[1] |
Reusch JEB, Manson JE. Management of type 2 diabetes in 2017: getting to goal.
JAMA, 2017, 317(10): 1015–1016.
DOI: 10.1001/jama.2017.0241
|
|
[2] |
Chen DD. Oxovanadium complex intervention on learning and memory damage of diabetic mice and Caveolin-1 expression[D]. Dalian: Liaoning Normal University, 2009 (in Chinese). 陈冬冬.新型钒氧配合物对糖尿病小鼠学习记忆功能损伤的干预及与Caveolin-1表达的关系[D].大连: 辽宁师范大学, 2009. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1600733
|
|
[3] |
Liu Y, Chen DD, Xing YH, et al. A new oxovanadium complex enhances renal function by improving insulin signaling pathway in diabetic mice.
J Diabetes Its Complicati, 2014, 28(3): 265–272.
DOI: 10.1016/j.jdiacomp.2014.02.001
|
|
[4] |
Wang SB, Song P, Zou MH. AMP-activated protein kinase, stress responses and cardiovascular diseases.
Clin Sci (Lond), 2012, 122(12): 555–573.
DOI: 10.1042/CS20110625
|
|
[5] |
Ali N, Ling NM, Krishnamurthy S, et al. β-subunit myristoylation functions as an energy sensor by modulating the dynamics of AMP-activated protein kinase.
Sci Rep, 2016, 6: 39417.
DOI: 10.1038/srep39417
|
|
[6] |
O'Neill HM, Maarbjerg SJ, Crane JD, et al. AMP-activated protein kinase (AMPK) β1β2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise.
Proc Natl Acad Sci USA, 2011, 108(38): 16092–16097.
DOI: 10.1073/pnas.1105062108
|
|
[7] |
Granlund A, Jensen-Waern M, Essén-Gustavsson B. The influence of the PRKAG3 mutation on glycogen, enzyme activities and fibre types in different skeletal muscles of exercise trained pigs.
Acta Vet Scand, 2011, 53: 20.
DOI: 10.1186/1751-0147-53-20
|
|
[8] |
Hardie DG. AMP-activated protein kinase—an energy sensor that regulates all aspects of cell function.
Genes Dev, 2011, 25(18): 1895–1908.
DOI: 10.1101/gad.17420111
|
|
[9] |
Marín-Aguilar F, Pavillard LE, Giampieri F, et al. Adenosine monophosphate (AMP)-activated protein kinase: a new target for nutraceutical compounds.
Int J Mol Sci, 2017, 18(2): 288.
DOI: 10.3390/ijms18020288
|
|
[10] |
Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism.
Nature, 2001, 414(6865): 799–806.
DOI: 10.1038/414799a
|
|
[11] |
Abdelazim A, Khater S, Ali H, et al. Panax ginseng improves glucose metabolism in streptozotocin-induced diabetic rats through 5ʹ Adenosine monophosphate kinase up-regulation.
Saudi J Biol Sci, 2018.
DOI: 10.1016/j.sjbs.2018.06.001
|
|
[12] |
Hughey CC, James FD, Bracy DP, et al. Loss of hepatic AMP-activated protein kinase impedes the rate of glycogenolysis but not gluconeogenic fluxes in exercising mice.
J Biol Chem, 2017, 292(49): 20215–20140.
|
|
[13] |
Hasenour CM, Ridley DE, James FD, et al. Liver AMP-activated protein kinase is unnecessary for gluconeogenesis but protects energy state during nutrient deprivation.
PLoS ONE, 2017, 12(1).
|
|
[14] |
Sato M, Dehvari N, Öberg AI, et al. Improving type 2 diabetes through a distinct adrenergic signaling pathway involving mTORC2 that mediates glucose uptake in skeletal muscle.
Diabetes, 2014, 63(12): 4115–4129.
DOI: 10.2337/db13-1860
|
|
[15] |
Akingbemi BT. Adiponectin receptors in energy homeostasis and obesity pathogenesis.
Prog Mol Biol Transl Sci, 2013, 114: 317–342.
DOI: 10.1016/B978-0-12-386933-3.00009-1
|
|
[16] |
Ma Y, Liu D. Hydrodynamic delivery of adiponectin and adiponectin receptor 2 gene blocks high-fat diet-induced obesity and insulin resistance.
Gene Ther, 2013, 20(8): 846–852.
DOI: 10.1038/gt.2013.8
|
|
[17] |
Kappel VD, Zanatta L, Postal BG, et al. Rutin potentiates calcium uptake via voltage-dependent calcium channel associated with stimulation of glucose uptake in skeletal muscle.
Arch Biochem Biophys, 2013, 532(2): 55–60.
DOI: 10.1016/j.abb.2013.01.008
|
|
[18] |
Friedrichsen M, Mortensen B, Pehmøller C, et al. Exercise-induced AMPK activity in skeletal muscle: role in glucose uptake and insulin sensitivity.
Mol Cell Endocrinol, 2013, 366(2): 204–214.
DOI: 10.1016/j.mce.2012.06.013
|
|
[19] |
Hunter RW, Treebak JT, Wojtaszewski JFP, et al. Molecular mechanism by which AMP-activated protein kinase activation promotes glycogen accumulation in muscle.
Diabetes, 2011, 60(3): 766–774.
DOI: 10.2337/db10-1148
|
|
[20] |
Treebak JT, Pehmøller C, Kristensen JM, et al. Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 proteins in human skeletal muscle.
J Physiol, 2014, 592(2): 351–375.
DOI: 10.1113/jphysiol.2013.266338
|
|
[21] |
O'Neill HM. AMPK and exercise: glucose uptake and insulin sensitivity.
Diabetes Metab J, 2013, 37(1): 1–21.
|
|
[22] |
Richter EA, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake.
Physiol Rev, 2013, 93(3): 993–1017.
DOI: 10.1152/physrev.00038.2012
|
|
[23] |
Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis.
Nat Rev Mol Cell Biol, 2012, 13(4): 251–262.
|
|
[24] |
Hardie DG. AMPK: positive and negative regulation, and its role in whole-body energy homeostasis.
Curr Opin Cell Biol, 2015, 33: 1–7.
DOI: 10.1016/j.ceb.2014.09.004
|
|
[25] |
Frøsig C, Pehmøller C, Birk JB, et al. Exercise-induced TBC1D1 Ser237 phosphorylation and 14-3-3 protein binding capacity in human skeletal muscle.
J Physiol, 2010, 588(22): 4539–4548.
DOI: 10.1113/jphysiol.2010.194811
|
|
[26] |
An D, Toyoda T, Taylor EB, et al. TBC1D1 regulates insulin- and contraction-induced glucose transport in mouse skeletal muscle.
Diabetes, 2010, 59(6): 1358–1365.
DOI: 10.2337/db09-1266
|
|
[27] |
Naimi M, Vlavcheski F, Murphy B, et al. Carnosic acid as a component of rosemary extract stimulates skeletal muscle cell glucose uptake via AMPK activation.
Clin Exp Pharmacol Physiol, 2017, 44(1): 94–102.
DOI: 10.1111/1440-1681.12674
|
|
[28] |
Jørgensen SB, Viollet B, Andreelli F, et al. Knockout of the α2 but not α1 5'-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide- 1-β-4-ribofuranoside- but not contraction-induced glucose uptake in skeletal muscle.
J Biol Chem, 2004, 279(2): 1070–1079.
DOI: 10.1074/jbc.M306205200
|
|
[29] |
Brown JD, Hancock CR, Mongillo AD, et al. Effect of LKB1 deficiency on mitochondrial content, fibre type and muscle performance in the mouse diaphragm.
Acta Physiol, 2011, 201(4): 457–466.
DOI: 10.1111/apha.2011.201.issue-4
|
|
[30] |
Gong HJ, Zhang Y. GLUT4 is not essential for exercise-induced exaggerated muscle glycogen degradation in AMPKα2 knockout mice.
J Exerc Sci Fit, 2012, 10(1): 16–22.
DOI: 10.1016/j.jesf.2012.04.001
|
|
[31] |
Quehenberger O, Dennis EA. The human plasma lipidome.
N Engl J Med, 2011, 365(19): 1812–1823.
DOI: 10.1056/NEJMra1104901
|
|
[32] |
Han JS, Sung JH, Lee SK. Inhibition of cholesterol synthesis in HepG2 cells by GINST—Decreasing HMG-CoA reductase expression via AMP-activated protein kinase.
J Food Sci, 2017, 82(11): 2700–2705.
DOI: 10.1111/1750-3841.13828
|
|
[33] |
Stahmann N, Woods A, Carling D, et al. Thrombin activates AMP-activated protein kinase in endothelial cells via a pathway involving Ca2+/calmodulin- dependent protein kinase kinase β.
Mol Cell Biol, 2006, 26(16): 5933–5945.
DOI: 10.1128/MCB.00383-06
|
|
[34] |
Merrill GF, Kurth EJ, Hardie DG, et al. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle.
Am J Physiol, 1997, 273(6): E1107–E1112.
|
|
[35] |
Paoli A, Bosco G, Camporesi EM, et al. Ketosis, ketogenic diet and food intake control: a complex relationship.
Front Psychol, 2015, 6: 27.
|
|
[36] |
Cool B, Zinker B, Chiou W, et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome.
Cell Metab, 2006, 3(6): 403–416.
DOI: 10.1016/j.cmet.2006.05.005
|
|
[37] |
Lieberthal W, Tang MY, Zhang LQ, et al. Susceptibility to ATP depletion of primary proximal tubular cell cultures derived from mice lacking either the α1 or the α2 isoform of the catalytic domain of AMPK.
BMC Nephrol, 2013, 14: 251.
DOI: 10.1186/1471-2369-14-251
|
|
[38] |
Pinkosky SL, Filippov S, Srivastava RAK, et al. AMP-activated protein kinase and ATP-citrate lyase are two distinct molecular targets for ETC-1002, a novel small molecule regulator of lipid and carbohydrate metabolism.
J Lipid Res, 2013, 54(1): 134–151.
DOI: 10.1194/jlr.M030528
|
|
[39] |
Muoio DM, Seefeld K, Witters LA, et al. AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3- phosphate acyltransferase is a novel target.
Biochem J, 1999, 338(3): 783–791.
DOI: 10.1042/bj3380783
|
|
[40] |
Ahmadian M, Abbott MJ, Tang TY, et al. Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype.
Cell Metab, 2011, 13(6): 739–748.
DOI: 10.1016/j.cmet.2011.05.002
|
|
[41] |
Gaidhu MP, Bikopoulos G, Ceddia RB. Chronic AICAR-induced AMP-kinase activation regulates adipocyte lipolysis in a time-dependent and fat depot-specific manner in rats.
Am J Physiol Cell Physiol, 2012, 303(11): C1192–C1197.
DOI: 10.1152/ajpcell.00159.2012
|
|
[42] |
McDonough PM, Maciejewski-Lenoir D, Hartig SM, et al. Differential phosphorylation of perilipin 1A at the initiation of lipolysis revealed by novel monoclonal antibodies and high content analysis.
PLoS ONE, 2013, 8(2): e55511.
DOI: 10.1371/journal.pone.0055511
|
|
[43] |
Gallo-Payet N. Adrenal and extra-adrenal functions of ACTH.
J Mol Endocrinol, 2016, 56(4): T135–T156.
DOI: 10.1530/JME-15-0257
|
|
[44] |
Yang RM, Chu XX, Sun L, et al. Hypolipidemic activity and mechanisms of the total phenylpropanoid glycosides from Ligustrum robustum (Roxb.) Blume by AMPK-SREBP-1c pathway in hamsters fed a high-fat diet.
Phytother Res, 2018, 32(4): 715–722.
DOI: 10.1002/ptr.v32.4
|
|
[45] |
Börner S, Albrecht E, Schäff C, et al. Reduced AgRP activation in the hypothalamus of cows with high extent of fat mobilization after parturition.
Gen Comp Endocrinol, 2013, 193: 167–177.
DOI: 10.1016/j.ygcen.2013.08.002
|
|
[46] |
Jeon SM. Regulation and function of AMPK in physiology and diseases.
Exp Mol Med, 2016, 48(7): e245.
DOI: 10.1038/emm.2016.81
|
|