable examples is mRNA vaccines, which have been used in the fighting against SARS-CoV-2. With short development cycles and mature preparation processes, mRNA vaccines demonstrate advantages in the global supply and in response to virus mutations. Circular RNAs (circRNAs) are a group of nucleic acid molecules with more stable structure, longer half-life, and weaker immunogenicity than mRNAs. Studies have proven that circRNAs can efficiently express protein products, indicating their potential in drug development. Despite extensive studies on the biogenesis and biological functions of circRNAs, there is limited research on developing nucleic acid drugs based on circRNAs. This article provides an overview of circRNAs, including their basic information, synthesis routes, and mechanisms, and discusses the future development directions of this field, hoping to provide inspiration for the research and development of drugs based on circRNAs.

    • Advances of monoclonal antibodies and analysis of marketed antibody drugs

      2024, 40(5):1431-1447. DOI: 10.13345/j.cjb.230779 CSTR: 32114.14.j.cjb.230779

      Abstract (570) HTML (737) PDF 658.06 K (1290) Comment (0) Favorites

      Abstract:In recent years, there has been a frequent occurrence of various epidemics worldwide such as COVID-19, monkeypox, influenza, and others additionally, there has been an increase in the number of new patients diagnosed with various types of tumors. Traditional drugs have limited effectiveness against emerging infectious diseases, tumors, and autoimmune diseases. However, with the emergence of hybridoma technology, monoclonal antibodies have achieved extensive applications and antibody drugs are playing an important role in modern medicine. Monoclonal antibodies have undergone various development stages, starting from mouse-derived antibodies to human-mouse chimeric antibodies, humanized antibodies, and ultimately human antibodies. Throughout this process, their immunogenicity has gradually decreased, while their safety for human use steadily increased. Fully human antibodies are currently the safest form of antibody, because their sequences all come from human sources and they do not induce human anti-murine antibody reactions. With the advance of genetic engineering technology, flow cytometry coupled to single B cell gene amplification technology has made it easier to construct and screen for fully human monoclonal antibodies. The development of antibody drugs has provided new opportunities, and the market for monoclonal antibody drugs will further expand. This article reviews the research progress of monoclonal antibodies and presents information on the 163 monoclonal antibody drugs approved by the United States Food and Drug Administration (FDA) as of Oct 1st, 2023. The aim is to offer new insights for the development and production of monoclonal antibodies in China.

    • Progress in the mechanism and influencing factors of the formation of protein corona on nanoparticle surfaces

      2024, 40(5):1448-1468. DOI: 10.13345/j.cjb.230835 CSTR: 32114.14.j.cjb.230835

      Abstract (220) HTML (874) PDF 872.76 K (778) Comment (0) Favorites

      Abstract:Nanoparticles, as a novel material, have a wide range of applications in the food and biomedical fields. Nanoparticles spontaneously adsorb proteins in the biological environment, and tens or even hundreds of proteins can form protein corona on the surface of nanoparticles. The formation of protein corona on the surface of nanoparticles is one of the key factors affecting the stability, biocompatibility, targeting, and drug release properties of nanoparticles. The formation mechanism of protein corona is affected by a variety of factors, including the surface chemical properties, sizes, and shapes of nanoparticles and the types, concentrations, and pH of proteins. Studies have shown that the protein structure is associated with protein distribution on the nanoparticle surface, while the protein conformation affects the binding mode and stability of the protein on the nanoparticle surface. Since the mechanism of the formation of protein corona on the surface of nanoparticles is complex, the roles of multiple factors need to be considered comprehensively. Understanding the mechanisms and influencing factors of the formation of protein corona will help us to understand the process of protein corona formation and control the formation of protein corona for specific needs. In this paper, we summarize the recent studies on the mechanisms and influencing factors of the formation of protein corona on the surface of nanoparticles, with a view to providing a theoretical basis for in-depth research on protein corona.

    • Fertility preservation through natural and artificial ovaries:a review

      2024, 40(5):1469-1485. DOI: 10.13345/j.cjb.230657 CSTR: 32114.14.j.cjb.230657

      Abstract (172) HTML (493) PDF 986.95 K (599) Comment (0) Favorites

      Abstract:Ovarian tissue cryopreservation (OTC) is currently the exclusive choice for preserving fertility in both young girls before reaching puberty and young women who require immediate chemotherapy. Ovarian tissue transplantation has proven to be effective in restoring hormonal cycles and fertility. However, in certain cancer cases, there is a potential risk of inadvertently reintroducing malignant cells when transplanting cryopreserved ovarian tissue. Therefore, the use of an artificial ovary as an innovative and complementary approach allows for the development of isolated follicles, facilitates oocyte maturation and ovulation, and can partially restore endocrine function. This paper presents a comprehensive overview of techniques used to preserve fertility in natural ovarian tissues, including slow freezing, vitrification and hydrogel encapsulation methods. Additionally, it reviews fertility preservation techniques for artificial ovarian tissues, such as strategies involving hydrogel-encapsulated follicle, scaffolding for constructing ovarian microtissues, and 3D printing engineering. Lastly, this article explores current challenges and difficulties encountered in preserving ovarian tissue fertility, while also anticipating future trends in development, making it a valuable reference for the implementation of ovarian tissue fertility preservation.

    • The impact of phenolic compounds on pig fat deposition

      2024, 40(5):1486-1497. DOI: 10.13345/j.cjb.230498 CSTR: 32114.14.j.cjb.230498

      Abstract (137) HTML (318) PDF 607.00 K (671) Comment (0) Favorites

      Abstract:The quantity and distribution of fat deposits are crucial factors that impact the quality of pork. Recent studies have indicated that the utilization of natural ingredients plays a significant role in decreasing subcutaneous and visceral fat deposits, as well as enhancing intramuscular fat. Moreover, natural products possess several advantages including being environmentally friendly, safe, free of additives, and leaving no residue. Phenolic compounds derived from fruits, vegetables and herbs constitute of vital component of these natural ingredients. This article examines the influence of phenolic compounds on pig fat deposition, aiming to provide guidance on the utilization of such compounds to regulate fat deposition and enhance pork quality.

    • >Medicinal Biotechnology
    • Preparation of recombinant mussel mucin Mfp-3P and its promotion of wound healing

      2024, 40(5):1498-1508. DOI: 10.13345/j.cjb.230532 CSTR: 32114.14.j.cjb.230532

      Abstract (271) HTML (521) PDF 829.84 K (1657) Comment (0) Favorites

      Abstract:To investigate the role of recombinant mussel mucin in wound healing, we aimed to prepare this mucin using Pichia pastoris as the host microbe. Our method involved constructing a genetically engineered strain of P. pastoris that expressed a fusion protein consisting of Mfp-3 and preCol-P peptide segments of mussel. After fermentation and purification, we obtained a pure recombinant mussel mucin product. We then conducted experiments to evaluate its effect at both the cellular and animal levels. At the cellular level, we examined its impact on the proliferation and migration of mouse fibroblast L929. At the animal level, we assessed its ability to promote wound healing after full-layer skin resection in rats. Our results showed that the recombinant mussel mucin protein has a content of 90.28% and a purity of 96.49%. The content of 3,4-dihydroxyphenylalanine (DOPA) was 0.73 wt%, and the endotoxin content was less than 0.5 EU/mg. Importantly, the recombinant mussel mucin protein significantly promoted both the migration and proliferation of mouse fibroblast, as well as the wound healing in rat skin. In conclusion, our findings demonstrate that recombinant mussel mucin has the potential to promote wound healing and can be considered a promising medical biomaterial.

    • Prdx1 regulates macrophage polarization by maintaining mitochondrial homeostasis

      2024, 40(5):1509-1522. DOI: 10.13345/j.cjb.230667 CSTR: 32114.14.j.cjb.230667

      Abstract (321) HTML (591) PDF 1.02 M (610) Comment (0) Favorites

      Abstract:In order to investigate the role of Prdx1 in macrophage polarization, mouse leukemia cells of monocyte macrophage (RAW264.7) were treated with lipopolysaccharides (LPS)+ interferon gamma (IFNγ) or IL-4 to induce type 1 macrophage (M1) and type 1 macrophage (M2) macrophages, respectively. The Prdx1 gene knockout cells (Prdx1-/-;) were used for the study. Flow cytometry was conducted to detect M1/M2 macrophage markers, and ELISA kits were used to measure M1/M2 cytokine levels. Inducible nitric-oxide synthase (iNOS) activity, arginase-1 (Arg-1) activity, and oxidative damage were also assessed. The Seahorse XFe24 Extracellular Flux Analyzer was employed to measure extracellular acidification rate and oxygen consumption rate. The mitochondrial membrane potential was analyzed using the mitochondrial membrane potential dye (JC-1) fluorescent probe, and mitochondrial superoxide was detected through fluorescence staining. Additionally, the impact of adding a mitochondrial reactive oxygen species (ROS) scavenger on RAW264.7 macrophage polarization was examined. The results demonstrated an increase in ROS, hydrogen peroxide, and 8-hydroxy-2 deoxyguanosine (8-OHDG). Cytotoxicity and mitochondrial toxic effects, including mitochondrial superoxide accumulation, decreased adenosine-triphosphate (ATP) production, reduced mitochondrial membrane potential, and decreased mitochondrial DNA copy number, were observed. Furthermore, down-regulation of translocase of inner mitochondrial membrane 23 (TIM23) mitochondrial protein and mitochondrial stress protein heat shock protein 60 (HSP60) was noted. The extra cellular acidification rate (ECAR) in M1 macrophage polarization in RAW264.7 cells was increased, while oxygen consumption rate (OCR) in M2 macrophages was reduced. These findings indicate that Prdx1 knockout in RAW264.7 cells can inhibit M2 macrophage polarization but promote M1 macrophage polarization by impairing mitochondrial function and reducing oxidative phosphorylation.

    • 3D tumor spheroids promote activation, expansion, and anti-tumor effects of tumor-infiltrating lymphocytes in vitro

      2024, 40(5):1523-1535. DOI: 10.13345/j.cjb.230841 CSTR: 32114.14.j.cjb.230841

      Abstract (308) HTML (224) PDF 1.06 M (554) Comment (0) Favorites

      Abstract:The adoptive immunotherapy mediated by tumor-infiltrating lymphocytes (TILs) has shown definite efficacy against various solid tumors. However, the inefficiency of the conventional method based on in vitro expansion of TILs fails to achieve the cell count and high tumor-killing activity required for therapeutic purposes. This study investigated the effect of 3D tumor spheroids on the activation and expansion of TILs in vitro, aiming to provide a novel approach for the expansion of TILs. We procured TILs and primary tumor cells from surgical samples of lung cancer patients and then compared the impacts of lung cancer cell line NCI-H1975 and primary lung cancer cells cultured under 2D and 3D conditions on the activation, expansion, and anti-tumor activity of TILs. Furthermore, we added the programmed cell death protein 1 (PD-1) antibody into the co-culture of primary tumor cells and TILs within a 3D environment to assess the effects of the antibody on TILs. The results showed that compared with 2D cultured tumor cells, the 3D cultured H1975 cells significantly enhanced the expansion of TILs, increasing the proportion of CD3+/CD8+ cells in TILs to 61.6%. The 3D primary tumor model also enhanced the proportion of CD3+/CD8+ cells in TILs (45.5%, 54.4%), induced apoptosis of tumor epithelial cells and decreased the overall tumor cells survival rate (16.7%) after co-culture. PD-1 antibodies further improved the in vitro expansion capacity of TILs mediated by 3D tumor spheroids, resulting in the proportions of 50.9% and 57.0% for CD3+/CD8+ cells and enhancing the antitumor activity significantly (reducing the overall tumor survival rate to 9.36%). In summary, the use of 3D tumor spheroids significantly promoted the expansion and improved the anti-tumor effect of TILs, and the use of the PD-1 antibody further promoted the expansion and tumor-killing effect of TILs.

    • >Methods in Biotechnology
    • Preparation of a mouse monoclonal antibody against the NS1 protein of respiratory syncytial virus

      2024, 40(5):1536-1547. DOI: 10.13345/j.cjb.230736 CSTR: 32114.14.j.cjb.230736

      Abstract (249) HTML (294) PDF 707.13 K (694) Comment (0) Favorites

      Abstract:The aim of this study was to prepare a mouse monoclonal antibody against the nonstructural protein 1 (NS1) of respiratory syncytial virus (RSV) to analyze its expression and distribution during transfection and infection. Additionally, we aimed to evaluate the antibody’s application in immunoprecipitation assay. Firstly, the NS1 gene fragment was cloned into a prokaryotic plasmid and expressed in Escherichia coli. The resulting NS1 protein was then purified by affinity chromatography, and used to immunize the BALB/c mice. Subsequently, hybridoma cells capable of stably secreting the NS1 monoclonal antibody were selected using indirect enzyme linked immunosorbent assay (ELISA). This monoclonal antibody was employed in both indirect immunofluorescence assay (IFA) and Western blotting to analyze the expression and distribution of RSV NS1 in overexpressed and infected cells. Finally, the reliability of this monoclonal antibody was evaluated through the immunoprecipitation assay. The results showed that the RSV NS1 protein was successfully expressed and purified. Following immunization of mice with this protein, we obtained a highly specific RSV NS1 monoclonal antibody, which belonged to the IgG1 subtype with an antibody titer of 1:15 360 000. Using this monoclonal antibody, the RSV NS1 protein was identified in both transfected and infected cells. The IFA results revealed predominant distribution of NS1 in the cytoplasm and nucleus. Moreover, we confirmed that this monoclonal antibody could effectively bind specifically to NS1 protein in cell lysates, making it suitable as a capture antibody in immunoprecipitation assay. In conclusion, our study successfully achieved production of the RSV NS1 protein through a prokaryotic expression system and prepared a specific monoclonal antibody against NS1. This antibody demonstrates the ability to specifically identify the NS1 protein and can be used in the immunoprecipitation assay, thereby laying a foundation for the functional studies of the NS1 protein.

    • Prokaryotic expression of N protein of akabane disease virus and preparation of monoclonal antibody

      2024, 40(5):1548-1558. DOI: 10.13345/j.cjb.230731 CSTR: 32114.14.j.cjb.230731

      Abstract (219) HTML (244) PDF 1021.10 K (592) Comment (0) Favorites

      Abstract:In order to generate monoclonal antibodies against the akabane virus (AKAV) N protein, this study employed a prokaryotic expression system to express the AKAV N protein. Following purification, BALB/c mice were immunized, and their splenocytes were fused with mouse myeloma cells (SP2/0) to produce hybridoma cells. The indirect ELISA method was used to screen for positive hybridoma cells. Two specific hybridoma cell lines targeting AKAV N protein, designated as 2C9 and 5E9, were isolated after three rounds of subcloning. Further characterization was conducted through ELISA, Western blotting, and indirect immunofluorescence assay (IFA). The results confirmed that the monoclonal antibodies specifically target AKAV N protein, exhibiting strong reactivity in IFA. Subtype analysis identified the heavy chain of the 2C9 mAb’s as IgG2b and its light chain as κ-type; the 5E9 mAb’s heavy chain was determined to be IgG1, with a κ-type light chain. Their ELISA titers reached 1:4 096 000. This study successfully developed two monoclonal antibodies targeting AKAV N protein, which lays a crucial foundation for advancing diagnostic methods for akabane disease prevention and control, as well as for studying the function of the AKAV N protein.

    • DNA assembly by multi-fragment digestion/ligation and homologous recombination

      2024, 40(5):1559-1570. DOI: 10.13345/j.cjb.230793 CSTR: 32114.14.j.cjb.230793

      Abstract (266) HTML (665) PDF 833.06 K (1084) Comment (0) Favorites

      Abstract:To develop an accurate and efficient protocol for multi-fragment assembly and multi-site mutagenesis, we integrated and optimized the common multi-fragment assembly methods and validated the established method by using fructose-1,6-diphosphatase 1 (FBP1) with 4 mutant sites. The fragments containing mutations were assembled by introducing mutant sites and Bsa I recognition sequences. After digestion/ligation, the ligated fragment was amplified with the primers containing overlap region to the linearized vector. The amplified fragment was ligated to the linearized vector and the ligation product was transformed into Escherichia coli. After screening and sequencing, the recombinant plasmid with 4 mutant sites was obtained. This protocol overcame the major defects of Gibson assembly and Golden Gate assembly, serving as an efficient solution for multi-fragment assembly and multi-site mutagenesis.

    • Human tau N-terminal domain-specific monoclonal antibodies: screening and application in blood detection

      2024, 40(5):1571-1583. DOI: 10.13345/j.cjb.230655 CSTR: 32114.14.j.cjb.230655

      Abstract (202) HTML (371) PDF 852.64 K (891) Comment (0) Favorites

      Abstract:The antibodies to the microtubule-associated protein tau play a role in basic and clinical studies of Alzheimer’s disease (AD) and other tauopathies. With the recombinant human tau441 as the immunogen, the hybridoma cell strains secreting the anti-human tau N-terminal domain (NTD-tau) monoclonal antibodies were generated by cell fusion and screened by limiting dilution. The purified monoclonal antibodies were obtained by inducing the mouse ascites and affinity chromatography. The sensitivity and specificity of the monoclonal antibodies were examined by indirect ELISA and Western blotting, respectively. A double antibody sandwich ELISA method for detecting human tau protein was established and optimized. The results showed that the positive cloning rate of hybridoma cells was 83.6%. A stable cell line producing ZD8F7 antibodies was established, and the antibody titer in the supernatant of the cell line was 1:16 000. The antibody titer in the ascitic fluid was higher than 1:256 000; and the titer of purified ZD8F7 monoclonal antibodies was higher than 1:128 000. The epitope analysis showed that the ZD8F7 antibody recognized tau21–37 amino acid in the N-terminal domain. The Western blotting results showed that the ZD8F7 antibody recognized the recombinant human tau protein of 50–70 kDa and the human tau protein of 50 kDa in the brain tissue of transgenic AD model mice (APP/PS1/tau). With ZD8F7 as a capture antibody, a quantitative detection method for human tau protein was established, which showed a linear range of 7.8–500.0 pg/mL and could identify human tau protein in the brain tissue of AD transgenic mice and human plasma but not recognize the mouse tau protein. In conclusion, the human NTD-tau-specific monoclonal antibody and the double antibody sandwich ELISA method established in this study are highly sensitive and can serve as a powerful tool for the detection of tau protein in neurodegenerative diseases.

Current Issue


Volume , No.

Table of Contents

Archive

Volume

Issue

Most Read

Most Cited

Most Downloaded