[1] | |
|
[2] |
Ivanov V, Stabnikov V, Ahmed Z, et al. Production and applications of crude polyhydroxyalkanoate- containing bioplastic from the organic fraction of municipal solid waste. Int J Environ Sci Technol, 2015, 12(2): 725-738. DOI:10.1007/s13762-014-0505-3 |
|
[3] |
Sudesh K, Bhubalan K, Chuah JA, et al. Synthesis of polyhydroxyalkanoate from palm oil and some new applications. Appl Microbiol Biotechnol, 2011, 89(5): 1373-1386. DOI:10.1007/s00253-011-3098-5 |
|
[4] | |
|
[5] |
Morgan-Sagastume F, Hjort M, Cirne D, et al. Integrated production of polyhydroxyalkanoates (PHAs) with municipal wastewater and sludge treatment at pilot scale. Bioresour Technol, 2015, 181: 78-89. DOI:10.1016/j.biortech.2015.01.046 |
|
[6] |
van Loosdrecht MCM, Brdjanovic D. Anticipating the next century of wastewater treatment. Science, 2014, 344(6191): 1452-1453. DOI:10.1126/science.1255183 |
|
[7] |
Pittmann T, Steinmetz H. Potential for polyhydroxyalkanoate production on German or European municipal waste water treatment plants. Bioresour Technol, 2016, 214: 9-15. DOI:10.1016/j.biortech.2016.04.074 |
|
[8] |
Valentino F, Morgan-Sagastume F, Fraraccio S, et al. Sludge minimization in municipal wastewater treatment by polyhydroxyalkanoate (PHA) production. Environ Sci Pollut Res, 2015, 22(10): 7281-7294. DOI:10.1007/s11356-014-3268-y |
|
[9] |
Morgan-Sagastume F, Heimersson S, Laera G, et al. Techno-environmental assessment of integrating polyhydroxyalkanoate (PHA) production with services of municipal wastewater treatment. J Cleaner Prod, 2016, 137: 1368-1381. DOI:10.1016/j.jclepro.2016.08.008 |
|
[10] |
Appels L, Baeyens J, Degrève J, et al. Principles and potential of the anaerobic digestion of waste- activated sludge. Prog Energy Combust Sci, 2008, 34(6): 755-781. DOI:10.1016/j.pecs.2008.06.002 |
|
[11] |
Yuan Q, Sparling R, Oleszkiewicz JA. VFA generation from waste activated sludge: Effect of temperature and mixing. Chemosphere, 2011, 82(4): 603-607. DOI:10.1016/j.chemosphere.2010.10.084 |
|
[12] |
Liu XG, Dong B, Dai XH. Hydrolysis and acidification of dewatered sludge under mesophilic, thermophilic and extreme thermophilic conditions: Effect of pH. Bioresour Technol, 2013, 148: 461-466. DOI:10.1016/j.biortech.2013.08.118 |
|
[13] |
Hao JX, Wang H. Volatile fatty acids productions by mesophilic and thermophilic sludge fermentation: Biological responses to fermentation temperature. Bioresour Technol, 2015, 175: 367-373. DOI:10.1016/j.biortech.2014.10.106 |
|
[14] |
Liu H, Wang J, Liu XL, et al. Acidogenic fermentation of proteinaceous sewage sludge: Effect of pH. Water Res, 2012, 46(3): 799-807. DOI:10.1016/j.watres.2011.11.047 |
|
[15] |
Zhang P, Chen YG, Zhou Q. Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: Effect of pH. Water Res, 2009, 43(15): 3735-3742. DOI:10.1016/j.watres.2009.05.036 |
|
[16] |
Cheah YK, Vidal-Antich C, Dosta J, et al. Volatile fatty acid production from mesophilic acidogenic fermentation of organic fraction of municipal solid waste and food waste under acidic and alkaline pH. Environ Sci Pollut Res, 2019, 1-14. DOI:10.1007/s11356-019-05394-6 |
|
[17] |
Moretto G, Valentino F, Pavan P, et al. Optimization of urban waste fermentation for volatile fatty acids production. Waste Manage, 2019, 98: 21-29. DOI:10.1016/j.wasman.2019.08.013 |
|
[18] |
Cokgor EU, Oktay S, Tas DO, et al. Influence of pH and temperature on soluble substrate generation with primary sludge fermentation. Bioresour Technol, 2009, 100(1): 380-386. DOI:10.1016/j.biortech.2008.05.025 |
|
[19] |
Lim SJ, Kim BJ, Jeong CM, et al. Anaerobic organic acid production of food waste in once-a-day feeding and drawing-off bioreactor. Bioresour Technol, 2008, 99(16): 7866-7874. DOI:10.1016/j.biortech.2007.06.028 |
|
[20] |
Tang JL, Wang XC, Hu YS, et al. Lactic acid fermentation from food waste with indigenous microbiota: Effects of pH, temperature and high OLR. Waste Manage, 2016, 52: 278-285. DOI:10.1016/j.wasman.2016.03.034 |
|
[21] |
Wijekoon KC, Visvanathan C, Abeynayaka A. Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two-stage thermophilic anaerobic membrane bioreactor. Bioresour Technol, 2011, 102(9): 5353-5360. DOI:10.1016/j.biortech.2010.12.081 |
|
[22] |
Lee WS, Chua ASM, Yeoh HK, et al. A review of the production and applications of waste-derived volatile fatty acids. Chem Eng J, 2014, 235: 83-99. DOI:10.1016/j.cej.2013.09.002 |
|
[23] |
Feng L, Wang H, Chen YG, et al. Effect of solids retention time and temperature on waste activated sludge hydrolysis and short-chain fatty acids accumulation under alkaline conditions in continuous-flow reactors. Bioresour Technol, 2009, 100(1): 44-49. DOI:10.1016/j.biortech.2008.05.028 |
|
[24] |
Yuan Q, Sparling R, Oleszkiewicz JA. Waste activated sludge fermentation: Effect of solids retention time and biomass concentration. Water Res, 2009, 43(20): 5180-5186. DOI:10.1016/j.watres.2009.08.019 |
|
[25] |
Jia QQ, Xiong HL, Wang H, et al. Production of polyhydroxyalkanoates (PHA) by bacterial consortium from excess sludge fermentation liquid at laboratory and pilot scales. Bioresour Technol, 2014, 171: 159-167. DOI:10.1016/j.biortech.2014.08.059 |
|
[26] |
Liu ZG, Wang YP, He N, et al. Optimization of polyhydroxybutyrate (PHB) production by excess activated sludge and microbial community analysis. J Hazard Mater, 2011, 185(1): 8-16. DOI:10.1016/j.jhazmat.2010.08.003 |
|
[27] |
Bengtsson S. The utilization of glycogen accumulating organisms for mixed culture production of polyhydroxyalkanoates. Biotechnol Bioeng, 2010, 104(4): 698-708. |
|
[28] |
Suriyamongkol P, Weselake R, Narine S, et al. Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants- A review. Biotechnol Adv, 25(2): 148-175. DOI:10.1016/j.biotechadv.2006.11.007 |
|
[29] |
Janarthanan OM, Laycock B, Montano-Herrera L, et al. Fluxes in PHA-storing microbial communities during enrichment and biopolymer accumulation processes. New Biotechnol, 2015, 33(1): 61-72. |
|
[30] |
Beccari M, Bertin L, Dionisi D, et al. Exploiting olive oil mill effluents as a renewable resource for production of biodegradable polymers through a combined anaerobic-aerobic process. J Chem Technol Biotechnol, 2009, 84(6): 901-908. DOI:10.1002/jctb.2173 |
|
[31] |
Oliveira CSS, Silva CE, Carvalho G, et al. Strategies for efficiently selecting PHA producing mixed microbial cultures using complex feedstocks: Feast and famine regime and uncoupled carbon and nitrogen availabilities. New Biotechnol, 2016, 37: 69-79. |
|
[32] |
Korkakaki E, Mulders M, Veeken A, et al. PHA production from the organic fraction of municipal solid waste (OFMSW): Overcoming the inhibitory matrix. Water Res, 2016, 96: 74-83. DOI:10.1016/j.watres.2016.03.033 |
|
[33] |
Zhang Y, Wusiman A, Liu X, et al. Polyhydroxyalkanoates (PHA) production from phenol in an acclimated consortium: Batch study and impacts of operational conditions. J Biotechnol, 2018, 267: 36-44. DOI:10.1016/j.jbiotec.2018.01.001 |
|
[34] | |
|
[35] |
Oehmen A, Pinto F V, Silva V, et al. The impact of pH control on the volumetric productivity of mixed culture PHA production from fermented molasses. Eng Life Sci, 2014, 14(2): 143-152. DOI:10.1002/elsc.201200220 |
|
[36] | |
|
[37] |
Albuquerque MGE, Torres CAV, Reis MAM. Polyhydroxyalkanoate (PHA) production by a mixed microbial culture using sugar molasses: Effect of the influent substrate concentration on culture selection. Water Res, 2010, 44(11): 3419-3433. DOI:10.1016/j.watres.2010.03.021 |
|
[38] |
Guo ZR. Research on new progress of PHA production using activated sludge based on dynamic pulse discharge-aerobic dynamic feeding mode[D]. Harbin: Harbin Institute of Technology, 2016 (in Chinese). 郭子瑞.基于动态间歇排水瞬时补料的活性污泥合成PHA新工艺研究[D].哈尔滨: 哈尔滨工业大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10213-1016739646.htm
|
|
[39] | |
|
[40] |
Albuquerque MGE, Martino V, Pollet E, et al. Mixed culture polyhydroxyalkanoate (PHA) production from volatile fatty acid (VFA)-rich streams: Effect of substrate composition and feeding regime on PHA productivity, composition and properties. J Biotechnol, 2011, 151(1): 66-76. |
|
[41] |
Wang XF, Bengtsson S, Oehmen A, et al. Application of dissolved oxygen (DO) level control for polyhydroxyalkanoate (PHA) accumulation with concurrent nitrification in surplus municipal activated sludge. New Biotechnol, 2019, 50: 37-43. DOI:10.1016/j.nbt.2019.01.003 |
|
[42] |
Zheng YD, Zhong QH, Ma WS, et al. Biosynthesis of PHA from anaerobic-aerobic activated sludge process. Res Environ Sci, 2001, 14(2): 41-44 (in Chinese). 郑裕东, 钟青华, 马文石, 等. 厌氧-好氧驯化活性污泥生物合成PHA的研究. 环境科学研究, 2001, 14(2): 41-44. DOI:10.3321/j.issn:1001-6929.2001.02.012 |
|
[43] |
Chen ZQ, Huang L, Wen QX, et al. Efficient polyhydroxyalkanoate (PHA) accumulation by a new continuous feeding mode in three-stage mixed microbial culture (MMC) PHA production process. J Biotechnol, 2015, 209: 68-75. DOI:10.1016/j.jbiotec.2015.06.382 |
|
[44] |
Wang YP, Cai JY, Lan JH, et al. Biosynthesis of poly(hydroxybutyrate-hydroxyvalerate) from the acclimated activated sludge and microbial characterization in this process. Bioresour Technol, 2013, 148: 61-69. DOI:10.1016/j.biortech.2013.08.102 |
|
[45] | |
|
[46] |
Palmeiro-Sánchez T, Fra-Vázquez A, Rey-Martínez N, et al. Transient concentrations of NaCl affect the PHA accumulation in mixed microbial culture. J Hazard Mater, 2016, 306: 332-339. DOI:10.1016/j.jhazmat.2015.12.032 |
|
[47] |
Ribeiro PLL, Silva GDS, Druzian JI. Evaluation of the effects of crude glycerol on the production and properties of novel polyhydroxyalkanoate copolymers containing high 11-hydroxyoctadecanoate by Cupriavidus necator IPT 029 and Bacillus megaterium IPT 429. Polym Adv Technol, 2016, 27(4): 542-549. DOI:10.1002/pat.3725 |
|
[48] |
Villano M, Beccari M, Dionisi D, et al. Effect of pH on the production of bacterial polyhydroxyalkanoates by mixed cultures enriched under periodic feeding. Process Biochem, 2010, 45(5): 714-723. DOI:10.1016/j.procbio.2010.01.008 |
|
[49] |
Zheng X, Su YL, Li X, et al. Pyrosequencing reveals the key microorganisms involved in sludge alkaline fermentation for efficient short-chain fatty acids production. Environ Sci Technol, 2013, 47(9): 4262-4268. DOI:10.1021/es400210v |
|
[50] |
Schmidt M, Ienczak JL, Quines LK, et al. Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) production in a system with external cell recycle and limited nitrogen feeding during the production phase. Biochem Eng J, 2016, 112: 130-135. DOI:10.1016/j.bej.2016.04.013 |
|
[51] |
Chen GQ, Jiang XR. Engineering bacteria for enhanced polyhydroxyalkanoates (PHA) biosynthesis. Synth Syst Biotechnol, 2017, 2(3): 192-197. DOI:10.1016/j.synbio.2017.09.001 |
|
[52] |
Wang Q. Biosynthesis, biodegradation and molecular evolution of polyhydroxyalkanonates in Escherichia coli[D]. Ji'nan: Shandong University, 2009 (in Chinese). 王倩.聚羟基脂肪酸酯在大肠杆菌中的合成、降解以及分子改造[D].济南: 山东大学, 2009.
|
|
[53] | |
|
[54] |
Alvarez HM, Pucci OH, Steinbuchel A. Lipid storage compounds in marine bacteria. Appl Microbiol Biotechnol, 1997, 47(2): 132-139. DOI:10.1007/s002530050901 |
|
[55] |
Jendrossek D. Peculiarities of PHA granules preparation and PHA depolymerase activity determination. Appl Microbiol Biotechnol, 2007, 74(6): 1186-1196. DOI:10.1007/s00253-007-0860-9 |
|
[56] |
Huisman GW, Wonink E, Meima R, et al. Metabolism of Poly(3-hydroxyalkanoates) (PHAs) by pseudomonas oleovorans.Identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA. J Biol Chem, 1991, 266(4): 2191-2198. |
|
[57] |
Doi Y, Kanesawa Y, Kunioka M, et al. Biodegradation of microbial copolyesters: poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules, 1990, 23(1): 26-31. DOI:10.1021/ma00203a006 |
|
[58] |
Pötter M, Steinbüchel A. Poly (3-hydroxybutyrate) granule-associated proteins: impacts on poly (3-hydroxybutyrate) synthesis and degradation. Biomacromolecules, 2005, 6(2): 552-560. DOI:10.1021/bm049401n |
|
[59] |
Cho M, Brigham CJ, Sinskey AJ, et al. Purification of polyhydroxybutyrate synthase from its native organism, Ralstonia eutropha: implications for the initiation and elongation of polymer formation in vivo. Biochemistry, 2012, 51(11): 2276-2288. DOI:10.1021/bi2013596 |
|
[60] |
Kuchta K, Chi LF, Fuchs H, et al. Studies on the influence of phasins on accumulation and degradation of PHB and nanostructure of PHB granules in Ralstonia eutropha H16. Biomacromolecules, 2007, 8(2): 657-662. DOI:10.1021/bm060912e |
|
[61] |
Moldes C, García P, García JL, et al. In vivo immobilization of fusion proteins on bioplastics by the novel tag BioF. Appl Environ Microbiol, 2004, 70(6): 3205-3212. DOI:10.1128/AEM.70.6.3205-3212.2004 |
|
[62] |
Maestro B, Galán B, Alfonso C, et al. A new family of intrinsically disordered proteins: structural characterization of the major Phasin PhaF from Pseudomonas putida KT2440. PLoS ONE, 2013, 8(2): e56904. DOI:10.1371/journal.pone.0056904 |
|
[63] | |
|
[64] |
Ciesielski S, Pokoj T, Klimiuk E. Molecular insight into activated sludge producing polyhydroxyalkanoates under aerobic-anaerobic conditions. J Ind Microbiol Biotechnol, 2008, 35(8): 805-814. DOI:10.1007/s10295-008-0352-7 |
|
[65] |
Yang C, Zhang W, Liu RH, et al. Analysis of polyhydroxyalkanoate (PHA) synthase gene and PHA-producing bacteria in activated sludge that produces PHA containing 3-hydroxydodecanoate. FEMS Microbiol Lett, 2013, 346(1): 56-64. DOI:10.1111/1574-6968.12201 |
|
[66] |
Wang DB, Zeng GM, Chen YG, et al. Effect of polyhydroxyalkanoates on dark fermentative hydrogen production from waste activated sludge. Water Res, 2015, 73: 311-322. DOI:10.1016/j.watres.2015.01.017 |
|
[67] |
Oshiki M, Onuki M, Satoh H, et al. Microbial community composition of polyhydroxyalkanoate- accumulating organisms in full-scale wastewater treatment plants operated in fully aerobic mode. Microbes Environ, 2013, 28(1): 96-104. DOI:10.1264/jsme2.ME12141 |
|
[68] |
Wang YW, Zhu Y, Gu PF, et al. Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by bacterial community from propylene oxide saponification wastewater residual sludge. Int J Biol Macromol, 2017, 98: 34-38. DOI:10.1016/j.ijbiomac.2017.01.106 |
|
[69] |
Yin J, Che XM, Chen GQ. Progress on polyhydroxyalkanoates (PHA). Chin J Biotech, 2016, 32(6): 726-737 (in Chinese). 尹进, 车雪梅, 陈国强. 聚羟基脂肪酸酯的研究进展. 生物工程学报, 2016, 32(6): 726-737. |
|