• Volume 40,Issue 6,2024 Table of Contents
    Select All
    Display Type: |
    • >Review
    • Biosynthesis of calcifediol and calcitriol: a review

      2024, 40(6):1601-1619. DOI: 10.13345/j.cjb.230664 CSTR: 32114.14.j.cjb.230664

      Abstract (570) HTML (495) PDF 1.01 M (1320) Comment (0) Favorites

      Abstract:VD3 is a crucial vitamin for human health, as it enhances calcium absorption in the intestines and prevent rickets. Calcifediol (25(OH) VD3) and calcitriol (1α,25(OH)2VD3) are two derivatives of vitamin D3 that play an important role in preventing and treating osteoporosis, as well as regulating human physiological functions. Currently, the production of calcifediol, and calcitriol primarily relies on chemical synthesis, which has disadvantages such as low product yield, numerous by-products, and environmental unfriendliness. Therefore, developing a green, safe, and environmentally friendly biocatalytic synthesis pathway is of utmost importance. This article mainly reviews the biocatalytic synthesis pathways of calcifediol, and calcitriol. The P450 enzymes, including P450 monooxygenases (cytochrome P450 monooxygenases, CYPs) and P450 peroxygenases (unspecific peroxygenases, UPOs), are crucial for the production of calcifediol and calcitriol. The catalytic mechanism of the extensively studied P450 monooxygenases, the selection of suitable redox partners, and the key residues involved in the enzyme’s catalytic activity are analyzed. In addition, the review explores H2O2-driven UPOs, including their catalytic mechanism, strategies for high heterologous expression, and in situ regeneration of H2O2. UPOs are regarded as highly promising biocatalysts because they can facilitate reactions without the need for expensive cofactors and redox partners. This review offers insights into the engineering of P450 for the efficient production of vitamin D3 derivatives.

    • Advances in ectoine biosynthesis and biochemical characteristics of key enzymes

      2024, 40(6):1620-1643. DOI: 10.13345/j.cjb.230640 CSTR: 32114.14.j.cjb.230640

      Abstract (358) HTML (588) PDF 1.20 M (1188) Comment (0) Favorites

      Abstract:Compatible solutes are highly water-soluble organic osmolytes produced by microorganisms to adapt to extreme environments, such as high salinity and osmotic pressure. Among these, ectoine plays a crucial role in repairing and protecting nucleic acids, protein, biofilms, and cells. As a result, it has found widespread applications in cosmetics, biological agents, the enzyme industry, medicine, and other fields. Currently, the market value of ectoine is around US$ 1 000/kg, with a global demand reaching 15 000 tons per year. Although halophilic bacteria serve as the natural source of ectoine synthesis, its production in high-salinity media presents challenges such as equipment corrosion and high cost for industrial production. Advancements in functional genomics, systems biology, and synthetic biology have paved the way for the development of high-yielding cell factories through metabolic engineering, leading to significant progress. For example, engineered Escherichia coli achieved a maximum ectoine titer of 131.8 g/L, with a productivity of 1.37 g/(L‧h). This review aims to explore the biosynthetic pathway, biochemical characteristics of key enzymes, and the biosynthesis of ectoine, shedding light on current research status and offering insights for industrial-scale ectoine production.

    • Advances in the synthesis of cytidine-5'-diphosphate choline

      2024, 40(6):1644-1660. DOI: 10.13345/j.cjb.230715 CSTR: 32114.14.j.cjb.230715

      Abstract (527) HTML (1144) PDF 893.57 K (1669) Comment (0) Favorites

      Abstract:Cytidine-5'-diphosphate choline (CDP-choline) plays a crucial role in the formation of the phospholipid bilamolecular layer in cell membranes and the stabilization of the neurotransmitter system, acting as a precursor to phosphatidylcholine and acetylcholine. CDP-choline has been found effective in treating functional and consciousness disorders resulting from brain injury, Parkinson’s disease, depression and glaucoma, and other conditions. As such, CDP-choline is widely utilized in clinical medicine and health care products. The conventional chemical synthesis process of CDP-choline is gradually being replaced by biosynthesis due to the expensive and toxic reagents involved, the production of various by-products, and the high cost of industrial production. Biosynthesis of CDP-choline offers two strategies: microbial fermentation and biocatalysis. Microbial fermentation utilizes inexpensive raw materials but results in a relatively low conversion rate and requires a complex separation and purification process. Biocatalysis, on the other hand, involves two stages: the growth of a living “catalyst” and the conversion of the substrate. Although the synthetic process in biocatalysis is more complex, it offers a higher conversion ratio, and the downstream processing technique for extraction is relatively less costly. Consequently, biocatalysis is currently the primary strategy for the industrial production of CDP-choline. This review aims to summarize the progress made in both chemical synthesis and biosynthesis of CDP-choline, with particular focus on the metabolic pathway and the synthetic processes involved in biocatalysis, in order to provide insights for the industrial production of CDP-choline.

    • Advances in the biosynthesis and metabolic regulation of terpenoids in Saccharomyces cerevisiae

      2024, 40(6):1661-1693. DOI: 10.13345/j.cjb.230682 CSTR: 32114.14.j.cjb.230682

      Abstract (382) HTML (794) PDF 1.09 M (1128) Comment (0) Favorites

      Abstract:Terpenoids are the one of most abundant natural products. With diverse varieties and biological activities, they are widely used in the food, medicine, chemical industry, and novel fuels. However, the conventional methods such as plant extraction and chemical synthesis cannot meet the current market demand for terpenoids. Efficient microbial cell factories, especially engineered Saccharomyces cerevisiae strains, have been constructed for the industrial production of terpenoids. In recent years, researchers have constructed multiple S. cerevisiae strains with increased yield and productivity via approaches of synthetic biology and metabolic engineering. This paper reviews the recent progress in the biosynthesis of terpenoids in S. cerevisiae cells and summarizes a variety of metabolic engineering strategies for the production of terpenoids in S. cerevisiae. These strategies include the construction and optimization of metabolic pathways, the mining and modification of key enzymes, the regeneration of cofactors, the engineering of cell localization and cell efflux, and the improvement of cell tolerance. Our review will provide information and strategies for the effective biosynthesis of terpenoids in S. cerevisiae.

    • Advances in synthesis of 2-phenylethanol

      2024, 40(6):1694-1710. DOI: 10.13345/j.cjb.230762 CSTR: 32114.14.j.cjb.230762

      Abstract (362) HTML (717) PDF 675.71 K (1047) Comment (0) Favorites

      Abstract:2-phenylethanol (2-PE), an aromatic alcohol with a rose fragrance, is the second most widely used flavoring substance in the world. It is widely used in the cosmetic, food, and pharmaceutical industries. This paper introduces the chemical synthesis methods of 2-PE and the synthetic pathways in plants and microorganisms, summarizes the strategies to improve the microbial synthesis of 2-PE, reviews the research progress in de novo synthesis of 2-PE in microorganisms, and makes an outlook on the research prospects, aiming to provide a theoretical basis for the industrial production of 2-PE.

    • Engineering of microorganisms for high production of amino acids

      2024, 40(6):1711-1727. DOI: 10.13345/j.cjb.230825 CSTR: 32114.14.j.cjb.230825

      Abstract (275) HTML (414) PDF 1.02 M (1174) Comment (0) Favorites

      Abstract:Amino acids as the building blocks of proteins are widely applied in food, medicine, feed, and chemical industries. Amino acid production by microbial cell factories from renewable resources is praised for the environmental friendliness, mild reaction conditions, and high product purity, which helps to achieve the goal of carbon neutrality. Researchers have employed the methods of metabolic engineering and synthetic biology to engineer Escherichia coli and Corynebacterium glutamicum and optimized the culture conditions to construct the microbial cell factories with high performance for producing branched chain amino acids, amino acids of the aspartic acid and glutamic acid families, and aromatic amino acids. We review the engineering process of microbial cell factories for high production of amino acids, in the hope of providing a reference for the creation of high-performance microbial cell factories.

    • Progress in the application of artificial intelligence-assisted molecular modification of enzymes

      2024, 40(6):1728-1741. DOI: 10.13345/j.cjb.230748 CSTR: 32114.14.j.cjb.230748

      Abstract (891) HTML (300) PDF 856.99 K (1762) Comment (0) Favorites

      Abstract:Natural enzymes are often difficult to meet the needs of application and research in terms of activity, enantiomer selectivity or thermal stability. Therefore, it is an important task of enzyme engineering to explore efficient molecular modification technologies to improve the properties of such enzymes. The molecular modification technologies of enzymes mainly include rational design, directed evolution, and artificial intelligence-assisted design. Directed evolution and rational design are experiment-driven molecular modification approaches of enzymes and have been successfully applied to enzyme engineering. However, due to the huge space sizes of protein sequences and the lack of experimental data, the current modification methods still face major challenges. With the development of next-generation sequencing, high-throughput screening, protein databases, and artificial intelligence (AI), data-driven enzyme engineering is emerging as a promising solution to these challenges. The AI-assisted statistical learning method has been used to establish a model for predicting the sequence/structure-properties of enzymes in a data-driven manner. Excellent mutant enzymes can be selected according to the prediction results, which greatly improve the efficiency of molecular modification. Considering the application requirements of molecular modification of enzymes, this paper reviews the data acquisition methods and application examples of AI-assisted molecular modification of enzymes, with focuses on the convolutional neural network method for predicting protein thermostability, aiming to provide reference for researchers in this field.

    • Construction strategy of stimuli-responsive liposome and its biological application

      2024, 40(6):1742-1751. DOI: 10.13345/j.cjb.230747 CSTR: 32114.14.j.cjb.230747

      Abstract (268) HTML (1074) PDF 482.22 K (1458) Comment (0) Favorites

      Abstract:Stimuli-responsive liposomes, a novel type of nanocarriers, have been widely used in the fields of medicine, food, and cosmetics. This paper provides a comprehensive introduction to the preparation methods, construction strategies, and biological applications of stimuli-responsive liposomes. The review highlights the functional principles of pH-sensitive, redox-sensitive, enzyme-sensitive, heat-sensitive, light-sensitive, and magnetic field-responsive liposomes, and summarizes their applications based on various drug delivery mode. Finally, the article provides an overview of the current challenges and future development prospects for stimuli-responsive liposomes.

    • High-temperature adaptation mechanisms and biotechnological potentials of thermophilic cyanobacteria

      2024, 40(6):1752-1775. DOI: 10.13345/j.cjb.230645 CSTR: 32114.14.j.cjb.230645

      Abstract (353) HTML (798) PDF 619.02 K (1410) Comment (0) Favorites

      Abstract:Thermophilic cyanobacteria are prokaryotic organisms that possess exceptional heat-resistant characteristics. This group serves as an excellent model for investigating the heat tolerance of higher photosynthetic organisms, including higher plants, some protists (such as algae and euglena), and bacteria. Analyzing the mechanisms of high-temperature adaptation in thermophilic cyanobacteria can enhance our understanding of how photosynthetic organisms and microorganisms tolerate high temperatures at the molecular level. Additionally, these thermotolerant cyanobacteria have the potential to contribute to breeding heat-tolerant plants and developing microbial cell factories. This review summarizes current research on thermophilic cyanobacteria, focusing on their ecology, morphology, omics studies, and mechanisms of high-temperature tolerance. It offers insight into the potential biotechnological applications of thermophilic cyanobacteria and highlights future research opportunities. Specifically, attention is given to the photosynthetic physiology and metabolism of cyanobacteria, and the molecular basis of heat-tolerance mechanisms in thermophilic cyanobacteria is explored.

    • Filamentous morphology: a new frontier for genetic modification of filamentous fungal cell factories

      2024, 40(6):1776-1791. DOI: 10.13345/j.cjb.230717 CSTR: 32114.14.j.cjb.230717

      Abstract (390) HTML (361) PDF 742.13 K (1056) Comment (0) Favorites

      Abstract:Filamentous fungi are a group of eukaryotic microorganisms widely found in nature. Some filamentous fungi have been developed as “cell factories” and extensively used for the production of recombinant proteins, organic acids, and secondary metabolites due to their strong protein secretion capabilities or effective synthesis of many natural products. The growth morphology of filamentous fungi significantly influences the quality and quantity of fermented products. Previous research conducted by the authors’ group revealed that an increase in hyphal branches leads to enhanced protein secretion during liquid fermentation. With the development of morphological engineering of filamentous fungi, an increasing number of studies have focused on modifying fungal mycelium morphology to improve the yield of target metabolites during fermentation. While there have been a few reviews on the relationship between fungal fermentation morphology and productivity, research in this area is rapidly developing and requires updates. The paper presents a comprehensive review of domestic and international research reports, along with the authors’ own research findings, to systematically review the morphological patterns of filamentous fungi, the impact of fungal morphology on industrial fermentation, as well as methods and strategies for regulating mycelial morphology. The aim of this review is to enhance the understanding of relevant domestic scholars regarding the morphological development of filamentous fungi and provide ideas for the rational engineering of fungal strains suitable for industrial fermentation.

    • Research progress of integrating electrical impedance sensors with microfluidic chips in cell detection

      2024, 40(6):1792-1805. DOI: 10.13345/j.cjb.230668 CSTR: 32114.14.j.cjb.230668

      Abstract (201) HTML (378) PDF 762.47 K (966) Comment (0) Favorites

      Abstract:Cell culture is a fundamental tool for cell-based assays in biological and preclinical research. The measurements of cell culture, including cell count, viability, and metabolic activity, can reflect the conditions of cells under culture conditions. The conventional cell culture and detection methods have problems such as high consumption of reagents and samples, inability to monitor cell status in real time, and difficulty in spatiotemporally adjusting the cell microenvironment. A cell impedance sensor measures changes in the electrical impedance of cells through alternating current, enabling real-time monitoring of impedance changes caused by cell activities such as attachment, growth, proliferation, and migration. Microfluidic chips are praised for reducing complex biological processes, integrating multiple analysis modes, and achieving high automation in detection. Integrating microfluidic chips with cell impedance sensors greatly improves the capability and efficiency of cell-related analysis. This review outlines the application of microfluidic chip-based impedance sensors in 2D and 3D cell systems and summarizes the research progress in application of such sensors in research on cell growth, proliferation, viability, metabolic activity, and drug screening. Finally, this review prospects the future development trends and possible challenges, providing ideas for the development of microfluidic chips integrated with electrical impedance sensors in drug screening.

    • Design and application of artificial multicellular systems for nitrogen removal from wastewater

      2024, 40(6):1806-1832. DOI: 10.13345/j.cjb.230714 CSTR: 32114.14.j.cjb.230714

      Abstract (197) HTML (431) PDF 1.55 M (708) Comment (0) Favorites

      Abstract:Excessive accumulation of nitrogen is a major cause of water eutrophication. Developing an inexpensive and efficient nitrogen removal technology is therefore essential for wastewater purification. The microbial technology for nitrogen removal has been widely used for its low cost, high efficiency, and strong environmental adaptability. Most recently, with the advances in synthetic biotechnology, artificial multicellular systems have been sufficiently developed and exhibited unique definability and controllability. Compared with those in the natural microbial consortia, the nitrogen removal pathways and environmental response mechanisms are easy to be clarified in the artificial multicellular systems, which allow for efficient nitrogen removal under low cellular metabolic loading. Therefore, artificial multicellular systems demonstrate great application potential in the purification of wastewater, including landfill leachate, industrial wastewater, seawater aquaculture wastewater, and domestic sewage. We focused on the design, building, and application of artificial multicellular systems for nitrogen removal from wastewater. Specifically, we summarized the functional microorganisms and their nitrogen removal mechanisms, introduced the design principles and building methods of artificial multicellular systems, illustrated the application of artificial multicellular systems with examples, and prospected the future research trend in nitrogen removal from wastewater. The conclusion is expected to provide new insights and efficient strategies for optimizing the microbial nitrogen removal from wastewater.

    • >Industrial Biotechnology
    • Analysis of enzyme activity and substrate specificity of dolichyl-phosphate b-glucosyltransferase

      2024, 40(6):1833-1844. DOI: 10.13345/j.cjb.230737 CSTR: 32114.14.j.cjb.230737

      Abstract (243) HTML (296) PDF 728.27 K (712) Comment (0) Favorites

      Abstract:Protein folding and quality control processes primarily occur in the endoplasmic reticulum (ER). ER-resident molecular chaperones play a crucial role in guiding nascent polypeptides towards their correct tertiary structures. Some of these chaperones specifically recognize glucosylated N-glycan moieties on peptide. It is of great significance to study the N-glycan biosynthetic pathway and glycoprotein quality control system by analyzing the sugar donor of ER luminal glucosyltransferases, known as dolichol phosphate glucose (Dol-P-Glc), or its analogues in vitro. In this study, we investigated a range of dolichol analogues to synthesize lipid phosphate glucose, which served as substrates for dolichyl-phosphate b-glucosyltransferase E (Alg5E) derived from Trichomonas vaginalis. The results demonstrated that the recombinant Alg5E, expressed in Escherichia coli, exhibited strong catalytic activity and the ability to recognize lipid phosphate glucose with varying chain lengths. Interestingly, the enzyme’s catalytic reaction was found to be faster with longer carbon chains in the substrate. Additionally, Alg5E showed a preference for branched chain methyl groups in the lipid structure. Furthermore, our study confirmed the importance of divalent metal ions in the binding of the crucial DXD motif, which is essential for the enzyme’s catalytic function. These findings lay the groundwork for future research on glucosyltransferases Alg6, Alg8, and Alg10 in the synthesis pathway of dolichol-linked oligosaccharide (DLO).

    • Molecular modification of cyclodextrin glucosyltransferase and its application in the synthesis of α-arbutin

      2024, 40(6):1845-1855. DOI: 10.13345/j.cjb.230693 CSTR: 32114.14.j.cjb.230693

      Abstract (306) HTML (496) PDF 926.63 K (818) Comment (0) Favorites

      Abstract:α-arbutin has important applications in cosmetics and medicine. However, the extraction yield from plant tissues is relatively low, which restricts its application value. In this study, we investigated the synthesis of α-arbutin using maltodextrin as the donor and hydroquinone as the acceptor, using a cyclodextrin glucosyltransferase (CGTase) from Anaerobranca gottschalkii. We performed site-saturated and site-directed mutagenesis on AgCGTase. The activity of the variant AgCGTase-F235G-N166H was 3.48 times higher than that of the wild type. Moreover, we achieved a conversion rate of 63% by optimizing the reaction pH, temperature, and hydroquinone addition amount. Overall, this study successfully constructed a strain with improved conversion rate for the synthetic production of α-arbutin and hydroquinone. These findings have significant implications for reducing the industrial production cost of α-arbutin and enhancing the conversion rate of the product.

    • Knockdown of motility-related genes of Komagataeibacter xylinus and its effect on bacterial cellulose synthesis

      2024, 40(6):1856-1867. DOI: 10.13345/j.cjb.230684 CSTR: 32114.14.j.cjb.230684

      Abstract (215) HTML (323) PDF 863.14 K (996) Comment (0) Favorites

      Abstract:Bacterial cellulose (BC) is a biopolymer synthesized by bacteria, which possess excellent characteristics such as high water holding capacity, high crystallinity, and high purity. It is widely used in food, medical, cosmetics, and functional films. Komagataeibacter xylinus is a model strain used in BC synthesis research. In bacteria, motility-related genes are associated with BC synthesis, whereas in Komagataeibacter xylinus CGMCC 2955, the functions of motility-related genes and their effects on BC synthesis are not known. To address this gap, we used the λ Red recombinant system to individually knock out motA, motB, and mot2A respectively, and constructed the knockout strains K. xmotA, K. xmotB, and K. xmot2A. Additionally, both motA and motB were disrupted to construct the K. xmotAB mutant. The results demonstrated that knockout strain K. xmotAB exhibited the highest BC yield, reaching (5.05±0.26) g/L, which represented an increase of approximately 24% compared to wild-type strains. Furthermore, the BC synthesized by this strain exhibited the lowest porosity, 54.35%, and displayed superior mechanical properties with a Young’s modulus of up to 5.21 GPa. As knocking out motA and motB genes in K. xylinus CGMCC 2955 did not reduce BC yield; instead, it promoted BC synthesis. Consequently, this research further deepened our understanding of the relationship between motility and BC synthesis in acetic acid bacteria. The knockouts of motA and motB genes resulted in reduced BC porosity and improved mechanical properties, provides a reference for BC synthesis and membrane structure regulation modification.

    • Comparative metabolomics analysis of metabolic pathways in the high-yielding mutant strain of avilamycin

      2024, 40(6):1868-1881. DOI: 10.13345/j.cjb.230683 CSTR: 32114.14.j.cjb.230683

      Abstract (215) HTML (364) PDF 1.05 M (479) Comment (0) Favorites

      Abstract:Avilamycin (AVI) is an oligosaccharide antibiotic that has strong inhibitory effect on Gram-positive bacteria. It is widely used in livestock and poultry farming. However, the use of traditional breeding techniques and immature fermentation process have become the key factors limiting its commercialization. In this study, we used comparative metabolomics techniques to examine the difference in intracellular metabolism between a high-yield AVI mutant strain modified by ribosome engineering technology and the parental strain. GC-MS analysis was conducted on mycelia samples taken on days 4, 6, and 8 of fermentation, resulting in the detection of a total of 112 compounds. After comparison with the NIST library, 29 intracellular metabolites were accurately identified. Two-dimensional principal component analysis (PCA) revealed significant differences in metabolites between the mutant strain and the parental strain at different time points. Orthogonal partial least squares-discriminant analysis (OPLS-DA) identified 11 intracellular metabolites that were closely related to AVI biosynthesis. KEGG metabolic pathway enrichment analysis showed that avilamycin synthesis was closely related to carbohydrate metabolism and amino acid metabolism. Six key differential metabolites were selected: l-valine, l-serine, l-alanine, d-galactose, d-cellobiose, and d-glucose. Upregulation of these metabolites in the mutant strain enhanced its metabolic flow for AVI synthesis. After 8 days of fermentation, the mutant strain produced 76.86% more AVI than the parental strain. The findings of this study serve as reference for the future rational optimization of avilamycin fermentation.

    • Enzymatic production of 1,4-cyclohexanedimethylamine

      2024, 40(6):1882-1894. DOI: 10.13345/j.cjb.230606 CSTR: 32114.14.j.cjb.230606

      Abstract (235) HTML (422) PDF 1011.58 K (664) Comment (0) Favorites

      Abstract:1,4-cyclohexanedimethylamine (1,4-BAC) is an important monomer for bio-based materials, it finds wide applications in various fields including organic synthesis, medicine, chemical industry, and materials. At present, its synthesis primarily relies on chemical method, which suffer from issues such as expensive metal catalyst, harsh reaction conditions, and safety risks. Therefore, it is necessary to explore greener alternatives for its synthesis. In this study, a two-bacterium three-enzyme cascade conversion pathway was successfully developed to convert 1,4-cyclohexanedicarboxaldehyde to 1,4-cyclohexanedimethylamine. This pathway used Escherichia coli derived aminotransferase (EcTA), Saccharomyces cerevisiae derived glutamate dehydrogenase (ScGlu-DH), and Candida boidinii derived formate dehydrogenase (CbFDH). Through structure-guided protein engineering, a beneficial mutant, EcTAF91Y, was obtained, exhibiting a 2.2-fold increase in specific activity and a 1.9-fold increase in kcat/Km compared to that of the wild type. By constructing recombinant strains and optimizing reaction conditions, it was found that under the optimal conditions, a substrate concentration of 40 g/L could produce (27.4±0.9) g/L of the product, corresponding to a molar conversion rate of 67.5%±2.1%.

    • The expression and secretion of human lactoferrin in Bacillus subtilis

      2024, 40(6):1895-1908. DOI: 10.13345/j.cjb.230785 CSTR: 32114.14.j.cjb.230785

      Abstract (332) HTML (343) PDF 844.37 K (844) Comment (0) Favorites

      Abstract:Human lactoferrin (HLF), an essential nutrient found in breast milk, possesses antibacterial, anti-inflammatory, and immune-enhancing properties. In this study, the effects of three constitutive promoters (P21, P43, and Pveg) and three inducible promoters (Pgrac100, PxylA, and Ptet*) on the expression of HLF were compared using Bacillus subtilis G601 as the host strain. The results showed that the highest expression of HLF, reaching 651.57 μg/L, was achieved when regulated by the Ptet* promoter. Furthermore, the combinational optimization of ribosome binding site (RBS) and signal peptides was investigated, and the optimal combination of RBS6 and SPyycP resulted in increased HLF expression to 1 099.87 μg/L, with 498.68 μg/L being secreted extracellularly. To further enhance HLF secretion, the metal cations-related gene dltD was knocked out, leading to an extracellular HLF level of 637.28 μg/L. This study successfully demonstrated the secretory expression of HLF in B. subtilis through the selection and optimization of expression elements, laying the foundation for the development of efficient B. subtilis cell factories for lactoprotein synthesis.

    • Construction and culture condition optimization of a Saccharomyces cerevisiae strain for production of galactitol

      2024, 40(6):1909-1923. DOI: 10.13345/j.cjb.230744 CSTR: 32114.14.j.cjb.230744

      Abstract (280) HTML (476) PDF 928.73 K (602) Comment (0) Favorites

      Abstract:Galactitol, a rare sugar alcohol, has promising potential in the food industry and pharmaceutical field. The available industrial production methods rely on harsh hydrogenation processes, which incur high costs and environmental concerns. It is urgent to develop environmentally friendly and efficient biosynthesis technologies. In this study, a xylose reductase named AnXR derived from Aspergillus niger CBS 513.88 was identified and characterized for the enzymatic properties. AnXR exhibited the highest activity at 25 ℃ and pH 8.0, and it belonged to the NADPH-dependent aldose reductase family. To engineer a strain for galactitol production, we deleted the galactokinase (GAL1) gene in Saccharomyes cerevisiae by using the recombinant gene technology, which significantly reduced the metabolic utilization of d-galactose by host cells. Subsequently, we introduced the gene encoding AnXR into this modified strain, creating an engineered strain capable of catalyzing the conversion of d-galactose into galactitol. Furthermore, we optimized the whole-cell catalysis conditions for the engineered strain, which achieved a maximum galactitol yield of 12.10 g/L. Finally, we tested the reduction ability of the strain for other monosaccharides and discovered that it could produce functional sugar alcohols such as xylitol and arabinitol. The engineered strain demonstrates efficient biotransformation capabilities for galactitol and other functional sugar alcohols, representing a significant advancement in environmentally sustainable production practices.

    • >Synthetic Biotechnology
    • Stable integration sites in Saccharomyces cerevisiae: identification and application in the biosynthesis of valencene

      2024, 40(6):1924-1934. DOI: 10.13345/j.cjb.230792 CSTR: 32114.14.j.cjb.230792

      Abstract (347) HTML (459) PDF 808.73 K (860) Comment (0) Favorites

      Abstract:Valencene, a high-value sesquiterpene with a citrus aroma, is widely employed in the food and cosmetic fields and the industrial synthesis of nootkatone. In this study, 16 genomic loci in the intergenic regions (IGRs) of Saccharomyces cerevisiae were identified. A Ypet expression cassette was successfully integrated into various genomic loci by CRISPR-Cas9, with an impressive integration success rate of 87.50% and exhibiting expression variations of up to 1.91-fold depending on the insertion site. The study demonstrates that the positional effect exhibits relative stability in gene expression, and is essentially unaffected by changes in promoters and reporter genes. Furthermore, a high-expression element combination, PTDH3-TPRC1, was selected. The iterative integration of the valencene synthase gene VSm from Callitropsis nootkatensis at the selected loci increased the valencene yield to 254.67 mg/L. Overexpression of key genes tHMG1-ERG20 with multiple copies increased the valencene yield by 93.49%. The engineered strain L-13 achieved the valencene yield of 9 530.18 mg/L by two-stage fed-batch fermentation in a 3 L fermenter. This yield represents a nearly 100-fold increase compared with that of the starting strain, highlighting the significant potential of the screened genomic loci in optimizing valencene production.

    • Development and characterization of tobacco suspension cell chassis NBS-1

      2024, 40(6):1935-1949. DOI: 10.13345/j.cjb.230735 CSTR: 32114.14.j.cjb.230735

      Abstract (276) HTML (466) PDF 1.11 M (1126) Comment (0) Favorites

      Abstract:Plant synthetic biology has significant theoretical advantages in exploration and production of plant natural products. However, its contribution to the field of biosynthesis is currently limited due to the lack of efficient chassis systems and related enabling technologies. Synthetic biologists often avoid tobacco as a chassis system because of its long operation cycle, difficulties in genetic and metabolic modification, complex metabolism and purification background, nicotine toxicity, and challenges in accurately controlling for agricultural production. Nevertheless, the tobacco suspension cell chassis system offers a viable solution to these challenges. The objective of this research was to develop a tobacco suspension cell chassis with high scientific and industrial potential. This chassis should exhibit rapid growth, high biomass, excellent dispersion, high transformation efficiency, and minimal nicotine content. Nicotiana benthamiana, which has high applicability in molecular technology, was used to induce suspension cells. The induced suspension cells, named NBS-1, exhibited rapid growth, excellent dispersion, and high biomass, reaching a maximum biomass of 476.39 g/L (fresh weight), which was significantly higher than that of BY-2. The transformation efficiency of the widely utilized pEAQ-HT transient expression system in NBS-1 reached 81%, which was substantially elevated compared to BY-2. The metabolic characteristics and bias of BY-2 and NBS-1 were analyzed using transcriptome data. It was found that the gene expression of pathways related to biosynthesis of flavonoids and their derivatives in NBS-1 was significantly higher, while the pathways related to alkaloid biosynthesis were significantly lower compared to BY-2. These findings were further validated by the total content of flavonoid and alkaloid. In summary, our research demonstrates NBS-1 possesses minimal nicotine content and provides valuable guidance for selecting appropriate chassis for specific products. In conclusion, this study developed NBS-1, a tobacco suspension cell chassis with excellent growth and transformation, high flavonoid content and minimal nicotine content, which has important guiding significance for the development of tobacco suspension cell chassis.

    • >Education
    • Development and implementation of the course entitled “Virtual Simulation Experiment of Recombinant Human Erythropoietin Manufacturing Process”

      2024, 40(6):1950-1962. DOI: 10.13345/j.cjb.230631 CSTR: 32114.14.j.cjb.230631

      Abstract (238) HTML (451) PDF 1.13 M (740) Comment (0) Favorites

      Abstract:Considering the issues present in traditional learning methods of manufacturing process for biotechnology majors, this paper presents the development and implementation process of the course entitled “Virtual Simulation Experiment of Recombinant Human Erythropoiesis Manufacturing Process”. The experiment combines modern biological manufacturing technology and three-dimensional information technology, with recombinant human erythropoiesis drug serving as the focal point. This paper elaborates on the teaching concepts, objectives, contents, implementation methods, experimental procedures, interactive steps, and assessment criteria used in the experiment. Through innovative experimental scheme design, teaching methodologies, and evaluation systems, this course aims to cultivate students’ analytical and problem-solving skills in the field of biopharmaceutical engineering, while also broadening students’ perspective and expanding their vision.

    • Graduate teaching reform on synthetic biology featuring the discipline of fermentation engineering

      2024, 40(6):1963-1971. DOI: 10.13345/j.cjb.230576 CSTR: 32114.14.j.cjb.230576

      Abstract (231) HTML (279) PDF 544.62 K (1080) Comment (0) Favorites

      Abstract:Industrial biotechnology is regarded as the most promising technology for sustainable industrial development. The advancement of synthetic biology creates new opportunities and infinite possibilities for the progress of industrial biotechnology. Fermentation engineering is the grab and foothold of the industrialization of all the biotechnologies. Our teaching team optimized the teaching content and innovated the teaching mode to establish a teaching system of synthetic biology matching fermentation engineering. We highlighted the teaching characteristics (telling fermentation story cultivated the craftsmanship spirit; bioeconomic education strengthened the engineering thinking; bioethics and safety education fostered a sense of responsibility), then we summarized and prospected the teaching reform of this course. We believe that the teaching reform of synthetic biology will improve the learning performance of postgraduates, provide a reference for the teaching of synthetic biology in related fields, and promote the development of industrial biotechnology (strengthening the innovation capability in biological manufacturing and cultivating new momentum for bioeconomy).

Current Issue


Volume , No.

Table of Contents

Archive

Volume

Issue

Most Read

Most Cited

Most Downloaded