[1] |
Chalkiadaki A, Guarente L. The multifaceted functions of sirtuins in cancer.
Nat Rev Cancer, 2015, 15(10): 608–624.
DOI: 10.1038/nrc3985
|
|
[2] |
Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms.
Genes Dev, 1999, 13(19): 2570–2580.
DOI: 10.1101/gad.13.19.2570
|
|
[3] |
Zhou B, Zhai QW. Sirtuins in glucose and lipid metabolism.
Chin Bullet Life Sci, 2013, 25(2): 140–151.
(in Chinese). 周犇, 翟琦巍. Sirtuin蛋白家族和糖脂代谢.
生命科学, 2013, 25(2): 140-151.
|
|
[4] |
Michishita E, Park JY, Burneskis JM, et al. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins.
Mol Biol Cell, 2005, 16(10): 4623–4635.
DOI: 10.1091/mbc.e05-01-0033
|
|
[5] |
Kiran S, Chatterjee N, Singh S, et al. Intracellular distribution of human SIRT7 and mapping of the nuclear/nucleolar localization signal.
FEBS J, 2013, 280(14): 3451–3466.
DOI: 10.1111/febs.12346
|
|
[6] |
Dong Z, Lei Q, Liu LC, et al. Function of SIRT6 in tumor initiation and progression.
Chin J Biotech, 2016, 32(7): 870–879.
(in Chinese). 董振, 雷倩, 刘力超, 等. 长寿蛋白SIRT6在肿瘤发生发展中的作用.
生物工程学报, 2016, 32(7): 870-879.
|
|
[7] |
Dong Z. SIRT6 regulates the warburg effect via CDK4-CCND1 complex[D]. Chongqing: Southwest University, 2017 (in Chinese). 董振. SIRT6通过CDK4-CCND1复合体调控沃伯格效应[D].重庆, 西南大学, 2017.
|
|
[8] |
Blank MF, Grummt I. The seven faces of SIRT7.
Transcription, 2017, 8(2): 67–74.
|
|
[9] |
Voelter-Mahlknecht S, Letzel S, Mahlknecht U. Fluorescence in situ hybridization and chromosomal organization of the human Sirtuin 7 gene.
Int J Oncol, 2006, 28(4): 899–908.
|
|
[10] |
Kiran S, Anwar T, Kiran M, et al. Sirtuin 7 in cell proliferation, stress and disease: Rise of the Seventh Sirtuin!.
Cell Signal, 2015, 27(3): 673–82.
|
|
[11] |
Chen S, Blank MF, Iyer A, et al. SIRT7-dependent deacetylation of the U3-55k protein controls pre-rRNA processing.
Nat Commun, 2016, 7: 10734.
DOI: 10.1038/ncomms10734
|
|
[12] |
Li L, Shi L, Yang SD, et al. SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability.
Nat Commun, 2016, 7: 12235.
DOI: 10.1038/ncomms12235
|
|
[13] |
Chen SF, Seiler J, Santiago-Reichelt M, et al. Repression of RNA polymerase Ⅰ upon stress is caused by inhibition of RNA-dependent deacetylation of PAF53 by SIRT7.
Mol Cell, 2013, 52(3): 303–313.
|
|
[14] |
Ryu D, Jo FS, Lo Sasso G, et al. A SIRT7-dependent acetylation switch of GABPβ1 controls mitochondrial function.
Cell Metab, 2014, 20(5): 856–869.
DOI: 10.1016/j.cmet.2014.08.001
|
|
[15] |
Vakhrusheva O, Smolka C, Gajawada P, et al. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice.
Circ Res, 2008, 102(6): 703–710.
DOI: 10.1161/CIRCRESAHA.107.164558
|
|
[16] |
Lee N, Kim DK, Kim ES, et al. Comparative interactomes of SIRT6 and SIRT7: implication of functional links to aging.
Proteomics, 2014, 14(13/14): 1610–1622.
|
|
[17] |
Mo Y, Lin R, Liu P, et al. SIRT7 deacetylates DDB1 and suppresses the activity of the CRL4 E3 ligase complexes.
FEBS J, 2017, 284(21): 3619–3636.
|
|
[18] |
Hubbi ME, Hu HX, Kshitiz, et al. Sirtuin-7 inhibits the activity of hypoxia-inducible factors.
J Biol Chem, 2013, 288(29): 20768–20775.
DOI: 10.1074/jbc.M113.476903
|
|
[19] |
Tong Z, Wang Y, Zhang XY, et al. SIRT7 is activated by DNA and deacetylates histone H3 in the chromatin context.
ACS Chem Biol, 2016, 11(3): 742–747.
|
|
[20] |
Tong Z, Wang M, Wang Y, et al. SIRT7 is an RNA-activated protein lysine deacylase.
ACS Chem Biol, 2017, 12(1): 300–310.
|
|
[21] |
Liang P. SAGE genie: a suite with panoramic view of gene expression.
Proc Natl Acad Sci USA, 2002, 99(18): 11547–11548.
DOI: 10.1073/pnas.192436299
|
|
[22] |
Tsai YT, Greco TM, Boonmee A, et al. Functional proteomics establishes the interaction of SIRT7 with chromatin remodeling complexes and expands its role in regulation of RNA polymerase Ⅰ transcription.
Mol Cell Proteomics, 2012, 11(5): 60–76.
DOI: 10.1074/mcp.A111.015156
|
|
[23] |
Blank MF, Chen SF, Poetz F, et al. SIRT7-dependent deacetylation of CDK9 activates RNA polymerase Ⅱ transcription.
Nucleic Acids Res, 2017, 45(5): 2675–2686.
DOI: 10.1093/nar/gkx053
|
|
[24] |
Tsai YC, Greco TM, Cristea IM. Sirtuin 7 plays a role in ribosome biogenesis and protein synthesis.
Mol Cell Proteomics, 2014, 13(1): 73–83.
DOI: 10.1074/mcp.M113.031377
|
|
[25] |
Ford E, Voit R, Liszt G, et al. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase Ⅰ transcription.
Genes Dev, 2006, 20(9): 1075–1080.
DOI: 10.1101/gad.1399706
|
|
[26] |
Santos-Pereira JM, Aguilera A. R loops: new modulators of genome dynamics and function.
Nat Rev Genet, 2015, 16(10): 583–597.
DOI: 10.1038/nrg3961
|
|
[27] |
Song CL, Hotz-Wagenblatt A, Voit R, et al. SIRT7 and the DEAD-box helicase DDX21 cooperate to resolve genomic R loops and safeguard genome stability.
Genes Dev, 2017, 31: 1370–1381.
DOI: 10.1101/gad.300624.117
|
|
[28] |
Vazquez BN, Thackray JK, Simonet NG, et al. SIRT7 promotes genome integrity and modulates non-homologous end joining DNA repair.
EMBO J, 2016, 35(14): 1488–1503.
DOI: 10.15252/embj.201593499
|
|
[29] |
Kiran S, Oddi V, Ramakrishna G. Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response.
Exp Cell Res, 2015, 331(1): 123–141.
|
|
[30] |
Jackson S, Xiong Y. CRL4s: the CUL4-RING E3 ubiquitin ligases.
Trends Biochem Sci, 2009, 34(11): 562–570.
DOI: 10.1016/j.tibs.2009.07.002
|
|
[31] |
Karim MF, Yoshizawa T, Sobuz SU, et al. Sirtuin 7-dependent deacetylation of DDB1 regulates the expression of nuclear receptor TR4.
Biochem Biophys Res Commun, 2017, 490(2): 423–428.
DOI: 10.1016/j.bbrc.2017.06.057
|
|
[32] |
Yoshizawa T, Karim MF, Sato Y, et al. SIRT7 controls hepatic lipid metabolism by regulating the ubiquitin-proteasome pathway.
Cell Metab, 2014, 19(4): 712–721.
DOI: 10.1016/j.cmet.2014.03.006
|
|
[33] |
Deng JJ, Kong KY, Gao WW, et al. Interplay between SIRT1 and hepatitis B virus X protein in the activation of viral transcription.
Biochim Biophys Acta, 2017, 1860(4): 491–501.
DOI: 10.1016/j.bbagrm.2017.02.007
|
|
[34] |
Pandey V, Kumar V. Stabilization of SIRT7 deacetylase by viral oncoprotein HBx leads to inhibition of growth restrictive RPS7 gene and facilitates cellular transformation.
Sci Rep, 2015, 5: 14806.
DOI: 10.1038/srep14806
|
|
[35] |
Koyuncu E, Budayeva HG, Miteva YV, et al. Sirtuins are evolutionarily conserved viral restriction factors.
mBio, 2014, 5(6): e02249–14.
|
|
[36] |
Shin JY, He M, Liu YF, et al. SIRT7 represses Myc activity to suppress ER stress and prevent fatty liver disease.
Cell Rep, 2013, 5(3): 654–665.
DOI: 10.1016/j.celrep.2013.10.007
|
|
[37] |
Sun LH, Fan GJ, Shan PP, et al. Regulation of energy homeostasis by the ubiquitin-independent REGγ proteasome.
Nat Commun, 2016, 7: 12497.
DOI: 10.1038/ncomms12497
|
|
[38] |
López-Otín C, Blasco MA, Partridge L, et al. The hallmarks of aging.
Cell, 2013, 153(6): 1194–1217.
|
|
[39] |
Herranz D, Mu oz-Martin M, Ca amero M, et al. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer.
Nat Commun, 2010, 1: 3.
|
|
[40] |
Li HY, Wang R. Blocking SIRT1 inhibits cell proliferation and promotes aging through the PI3K/AKT pathway.
Life Sci, 2017, 190: 84–90.
DOI: 10.1016/j.lfs.2017.09.037
|
|
[41] |
Wrighton KH. Stem cells: SIRT7, the UPR and HSC ageing.
Nat Rev Mol Cell Biol, 2015, 16(5): 266–267.
|
|
[42] |
Gu SS, Ran SJ, Liu B, et al. MiR-152 induces human dental pulp stem cell senescence by inhibiting SIRT7 expression.
FEBS Lett, 2016, 590(8): 1123–1131.
DOI: 10.1002/1873-3468.12138
|
|
[43] |
Wyman AE, Noor Z, Fishelevich R, et al. Sirtuin 7 is decreased in pulmonary fibrosis and regulates the fibrotic phenotype of lung fibroblasts.
Am J Physiol Lung Cell Mol Physiol, 2017, 312(6): L945–L958.
DOI: 10.1152/ajplung.00473.2016
|
|
[44] |
Colombo E, Marine JC, Danovi D, et al. Nucleophosmin regulates the stability and transcriptional activity of p53.
Nat Cell Biol, 2002, 4(7): 529–533.
DOI: 10.1038/ncb814
|
|
[45] |
Zhu LX, Ho SC, Sit JWH. The experiences of Chinese patients with coronary heart disease.
J Clin Nurs, 2012, 21(3/4): 476–484.
|
|
[46] |
Winnik S, Auwerx J, Sinclair DA, et al. Protective effects of sirtuins in cardiovascular diseases: from bench to bedside.
Eur Heart J, 2015, 36(48): 3404–3412.
DOI: 10.1093/eurheartj/ehv290
|
|
[47] |
Liu X. Dysregulation of SIRT7 gene expression in myocardial infarction[D]. Jining: Jining Medical University, 2017 (in Chinese). 刘新. SIRT7基因表达调控与急性心肌梗死的分子遗传学研究[D].济宁: 济宁医学院, 2017.
|
|
[48] |
Ogrodnik M, Miwa S, Tchkonia T, et al. Cellular senescence drives age-dependent hepatic steatosis.
Nat Commun, 2017, 8: 15691.
DOI: 10.1038/ncomms15691
|
|
[49] |
Fang J, Ianni A, Smolka C, et al. Sirt7 promotes adipogenesis in the mouse by inhibiting autocatalytic activation of Sirt1.
Proc Natl Acad Sci USA, 2017, 114(40): E8352–E8361.
DOI: 10.1073/pnas.1706945114
|
|
[50] |
Kim JK, Noh JH, Jung KH, et al. Sirtuin7 oncogenic potential in human hepatocellular carcinoma and its regulation by the tumor suppressors MiR-125a-5p and MiR-125b.
Hepatology, 2013, 57(3): 1055–1067.
DOI: 10.1002/hep.26101
|
|
[51] |
Hamashima C. Current issues and future perspectives of gastric cancer screening.
World J Gastroenterol, 2014, 20(38): 13767–13774.
DOI: 10.3748/wjg.v20.i38.13767
|
|
[52] |
Zhang S, Chen P, Huang ZA, et al. Sirt7 promotes gastric cancer growth and inhibits apoptosis by epigenetically inhibiting miR-34a.
Sci Rep, 2015, 5: 9787.
DOI: 10.1038/srep09787
|
|
[53] |
Fan L, Strasser-Weippl K, Li JJ, et al. Breast cancer in China.
Lancet Oncol, 2014, 15(7): e279–e289.
DOI: 10.1016/S1470-2045(13)70567-9
|
|
[54] |
Aljada A, Saleh AM, Alkathiri M, et al. Altered sirtuin 7 expression is associated with early stage breast cancer.
Breast Cancer (Auckl), 2015, 9: 3–8.
|
|
[55] |
Geng Q, Peng HY, Chen FS, et al. High expression of Sirt7 served as a predictor of adverse outcome in breast cancer.
Int J Clin Exp Pathol, 2015, 8(2): 1938–1945.
|
|
[56] |
Brown KK, Toker A. The phosphoinositide 3-kinase pathway and therapy resistance in cancer.
F1000Prime Rep, 2015, 7: 13.
|
|
[57] |
Yu J, Qin B, Wu FY, et al. Regulation of serine/threonine kinase Akt Activation by NAD+-dependent deacetylase SIRT7.
Cell Rep, 2017, 18(5): 1229–1240.
DOI: 10.1016/j.celrep.2017.01.009
|
|
[58] |
Li D, Li LF. MicroRNA-3666 inhibits breast cancer cell proliferation by targeting sirtuin 7.
Mol Med Rep, 2017, 16(6): 8493–8500.
DOI: 10.3892/mmr.2017.7603
|
|
[59] |
Weigelt B, Peterse JL, van't Veer LJ. Breast cancer metastasis: markers and models.
Nat Rev Cancer, 2005, 5(8): 591–602.
DOI: 10.1038/nrc1670
|
|
[60] |
Tang XL, Shi LS, Xie N, et al. SIRT7 antagonizes TGF-β signaling and inhibits breast cancer metastasis.
Nat Commun, 2017, 8: 318.
DOI: 10.1038/s41467-017-00396-9
|
|
[61] |
Kim WJ, Bae SC. Molecular biomarkers in urothelial bladder cancer.
Cancer Sci, 2008, 99(4): 646–652.
DOI: 10.1111/j.1349-7006.2008.00735.x
|
|
[62] |
Han YH, Liu YC, Zhang H, et al. Hsa-miR-125b suppresses bladder cancer development by down-regulating oncogene SIRT7 and oncogenic long non-coding RNA MALAT1.
FEBS Lett, 2013, 587(23): 3875–3882.
DOI: 10.1016/j.febslet.2013.10.023
|
|
[63] |
Siegel R, Desantis C, Jemal A. Colorectal cancer statistics, 2014.
CA Cancer J Clin, 2014, 64(2): 104–117.
DOI: 10.3322/caac.v64.2
|
|
[64] |
Yu HY, Ye W, Wu JX, et al. Overexpression of sirt7 exhibits oncogenic property and serves as a prognostic factor in colorectal cancer.
Clin Cancer Res, 2014, 20(13): 3434–3445.
DOI: 10.1158/1078-0432.CCR-13-2952
|
|
[65] |
Sauer R, Liersch T, Merkel S, et al. Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: results of the German CAO/ARO/AIO-94 randomized phase Ⅲ trial after a median follow-up of 11 years.
J Clin Oncol, 2012, 30(16): 1926–1933.
DOI: 10.1200/JCO.2011.40.1836
|
|
[66] |
Tang M, Lu XP, Zhang CH, et al. Downregulation of SIRT7 by 5-fluorouracil induces radiosensitivity in human colorectal cancer.
Theranostics, 2017, 7(5): 1346–1359.
DOI: 10.7150/thno.18804
|
|
[67] |
Lin QJ, Yang F, Jin C, et al. Current status and progress of pancreatic cancer in China.
World J Gastroenterol, 2015, 21(26): 7988–8003.
DOI: 10.3748/wjg.v21.i26.7988
|
|
[68] |
Vincent A, Herman J, Schulick R, et al. Pancreatic cancer.
Lancet, 2011, 378(9791): 607–620.
DOI: 10.1016/S0140-6736(10)62307-0
|
|
[69] |
McGlynn LM, McCluney S, Jamieson NB, et al. SIRT3 & SIRT7: potential novel biomarkers for determining outcome in pancreatic cancer patients.
PLoS ONE, 2015, 10(6): e0131344.
DOI: 10.1371/journal.pone.0131344
|
|
[70] |
Mehanna H, Paleri V, West CML, et al. Head and neck cancer-Part 1: epidemiology, presentation, and prevention.
BMJ, 2010, 341: c4684.
DOI: 10.1136/bmj.c4684
|
|
[71] |
Lai CC, Lin PM, Lin SF, et al. Altered expression of SIRT gene family in head and neck squamous cell carcinoma.
Tumour Biol, 2013, 34(3): 1847–1854.
DOI: 10.1007/s13277-013-0726-y
|
|
[72] |
Lu CT, Hsu CM, Lin PM, et al. The potential of SIRT6 and SIRT7 as circulating markers for head and neck squamous cell carcinoma.
Anticancer Res, 2014, 34(12): 7137–7143.
|
|
[73] |
Malik S, Villanova L, Tanaka SJ, et al. SIRT7 inactivation reverses metastatic phenotypes in epithelial and mesenchymal tumors.
Sci Rep, 2015, 5: 9841.
DOI: 10.1038/srep09841
|
|
[74] |
Singh S, Kumar PU, Thakur S, et al. Expression/localization patterns of sirtuins (SIRT1, SIRT2, and SIRT7) during progression of cervical cancer and effects of sirtuin inhibitors on growth of cervical cancer cells.
Tumour Biol, 2015, 36(8): 6159–6171.
DOI: 10.1007/s13277-015-3300-y
|
|
[75] |
Liu CJ, Gao Y, Wei L. Altered Sirt7 expression is associated with cervical squamous cell carcinoma.
J Modern Oncol, 2017, 25(11): 1787–1790.
(in Chinese). 刘春菊, 高英, 魏力. Sirt7在宫颈鳞状细胞癌组织中的表达及意义.
现代肿瘤医学, 2017, 25(11): 1787-1790.
DOI:10.3969/j.issn.1672-4992.2017.11.030
|
|
[76] |
Wang HL, Lu RQ, Xie SH, et al. SIRT7 exhibits oncogenic potential in human ovarian cancer cells.
Asian Pac J Cancer Prev, 2015, 16(8): 3573–3577.
DOI: 10.7314/APJCP.2015.16.8.3573
|
|
[77] |
Wang W, Zhang XJ, Zheng K, et al. Sirtuin 7 plays an oncogenic role in human osteosarcoma via downregulating CDC4 expression.
Am J Cancer Res, 2017, 7(9): 1788–1803.
|
|