生物工程学报  2021, Vol. 37 Issue (10): 3535-3548
http://dx.doi.org/10.13345/j.cjb.210389
中国科学院微生物研究所、中国微生物学会主办
0

文章信息

郑美林, 赵颖豪, 苗莉莉, 高喜燕, 刘志培
Zheng Meilin, Zhao Yinghao, Miao Lili, Gao Xiyan, Liu Zhipei
多环芳烃污染土壤生物修复研究进展
Advances in bioremediation of polycyclic aromatic hydrocarbons contaminated soil
生物工程学报, 2021, 37(10): 3535-3548
Chinese Journal of Biotechnology, 2021, 37(10): 3535-3548
10.13345/j.cjb.210389

文章历史

Received: May 26, 2021
Accepted: August 26, 2021
多环芳烃污染土壤生物修复研究进展
郑美林1,2 , 赵颖豪1,2 , 苗莉莉1 , 高喜燕1 , 刘志培1     
1. 微生物资源前期开发国家重点实验室 中国科学院微生物研究所,北京 100101;
2. 中国科学院大学,北京 100049
摘要:多环芳烃(Polycyclic aromatic hydrocarbons,PAHs) 是一类广泛分布于环境中的持久性污染物,结构稳定、难以降解,对生态环境和生物具有“三致”毒害性,其环境去除和修复备受关注。绿色、安全、经济的生物修复技术被广泛应用于PAHs污染土壤的修复。本文从土壤中PAHs的来源、迁移、归趋和污染水平总结了目前我国土壤多环芳烃污染的基本状况;归纳了具有PAHs降解作用的微生物、植物种类及机理;比较了微生物修复、植物修复和联合修复3类主要的生物修复技术。指出植物与微生物的互作机理的解析,抗逆菌株、植株的筛选与培育,实际应用的安全和效能评估应成为多环芳烃污染土壤修复领域未来的研究方向。
关键词PAHs    土壤污染    降解机制    生物修复    修复技术    
Advances in bioremediation of polycyclic aromatic hydrocarbons contaminated soil
Meilin Zheng1,2 , Yinghao Zhao1,2 , Lili Miao1 , Xiyan Gao1 , Zhipei Liu1     
1. State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: Polycyclic aromatic hydrocarbons (PAHs) are a class of persistent pollutants that are widely distributed in the environment. Due to their stable structure and poor degradability, PAHs exhibit carcinogenic, teratogenic, and mutagenic toxicity to the ecological environment and organisms, thus increasing attentions have been paid to their removals and remediation. Green, safe and economical technologies are widely used in the bioremediation of PAHs-contaminated soil. This article summarizes the present status of PAHs pollution in soil of China from the aspects of origin, migration, fate, and pollution level. Meanwhile, the types of microorganisms and plants capable of degrading PAHs, as well as the underlying mechanisms, are summarized. The features of three major bioremediation technologies, i.e., microbial remediation, phytoremediation, and joint remediation, are compared. Analysis of the interaction mechanisms between plants and microorganisms, selection and cultivation of stress-resistant strains and plants, as well as safety and efficacy evaluation of practical applications, are expected to become future directions in this field.
Keywords: PAHs    contaminated soil    degradation mechanism    bioremediation    remediation technologies    

多环芳烃(Polycyclic aromatic hydrocarbons, PAHs) 是一类由2个及以上苯环构成的线性或角状或簇状排列的稠环化合物,由自然和人类活动产生,广泛分布于环境中[1],对人、动植物及微生物具有“三致”作用,即致癌、致畸、致突变,通过大气、饮水、食物链进入人体,可诱发皮肤癌、肺癌、呼吸道癌、红细胞溶血、新生儿体重下降等疾病[2-5]。20世纪80年代,美国环境保护署将未带分支的16种PAHs列为环境中的优先控制污染物[6]。PAHs的多苯环共轭体系增强了其结构稳定性[7],辛醇-水系数随苯环数和分子质量的增加而提高,常附着于土壤颗粒中[8],且在土壤中迁移[9],具有生物积累、生物放大、对生物的持续性毒害、低水溶性、低生物有效性,都是造成生物利用率低和微生物修复困难的原因[10]。因此,针对这些问题,发现新资源、提出新思路、探索新方案和发展新技术已成为当前PAHs污染环境的微生物修复研究与应用的焦点与方向。

目前PAHs污染土壤的修复方法主要包括生物修复、物理修复和化学修复。相较于物理修复和化学修复高耗能、高成本以及使得生态资源不可再利用[11]等局限,自20世纪80年代发展起来的生物修复因其具有操作简单、成本低廉、二次污染少和可再生利用[12]等特点,目前也被认为是经济、安全和环保的[13],是PAHs污染土壤首选的治理手段[14],包括微生物修复、植物修复和微生物-植物联合修复。其中,微生物修复(Bio-remediation) 是研究得最早、最深入、应用最为广泛的一种生物修复方法。它利用自然环境中的土著微生物或添加特效外源微生物,在人为优化的环境条件下加速对环境中污染物的转化、降解与去除[15],主要有细菌、真菌、古菌和微藻。植物修复则是利用植物迁移、吸收、富集和根际利用等方式去除PAHs,常用于低分子量PAHs (Low molecular weight polycyclic aromatic hydrocarbons,LMW-PAHs) 的去除。微生物-植物联合修复综合了两者的优点,是一种应用于PAHs污染土壤的高效方法,已成为生物修复研究的热点[16]

本文将从土壤中多环芳烃的来源与污染现状、PAHs的生物降解及机制、生物修复技术、展望等方面进行综述。

1 我国土壤多环芳烃污染现状 1.1 土壤中PAHs的来源

PAHs主要是含碳氢化合物不完全燃烧及在还原性气氛中热分解的产物,可分为自然源和人为源。自然界中的PAHs存在于化石燃料、底泥和木质纤维中,由火山喷发、森林火灾和微生物对动植物的生化作用等产生[17]。但人为燃烧燃料及其他工业活动也被认为是环境中PAHs的主要来源[18],大致包括化石燃料的液化、汽化及用于电、热生产,燃油的贮存、运输及应用,焦炭、炭黑的生产及应用,垃圾、轮胎、塑料等填埋或露天焚烧处理,熏制食品工业化生产。

1.2 土壤中PAHs的分布与归趋

土壤中PAHs纵向分布规律为从表层向深层含量逐渐降低,0–15 cm浓度最大,20 cm以下浓度较小,表层土以稳定、亲脂的高分子量PAHs (High molecular weight polycyclic aromatic hydrocarbons,HMW-PAHs) 为主,深层土以挥发性强、迁移性强的LMW-PAHs为主[19]。鲁垠涛等[20]和陈静等[21]的研究显示,PAHs含量峰值均出现在0–30 cm浅层土壤,且不同土地利用类型分布规律差异明显,林地<农业用地<风景区<居住区<商业用地<工业用地[22];Wilcke等[23]的研究表明,环状有机物更易积累在含有机物的圈层中,通常以4环>5环>6环>3环>2环的顺序分布;郝蓉等[24]研究发现,PAHs在土壤中还呈现按质量分数W5-20>W0-5>W20-40>W40-100的分布规律。

PAHs在土壤中的归趋取决于分解和去除过程中挥发、非生物损失(季节性温度波动的损失)、生物降解、植被吸收等作用。挥发和非生物损失对3环以上的PAHs影响甚微[25-26]。许多研究表明,生物特别是微生物降解是环境中PAHs衰减的重要途径,也是PAHs污染土壤修复的主要手段[27]

1.3 我国土壤多环芳烃污染水平

土壤负载着环境中约90%的PAHs[28]。近年来,国内外学者对土壤中的PAHs开展了充分的调查研究。世界范围内认同的16种需优先控制的PAHs在我国土壤中均有不同程度的检出。我国与亚洲其他国家PAHs污染水平相当,低于欧洲和北美洲,高于非洲、南美洲和大洋洲[29]。从∑PAHs来看[30],我国东北地区∑PAHs含量范围为155.0– 24 570 μg/kg,京津及周边地区为5.6–26 714 μg/kg,长三角地区为45.6–27 580.9 μg/kg,珠三角地区为ND–19 500 μg/kg,西南地区含量范围为1.24– 1 437.00 μg/kg。参照荷兰分类标准[31],北京、天津、西安、台州等北方及东部沿海城市的部分地区土壤中PAHs已到达严重污染水平,平均含量达1 000 μg/kg[32-38],江苏部分地区土壤中PAHs平均质量比为801.1 μg/kg,属中等污染水平[39];山东、浙江、珠江三角洲、西南地区土壤中PAHs平均质量比均低于600 μg/kg,属轻微污染水平[40-45];中国香港、新疆和青藏等地土壤中PAHs平均质量比低于200 μg/kg, 属无污染水平[46-48]。总体而言,我国土壤存在着无污染到严重污染4个多环芳烃污染水平。

2 生物降解及其机制 2.1 微生物降解PAHs的机理

微生物可以PAHs为唯一碳源和能源,通过分泌单加氧酶或双加氧酶,连接苯环形成环氧化物或过氧化物,再经过加氢、脱水等作用断裂C-O键,产生醇或酚,参与细胞代谢,最终生成CO2和H2O等[49]。也可以采用共代谢方式进行,通过改变碳源、能源结构,扩大底物选择范围,提高生物利用率,对HMW-PAHs的降解具有重要作用。例如小克银汉霉菌共代谢降解荧蒽,显毛金孢子菌和烟管菌降解苯并[a]芘(Benzoapyrene, BaP),黄孢原毛平革菌则可降解蒽油(一种煤焦油馏出物) 中至少22种PAHs,糙皮侧耳菌能共代谢蒽、芘、芴。在共代谢降解过程中,微生物通过酶来降解某些能维持自身生长的物质,同时也降解了某些非微生物生长必需的物质[50-53]。李政等[54]的实验证明,在芴、菲、芘共代谢培养体系中,芴和菲的存在不仅可以促进芘的快速完全降解,还能促进芘代谢产物的去除,同样芘的存在也促进了芴和菲的代谢产物的去除。

2.2 微生物降解PAHs

目前已报道的自然界中对PAHs有降解作用的微生物主要有细菌、真菌、微藻和古菌。表 1列举了部分可降解PAHs的微生物种类。

表 1 降解PAHs的部分微生物 Table 1 Some of the PAHs-degrading microbes
Types Species Flu Nap Phe Anth Pyr Chr Fla BaA BaP DaA
Bacteria Acinetobatcter calcoaceticus[56] + + + +
Alcaligenes sp.[57] + + + + +
Burkholderia cepacian[58] + + + +
Bacillus sp.[59] + + +
Gordona sp.[60] + +
Kordiimonas gwangyangensis [61] + +
Mycobacterium sp.[62] + + +
Micrococcus sp.[63] +
Pseudomonas sp.[64-65] + + + + + + + + +
Rhodococcus sp.[66] + + + + +
Sphingomonas sp.[67] + + + + + +
Fungus Pilidiella sp.[72] + + + + + + + +
Cladosporium sphaerospermum[74] + + + + + + +
Marasmius sp.[75] + + + + + + +
Penicillium sp.[76-77] + + + + +
Aspergillus tereus[78] + +
Cunniinghamella sp.[79, 89] + + + +
Nematoloma frowardil[82] + + + +
Mucor sp.[75] + + +
Pleurotuus orstreatus[81, 82] + + + +
Fusarium sp.[83] + + +
Trammetes versicolor[84] + +
Coriolus versicolor Hirschioporus lacteus Phanerochaete chrysosporium [85-87] +
Archaea δ-Proteobacteria[90-92] + +
Methanosaeta Methanoregular[93-95] +
Microalgae Rhodophyta Phaephyta Diatom[96] +
Chlamydomonas Scenedesmus quadricauda Selenastrum capricornutum[97, 99-101] + + + +
Cyanobacteria Oscillatoria[98] +
2.2.1 细菌

细菌生殖方式简单、适应力强、代谢类型丰富,可以对多种PAHs进行高效降解,也被广泛地应用到PAHs的生物修复中。国内外报道的降解菌有醋酸不动杆菌、产碱杆菌属、伯克氏菌属、芽孢杆菌属、戈登氏菌属、科迪单胞菌属Kordiimonas sp.、分枝杆菌属、微球菌属、假单胞菌属、红球菌属、鞘氨醇单胞菌、棒状杆菌属、从毛单胞菌属等[55-68]。其中大部分细菌可以降解LMW-PAHs,如萘、菲。鞘氨醇单胞菌、红球菌、分枝杆菌、假单胞菌具有降解HMW-PAHs的能力。红球菌属发挥降解作用比较独特,与成簇萘降解基因的假单胞菌以及其他革兰氏阴性菌相比,红球菌属一般只表达编码萘双加氧酶催化组分铁硫蛋白的α亚基和β亚基的narAαnarAβ基因,以及顺式萘二氢二醇脱氢酶narB基因[69]。作者从浙江某场地采集到的PAHs污染土壤样品中也分离到红球菌属、木糖氧化无色杆菌属、产碱杆菌属、极小杆菌属的能以BaP为唯一碳源生长的菌株。

2.2.2 真菌

白腐菌通过合成和分泌降解木质素的漆酶、锰过氧化物酶和木质素过氧化物酶对PAHs进行降解利用[70],降解底物范围广泛,包括多环(BaP) 和杂环芳烃、氯代芳烃、非芳香族氯化物和天然生物高聚物等,是土壤修复真菌中非常重要的一类,具有极大的应用价值[71]。此外,壳孢属、曲霉、青霉、毛霉、短刺小克银汉霉、黄孢原毛平革菌、乳白耙菌、杂色云芝、链孢霉、盾壳霉、侧耳属、镰刀属等真菌也可以降解HMW- PAHs[72-83]。如,黄孢原毛平革菌、乳白耙菌和杂色云芝等可以降解芘;平菇对添加有60 mg/kg苊烯的土壤中苯并[a]蒽的降解速率为77.4%[84-86]。盾壳霉和镰孢霉在一个月内对土壤中PAHs的降解率为26.5%–27.5%[87]。雅致小克银汉霉和腐皮镰刀菌可降解苯并[a]芘、荧蒽、芘[88]等。

2.2.3 古菌

目前具有PAHs降解功能的古生菌主要有:α-变形菌纲、β-变形菌纲、γ-变形菌纲、放线菌、厚壁菌门和嗜盐古生菌[89]。δ-变形菌和厚壁菌门在产甲烷条件下能降解萘、菲等LMW-PAHs[90]。Christensen等[91]发现,古菌可以通过氧化PAHs去除H达到降解萘的目的。Carolina等[92]、Oko等[93]与Schmidt等[94]发现,产甲烷古菌可降解萘、甲基萘等,如甲烷鬃菌(Methanosaeta)、甲烷八叠球菌(Methanosarcina) 及甲烷杆菌(Methanobacteria)。

2.2.4 微藻

Cerniglia等[95]研究发现,包括蓝藻、硅藻、绿藻、红藻和褐藻在内的18种藻可以降解萘。Lei等[96]报道了5种藻——衣藻、扁盘栅藻、四尾栅藻、羊角月牙藻与集胞藻可以降解0.1 mg/L的芘,7 d的降解率为34%–100%。海洋蓝藻PR-6可以将菲降解成以反式-9, 10-双羟基菲为主的一些产物,颤藻则可以把萘氧化成顺氏-1, 2-双羟基萘和1-羟基萘[97]。Warshawsky等[98]与Chan等[99]研究发现,羊角月牙藻对芘、菲及荧蒽具有吸附和降解能力。此外,羊角月牙藻、项圈藻、纤维藻、莱茵衣藻、眼虫藻等可以不同程度地降解BaP [100]

2.3 植物降解PAHs

目前,已研究发现的能够修复降解土壤中PAHs的植物主要有甘蓝型油菜、小麦、黑麦草、蜈蚣草、紫茉莉、蚕豆、苜蓿、樟树和栾树等。许多研究表明,植物修复在LMW-PAHs污染土壤的修复中发挥着很好的作用,而对于HMW-PAHs污染修复的报道比较少[101]。植物可通过其根系及根际微生物的协同作用降解、吸收和稳定污染物,同时还可以通过植物自身的生物转化作用将一部分污染物转化成低毒的中间代谢物,某些低分子量的污染物被植物吸收后被运输到植物顶部,通过蒸腾作用也可以起到转移去除污染物的作用[102],且根系分泌物多为糖、醇、小分子酸等,能为微生物的生长提供碳源、氮素等营养物质,提高共代谢效率[103]

3 PAHs生物修复技术 3.1 微生物修复技术 3.1.1 原位处理

原位处理不需要对污染土壤进行迁移,而是通过添加营养物质促进土著微生物降解或接种降解或促进降解的微生物功能类群,实现污染物的去除。原位处理主要包括:生物培养法、投菌法、土地耕作法[104]。生物培养法通过在污染区设置处理井,投加营养盐和氧源,为土著微生物提供生存条件,使其迅速繁殖从而提高降解效率[105]。投菌法则是在生物培养法的基础上向污染土壤中投加高效降解菌(外源菌、驯化菌、工程菌)[104]。土地耕作法是现场处理的主要手段,通过翻耕、施肥、灌溉和加生石灰等管理措施,调整土壤理化性质,促进微生物生长[104]

3.1.2 异位处理

异位处理常见的方法有预制床和生物反应器[104]。预制床将受污染土壤覆盖于不渗漏的平台上,添加营养盐和水,翻动、通风增加氧气含量,处理过程中的渗透水回灌于土层上,也会施加驯化微生物或表面活性剂以提高降解效率。预制床的底面为渗透性低的物质,如高密度的聚乙烯或黏土,配备有滤液收集器和控制排放系统,弥补了土壤耕作中污染物迁移的问题,可以将迁移量减至最低[106]。生物反应器一般可以建在现场或特定的处理区,通常有卧鼓状和气提式。处理时,将污染土壤挖出与足量水充分混合至泥浆状,加入各类营养物质并剧烈搅拌使氧气充足,促使接种于反应器的微生物与污染土壤充分接触,完成降解。处理后的土壤与水分离后,经脱水处理可以再运回原地。反应器可以使土壤、沉积物和地下水与微生物及其添加物如营养盐、表面活性剂等彻底混合,能很好地控制通气、温度、湿度、pH值及所需的各种营养物质,因而处理速度快、效果好[107]

3.2 植物修复技术

植物修复技术主要包括植物吸收、植物稳定和植物挥发。利用超积累植物的特性,直接吸收土壤中的污染物,传输、储存在植物的茎叶中,收割地上部分进行处理,从而达到去除土壤中PAHs的效果。植物稳定则是通过耐受植物的根系分泌物将污染物螯合、沉淀,防止污染物的横向迁移或渗透,降低其生物有效性,减轻环境负荷。植物将土壤中的PAHs吸收后,运输到顶端,通过叶片的蒸腾作用,释放到大气中。一般要求挥发后的物质毒性小于转化前的污染物,否则环境危害不但未减少,甚至会加剧[108]

3.3 微生物-植物联合修复技术

微生物-植物联合修复是综合利用微生物修复与植物修复的优点,以强化根际有机污染物的快速降解、矿化的复合修复技术。可分为微生物-植物联合修复、内生菌定殖和转基因植物。

3.3.1 微生物-植物联合修复技术

联合修复技术中植物主要发挥以下作用:植物本身对污染物具有一定的吸收、挥发和降解作用,可提高微生物的耐受性和可利用性;植物发达的根系为微生物提供了定殖场所,微生物可随根系的延伸分布在不同层次的土壤中,无需人工混合;植物根系可进行氧气转移,确保土壤中的好氧作用正常进行;某些根际分泌物可作为天然的表面活性剂,促进PAHs从土壤颗粒上解离,增加溶解性从而增大了微生物可利用性;根际分泌物可以改良土壤性质、固定氮素、抑制病原体,同时给微生物生长提供大量的营养,促进微生物的矿化作用[109-110]。另一方面,微生物通过降解污染物或改变污染物形态,减轻对植物的毒害,提高植物耐受性,促进植物对污染物的吸收转化。这种互利作用在难降解PAHs的去除上具有十分广阔的前景[111]。顾平等[112]在巨大芽孢杆菌-紫茉莉联合修复BaP的实验中发现,联合修复效果最佳,对BaP的去除率达77.2%,高于单一处理。

3.3.2 内生菌定殖

近年来,国内外一些学者也从植物中分离到一些能够降解植物体内PAHs的内生菌。Kashir等[113]从美国黑杨的根部分离到1株Bacillus sp.的内生菌SBER3,培养6 d对萘的去除率为75.1%;Liu等[114]从看麦娘中分离出来的内生菌Pn2,定殖有Pn2的黑麦草的根和茎对2 mg/L菲的去除率分别为54%、57%;海洋中的很多微生物通过寄生于浮游植物中利用泄漏在海面的原油[115]。植物内生菌定殖于植物体内,有效地隔绝了外环境的干扰因素,植株吸收进体内的PAHs更便于内生菌利用,内生菌的存在也能帮助植物生长和抗病害,也是一种互利共生的关系,具有广阔的应用前景。

3.3.3 转基因植物

利用转基因技术提高植物对PAHs的吸收和降解,为PAHs污染土壤的治理提供了一个新的思路。Peng等[116]将假单胞菌中的萘双加氧酶基因分别转入到拟南芥与水稻中,完成了萘双加氧体系到双子叶植物和单子叶植物的首次成功转移。实验中发现,这样的转基因植物相较于野生型植株体而言,具有更强的耐受性,同时可以将根茎积累的PAHs转化为生长所需的营养物质,而非单一的吸收或挥发。以菲为例,转基因植株是野生型植株降解率的2倍,可达到35%。由于PAHs的降解需要多酶系统参与催化作用,反应过程相对复杂,目前利用转基因植物进行污染修复的相关研究并不多。

4 总结与展望

近些年,受多环芳烃(PAHs) 污染土壤的植物-微生物联合修复因其综合了微生物修复和植物修复的优势,具有更好的修复效果,已成为研究的热点,也取得了相应的进展。但仍有很多需要继续研究的地方。

一是目前大量的报道显示,分离或筛选出的高效降解微生物和植物主要对LMW-PAHs发挥作用,随着苯环数目的增加,污染物浓度的提高,在土壤中形态更稳定、积累量大、毒害性更强,微生物和植物的降解效果大打折扣,在受污染比较严重的地方如焦化厂,微生物和植物甚至难以存活。因此,对功能性微生物和植物资源的发掘、驯化还需要更多的研究。二是实际应用的环境远比实验室复杂,土壤性质(湿度、温度、pH值、土壤质地、通气状况、养分条件)、气候变化等都可能会对微生物和植物产生显著影响,如何实现微生物-植物的高效整合,需要取长补短、因地制宜地采取措施。三是目前的研究可以得出微生物-植物在联合修复中具有互惠共利的关系,但根际分泌物种类丰富,土壤中微生物种群在时间、空间上具有变化性,如果可以弄清楚微生物-植物互作机理,找到发挥作用的关键物质,或许可以为将来强化联合修复技术提供良好的解决办法。四是需要考虑生物安全性。从来源上讲,降解微生物可分为土著微生物、外源微生物和基因工程菌。外源微生物代谢强、降解效率高,容易受到土著微生物的竞争,基因工程菌涉及的生物安全问题目前在社会上还存在着很大的争议,民众接受度并不高,这两种类型的微生物实际投加到污染土壤中或者栽种转基因植物,对原有生态环境的影响未可知,在实际使用中还需要更加谨慎。因此,建立针对微生物-植物联合修复技术的完整、规范、权威的安全及效能评估方法尤为重要。以上诸多原因目前仍制约着微生物-植物联合修复技术的规模化应用,也是今后研究中迫切需要解决的问题。相信绿色、经济、高效的联合修复技术也将为环境保护开辟出新途径,作出出色的贡献。

参考文献
[1]
Wilson SC, Jones KC. Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ Pollut, 1993, 81(3): 229-249. DOI:10.1016/0269-7491(93)90206-4
[2]
Lu XY, Zhang T, Fang HH. Bacteria-mediated PAHs degradation in soil and sediment. Appl Microbiol Biotechnol, 2011, 89(5): 1357-1371. DOI:10.1007/s00253-010-3072-7
[3]
Jeffy BD, Chen EJ, Gudas JM, et al. Disruption of cell cycle kinetics by benzo[a]pyrene: inverse expression patterns of BRCA-1 and p53 in MCF-7 cells arrested in S and G2. Neoplasia, 2000, 2(5): 460-470.
[4]
沈学优, 刘勇建. 空气中多环芳烃的研究进展. 环境污染与防治, 1999, 12(6): 32-35.
Shen XY, Liu YJ. Research progress of polycyclic aromatic hydrocarbons in the atmosphere. Environ Pollut Control, 1999, 12(6): 32-35 (in Chinese). DOI:10.3969/j.issn.1001-3865.1999.06.011
[5]
Drwal E, Rak A, Gregoraszczuk EL. Review: polycyclic aromatic hydrocarbons (PAHs)—action on placental function and health risks in future life of newborns. Toxicol, 2019, 411: 133-142. DOI:10.1016/j.tox.2018.10.003
[6]
Keith L, Telliard W. ES & T Special Report: priority pollutants: I-a perspective view. Environ Sci Technol, 1979, 13(4): 416-423. DOI:10.1021/es60152a601
[7]
朱凡, 田大伦, 闫文德, 等. 多环芳烃在土壤-植物系统中的修复研究进展. 中南林业科技大学学报, 2007, 27(5): 112-116.
Zhu F, Tian DL, Yan WD, et al. Research progress of polycyclic aromatic hydrocarbons' remedy in a soil-plant system. J Central South Univ For Technol, 2007, 27(5): 112-116 (in Chinese). DOI:10.3969/j.issn.1673-923X.2007.05.020
[8]
何耀武, 区自清, 孙铁珩. 多环芳烃类化合物在土壤上的吸附. 应用生态学报, 1995, 6(4): 423-427.
He YW, Ou ZQ, Sun TH. Adsorption of polycyclic aromatic hydrocarbons on soils. Chin J Appl Ecol, 1995, 6(4): 423-427 (in Chinese).
[9]
刘世亮, 骆永明, 曹志洪, 等. 多环芳烃污染土壤的微生物与植物联合修复研究进展. 土壤, 2002, 34(5): 257-265.
Liu SL, Luo YM, Cao ZH, et al. Progress in study on bioremediation of PAHs-contaminated soil using microorganisms combined with plant. Soils, 2002, 34(5): 257-265 (in Chinese). DOI:10.3321/j.issn:0253-9829.2002.05.002
[10]
Balachandran C, Duraipandiyan V, Balakrishna K, et al. Petroleum and polycyclic aromatic hydrocarbons (PAHs) degradation and naphthalene metabolism in Streptomyces sp. (ERI-CPDA-1) isolated from oil contaminated soil. Bioresour Technol, 2012, 112: 83-90.
[11]
吉云秀, 邵秘华. 多环芳烃的污染及其生物修复. 交通环保, 2003, 24(5): 33-36.
Ji YX, Shao MH. Pollution and bioremediation of polycyclic aromatic hydrocarbons. Environ Prot Transp, 2003, 24(5): 33-36 (in Chinese).
[12]
Kuppusamy S, Thavamani P, Venkateswarlu K, et al. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: technological constraints, emerging trends and future directions. Chemosphere, 2017, 168: 944-968. DOI:10.1016/j.chemosphere.2016.10.115
[13]
王飞. 土壤多环芳烃污染修复技术的研究进展. 环境与发展, 2019, 31(2): 55-58.
Wang F. Review on the research progress of polycyclic aromatic hydrocarbons remediation technology in soil. Environ Dev, 2019, 31(2): 55-58 (in Chinese).
[14]
张灵利, 徐宏英, 葛晶丽. 多环芳烃污染生物修复研究进展. 微生物学杂志, 2016, 36(2): 81-86.
Zhang LL, Xu HY, Ge JL. Advances in polycyclic aromatic hydrocarbon pollution bio-redemption. J Microbiol, 2016, 36(2): 81-86 (in Chinese). DOI:10.3969/j.issn.1005-7021.2016.02.014
[15]
吴作军, 卢滇楠, 张敏莲, 等. 微生物分子生态学技术及其在石油污染土壤修复中的应用现状与展望. 化工进展, 2010, 29(5): 789-795.
Wu ZJ, Lu DN, Zhang ML, et al. Progress in applications of microbiological molecular ecology in bioremediation of petroleum contaminated soil. Chem Ind Eng Prog, 2010, 29(5): 789-795 (in Chinese).
[16]
孙天然. 植物强化微生物修复多环芳烃污染土壤研究[D]. 济南: 山东师范大学, 2009.
Sun TR. Plant enhanced microbial degradation of phenanthrene and Pyrene in spiked soils[D]. Jinan: Shandong Normal University, 2009 (in Chinese).
[17]
Schnoor JL, Licht LA, McCutcheon SC, et al. Phytoremediation of organic and nutrient contaminants. Environ Sci Technol, 1995, 29(7): 318A-323A. DOI:10.1021/es00007a747
[18]
丁克强, 骆永明. 多环芳烃污染土壤的生物修复. 土壤, 2001, 33(4): 169-178.
Ding KQ, Luo YM. Bioremediation of PAHs polluted soil. Soils, 2001, 33(4): 169-178 (in Chinese). DOI:10.3321/j.issn:0253-9829.2001.04.001
[19]
李晨洋, 刘爽, 孙楠, 等. 土壤和沉积物中PAHs环境行为研究进展. 东北农业大学学报, 2021, 52(3): 87-94.
Li CY, Liu S, Sun N, et al. Research progress of PAHs environmental behaviors on soil and sediment. J Northeast Agric Univ, 2021, 52(3): 87-94 (in Chinese).
[20]
陈静, 王学军, 陶澍, 等. 天津地区土壤多环芳烃在剖面中的纵向分布特征. 环境科学学报, 2004, 24(2): 286-290.
Chen J, Wang XJ, Tao S, et al. Vertical distribution of polycyclic aromatic hydrocarbons in soils in Tianjin Area. Acta Sci Circumstantiae, 2004, 24(2): 286-290 (in Chinese). DOI:10.3321/j.issn:0253-2468.2004.02.020
[21]
鲁垠涛, 向鑫鑫, 张士超, 等. 不同土地利用类型的土壤中多环芳烃的纵向迁移特征. 环境科学, 2019, 40(7): 3369-3377.
Lu YT, Xiang XX, Zhang SC, et al. Vertical distribution characteristics of PAHs in soils with different land use types during urbanization. Environ Sci, 2019, 40(7): 3369-3377 (in Chinese).
[22]
韩金涛, 彭思毅, 杨玉春. 土壤中PAHs的污染现状及修复对策. 环境科学导刊, 2019, 38(S1): 7-11.
Han JT, Peng SY, Yang YC. The pollution status and remediation methods of PAHs in soil. Environ Sci Surv, 2019, 38(S1): 7-11 (in Chinese).
[23]
Wilcke W, Zech W, Kobža J. PAH-pools in soils along a PAH-deposition gradient. Environ Pollut, 1996, 92(3): 307-313. DOI:10.1016/0269-7491(95)00110-7
[24]
郝蓉, 彭少麟, 宋艳暾, 等. 汕头经济特区土壤中PAHs的分布. 生态学报, 2004, 13(3): 323-326.
Hao R, Peng SL, Song YT, et al. Distribution of PAHs in soil of Shantou Special Economic Zone. J Ecol, 2004, 13(3): 323-326 (in Chinese).
[25]
Park KS, Sims RC, Dupont RR, et al. Fate of PAH compounds in two soil types: influence of volatilization, abiotic loss and biological activity. Environ Toxicol Chem, 1990, 9(2): 187-195. DOI:10.1002/etc.5620090208
[26]
高学晟, 姜霞, 区自清. 多环芳烃在土壤中的行为. 应用生态学报, 2002, 13(4): 501-504.
Gao XS, Jiang X, Ou ZQ. Behaviors of polycyclic aromatic hydrocanbons(PAHs) in the soil. Chin J Appl Ecol, 2002, 13(4): 501-504 (in Chinese). DOI:10.3321/j.issn:1001-9332.2002.04.027
[27]
袁超. 应用稳定同位素探针技术在多环芳烃环境行为与归宿研究新进展. 矿物岩石地球化学通报, 2015, 34(6): 1212.
Yuan C. New progress in the study of environmental behavior and fate of polycyclic aromatic hydrocarbons using stable isotope probe technique. Bull Mineral Petrol Geochem, 2015, 34(6): 1212 (in Chinese).
[28]
史兵方, 李拥军, 刘细祥. 中国多环芳烃区域地球化学研究进展. 安全与环境学报, 2013, 13(5): 10-20.
Shi BF, Li YJ, Liu XX. Research review on the progress of the regional geochemistry of polycyclic aromatic hydrocarbons in China. J Saf Environ, 2013, 13(5): 10-20 (in Chinese).
[29]
Hong WJ. Air and soil distribution, transport and ecological risk of polycyclic aromatic hydrocarbons in five Asian countries. Dalian: Dalian Maritime University, 2016.
[30]
邓绍坡, 吴运金, 龙涛, 等. 我国表层土壤多环芳烃(PAHs)污染状况及来源浅析. 生态与农村环境学报, 2015, 31(6): 866-875.
Deng SP, Wu YJ, Long T, et al. PAHs contamination in the surface soil of China and its sources. J Ecol Rural Environ, 2015, 31(6): 866-875 (in Chinese).
[31]
Maliszewska-Kordybach B. Polycyclic aromatic hydrocarbons in agricultural soils in Poland: preliminary proposals for criteria to evaluate the level of soil contamination. Appl Geochem, 1996, 11(1/2): 121-127.
[32]
彭驰, 王美娥, 欧阳志云, 等. 北京科教园区绿地土壤中多环芳烃的残留特征与潜在风险. 环境科学, 2012, 33(2): 592-598.
Peng C, Wang ME, Ouyang ZY, et al. Characterization and potential risks of polycyclic aromatic hydrocarbons in green space soils of educational areas in Beijing. Environ Sci, 2012, 33(2): 592-598 (in Chinese).
[33]
王洪涛, 张丽华. 辽宁省污灌区土壤中多环芳烃的测定. 环境保护与循环经济, 2009, 29(5): 30-31.
Wang HT, Zhang LH. Determination of polycyclic aromatic hydrocarbons in soil of sewage-irrigation areas in Liaoning Province. Environ Prot Circ Econ, 2009, 29(5): 30-31 (in Chinese). DOI:10.3969/j.issn.1674-1021.2009.05.011
[34]
林根满. 石化工业区周边土壤和大气沉降中多环芳烃组成分布特征及源解析[D]. 上海: 东华大学, 2015.
Lin GM. Composition, distribution and source apportionment of polycyclic aromatic hydrocarbons in soil and atmospheric deposition around the petrochemical industry region[D]. Shanghai: Donghua University, 2015 (in Chinese).
[35]
安永龙, 黄勇, 孙朝, 等. 北京通州某改造区土壤中PAHs的来源分析及风险评价. 水文地质工程地质, 2017, 44(5): 112-120.
An YL, Huang Y, Sun Z, et al. Source apportionment and risk assessment of PAHs in soil from a renewal area in the Tongzhou District of Beijing. Hydrogeol Eng Geol, 2017, 44(5): 112-120 (in Chinese).
[36]
李静, 吕永龙, 焦文涛, 等. 天津滨海工业区土壤中多环芳烃的污染特征及来源分析. 环境科学学报, 2008, 28(10): 2111-2117.
Li J, Lü YL, Jiao WT, et al. Concentration and origin of polycyclic aromatic hydrocarbons in surface soil in Binhai Industrial Area of Tianjin, China. Acta Sci Circumstantiae, 2008, 28(10): 2111-2117 (in Chinese). DOI:10.3321/j.issn:0253-2468.2008.10.029
[37]
周燕. 西安市不同功能区土壤重金属与多环芳烃污染研究. 西安: 陕西师范大学, 2018.
Zhou Y. Research on the pollution of heavy metals and polycyclic aromatic hydrocarbons in soil environmental media from different functional areas in Xi'an. Xi'an: Shaanxi Normal University, 2018 (in Chinese).
[38]
顾卫华, 姚海燕, 白建峰, 等. 浙江台州典型电子废弃物无序拆解区土壤多环芳烃污染风险评估. 中国环境管理, 2019, 11(1): 67-71.
Gu WH, Yao HY, Bai JF, et al. Risk assessment of soil polycyclic aromatic hydrocarbons pollution at a typical informal E-waste dismantling site in Taizhou, Zhejiang. Chin J Environ Manag, 2019, 11(1): 67-71 (in Chinese).
[39]
Yin CQ, Jiang X, Yang XL, et al. Polycyclic aromatic hydrocarbons in soils in the vicinity of Nanjing, China. Chemosphere, 2008, 73(3): 389-394. DOI:10.1016/j.chemosphere.2008.05.041
[40]
姜永海, 韦尚正, 席北斗, 等. PAHs在我国土壤中的污染现状及其研究进展. 生态环境学报, 2009, 18(3): 1176-1181.
Jiang YH, Wei SZ, Xi BD, et al. Polycyclic aromatic hydrocarbons(PAHs) pollution in soils in China: recent advances and future prospects. Ecol Environ Sci, 2009, 18(3): 1176-1181 (in Chinese). DOI:10.3969/j.issn.1674-5906.2009.03.067
[41]
Zhu LZ, Chen YY, Zhou RB. Distribution of polycyclic aromatic hydrocarbons in water, sediment and soil in drinking water resource of Zhejiang Province, China. J Hazard Mater, 2008, 150(2): 308-316. DOI:10.1016/j.jhazmat.2007.04.102
[42]
Cai QY, Mo CH, Li YH, et al. Occurrence and assessment of polycyclic aromatic hydrocarbons in soils from vegetable fields of the Pearl River Delta, South China. Chemosphere, 2007, 68(1): 159-168. DOI:10.1016/j.chemosphere.2006.12.015
[43]
史兵方, 杨秀培, 刘细祥. 土壤中多环芳烃的分布特征及其来源分析. 农业环境科学学报, 2010, 29(5): 904-909.
Shi BF, Yang XP, Liu XX. Distribution characteristics and sources of polycyclic aromatic hydrocarbons in surface soil. J Agro-Environ Sci, 2010, 29(5): 904-909 (in Chinese).
[44]
王尊波, 孙玉川, 梁作兵, 等. 岩溶区多环芳烃的研究进展. 环境污染与防治, 2015, 37(9): 84-91.
Wang ZB, Sun YC, Liang ZB, et al. The research progress of polycyclic aromatic hydrocarbons in Karst areas. Environ Pollut Control, 2015, 37(9): 84-91 (in Chinese).
[45]
蓝家程. 岩溶地下河系统中多环芳烃的迁移、分配及生态风险研究. 重庆: 西南大学, 2014.
Lan JC. Study on migration, partitioning and ecological risk of PAHs in a Karst underground river system in southwest China. Chongqing: Southwest University, 2014 (in Chinese).
[46]
Zhang HB, Luo YM, Wong MH, et al. Distributions and concentrations of PAHs in Hong Kong soils. Environ Pollut, 2006, 141(1): 107-114. DOI:10.1016/j.envpol.2005.08.031
[47]
Chung MK, Hu R, Cheung KC, et al. Pollutants in Hong Kong soils: polycyclic aromatic hydrocarbons. Chemosphere, 2007, 67(3): 464-473. DOI:10.1016/j.chemosphere.2006.09.062
[48]
Sun N, Lu CG, Gao X, et al. Distribution and source of polycyclic aromatic hydrocarbons (PAHs) in soil of east Qingzang Plateau. Environ Sci, 2007, 28(3): 664-668.
[49]
Sims RC, Overcash MR. Fate of polynuclear aromatic compounds (PNAs) in soil-plant systems. Residue Reviews. New York: Springer New York, 1983, 1-68.
[50]
Heitkamp MA, Cerniglia CE. Polycyclic aromatic hydrocarbon degradation by a Mycobacterium sp. in microcosms containing sediment and water from a pristine ecosystem. Appl Environ Microbiol, 1989, 55(8): 1968-1973. DOI:10.1128/aem.55.8.1968-1973.1989
[51]
Boonchans, Juhasz A, Britz M, et al. Detoxification of soils containing high molecular weight polycyclic aromatic hydrocarbons by gram-negative bacteria and bacterial-fungal cocultures. Bioremediation of Contaminated Soils. New York: CRC Press, 2000, 409-443.
[52]
巩宗强, 李培军, 王新, 等. 污染土壤中多环芳烃的共代谢降解过程. 生态学杂志, 2000, 19(6): 40-45.
Gong ZQ, Li PJ, Wang X, et al. The process of cometabolic degradation of polycyclic aromatic hydrocarbons in the contaminated soils. Chin J Ecol, 2000, 19(6): 40-45 (in Chinese). DOI:10.3321/j.issn:1000-4890.2000.06.009
[53]
潘声旺. 多环芳烃污染土壤的生态修复研究[D]. 重庆: 西南大学, 2009.
Pan SW. Phytoremediation of contaminated soils with polycyclic aromatic hydrocarbons and its ecologically enhanced techniques[D]. Chongqing: Southwest University, 2009 (in Chinese).
[54]
李政, 顾贵洲, 赵朝成, 等. 高相对分子质量多环芳烃的生物共代谢降解. 石油学报(石油加工), 2015, 31(3): 720-725.
Li Z, Gu GZ, Zhao CC, et al. Co-metabolism biodegradation of polycyclic aromatic hydrocarbons with high relative molecular mass. Acta Petrolei Sin Petroleum Process Sect, 2015, 31(3): 720-725 (in Chinese). DOI:10.3969/j.issn.1001-8719.2015.03.016
[55]
Zhao ZY, Wong JWC. Biosurfactants from Acinetobacter calcoaceticus BU03 enhance the solubility and biodegradation of phenanthrene. Environ Technol, 2009, 30(3): 291-299. DOI:10.1080/09593330802630801
[56]
唐玉斌, 王晓朝, 陈芳艳, 等. 一株芴降解菌的分离鉴定及其对多环芳烃的降解广谱性研究. 环境工程学报, 2011, 5(2): 467-471.
Tang YB, Wang XC, Chen FY, et al. Research on isolation and identification of a fluorene-degrading strain and its broad-spectrum property for degradation of polycyclic aromatic hydrocarbons. Chin J Environ Eng, 2011, 5(2): 467-471 (in Chinese).
[57]
Juhasz AL, Stanley GA, Britz ML. Metabolite repression inhibits degradation of benzo[a]pyrene and dibenz[a, h]anthracene by Stenotrophomonas maltophilia VUN 10, 003. J Ind Microbiol Biotechnol, 2002, 28(2): 88-96.
[58]
Su D, Li PJ, Frank S, et al. Biodegradation of benzo[a]pyrene in soil by Mucor sp. SF06 and Bacillus sp. SB02 co-immobilized on vermiculite. J Environ Sci, 2006, 18(6): 1204-1209.
[59]
李岩, 李成, 张小雪, 等. 番茄秸秆固定化芽孢杆菌M1对3环PAHs污染老化土壤修复效果. 农业资源与环境学报, 2019, 36(6): 806-813.
Li Y, Li C, Zhang XX, et al. Remediation effects of 3-ring PAH-contaminated soil by immobilized Bacillus sp. M1 with tomato straw in coal mining area. J Agric Resour Environ, 2019, 36(6): 806-813 (in Chinese).
[60]
Kanaly RA, Harayama S. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol, 2000, 182(8): 2059-2067. DOI:10.1128/JB.182.8.2059-2067.2000
[61]
Kwon KK, Lee HS, Yang SH, et al. Kordiimonas gwangyangensis gen. nov., sp. nov., a marine bacterium isolated from marine sediments that forms a distinct phyletic lineage (Kordiimonadales ord. nov.) in the 'Alphaproteobacteria'. Int J Syst Evol Microbiol, 2005, 55(5): 2033-2037. DOI:10.1099/ijs.0.63684-0
[62]
Dandie CE, Thomas SM, Bentham RH, et al. Physiological characterization of Mycobacterium sp. strain 1B isolated from a bacterial culture able to degrade high-molecular-weight polycyclic aromatic hydrocarbon. J Appl Microbiol, 2004, 97(2): 246-255. DOI:10.1111/j.1365-2672.2004.02087.x
[63]
Toledo FL, Calvo C, Rodelas B, et al. Selection and identification of bacteria isolated from waste crude oil with polycyclic aromatic hydrocarbons removal capacities. Syst Appl Microbiol, 2006, 29(3): 244-252. DOI:10.1016/j.syapm.2005.09.003
[64]
Doong RA, Lei WG. Solubilization and mineralization of polycyclic aromatic hydrocarbons by Pseudomonas putida in the presence of surfactant. J Hazard Mater, 2003, 96(1): 15-27. DOI:10.1016/S0304-3894(02)00167-X
[65]
Kazunga C, Aitken MD. Products from the incomplete metabolism of Pyrene by polycyclic aromatic hydrocarbon-degrading bacteria. Appl Environ Microbiol, 2000, 66(5): 1917-1922. DOI:10.1128/AEM.66.5.1917-1922.2000
[66]
夏瑛铭, 张朝晖, 王亮, 等. 外加碳源对红球菌IcdP1降解荧蒽的特性研究. 环境科学与技术, 2017, 40(9): 14-19.
Xia YM, Zhang ZH, Wang L, et al. Effects of external carbon sources on degradation of fluoranthene by Rhodococcus sp. IcdP1. Environ Sci Technol, 2017, 40(9): 14-19 (in Chinese).
[67]
Gou M, Yang Y, Zhou H. Sphingomonas sp.: a novel microbial resource for biodegradation of aromatic compounds. Chinese J Appl Environ Biol, 2008, 14(2): 276-282.
[68]
陈铮, 陈勇. 多环芳烃降解菌的研究进展. 浙江万里学院学报, 2019, 32(3): 66-70.
Chen Z, Chen Y. Research progress of microbial degradation of polycyclic aromatic hydrocarbons. J Zhejiang Wanli Univ, 2019, 32(3): 66-70 (in Chinese).
[69]
Mandelstam P, Sugawa C, Silvis SE, et al. Web -type evolution of Rhodococcus gene clusters associated with utilization of naphthalene. Appl Environ Microbiol, 2005, 71(4): 1754. DOI:10.1128/AEM.71.4.1754-1764.2005
[70]
Wang C, Sun H, Li J, et al. Enzyme activities during degradation of polycyclic aromatic hydrocarbons by white rot fungus Phanerochaete chrysosporium in soils. Chemosphere, 2009, 77(6): 733-738. DOI:10.1016/j.chemosphere.2009.08.028
[71]
张伟, 冯俊, 杨超, 等. 白腐真菌的广谱生物降解性研究进展. 环境污染与防治, 2012, 34(1): 64-71.
Zhang W, Feng J, Yang C, et al. Broad-spectrum degradation capability of the white rot fungus. Environ Pollut Control, 2012, 34(1): 64-71 (in Chinese).
[72]
Zheng Z, Obbard JP. Removal of surfactant solubilized polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium in a rotating biological contactor reactor. J Biotechnol, 2002, 96(3): 241-249. DOI:10.1016/S0168-1656(02)00050-0
[73]
Potin O, Veignie E, Rafin C. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by Cladosporium sphaerospermum isolated from an aged PAH contaminated soil. FEMS Microbiol Ecol, 2004, 51(1): 71-78. DOI:10.1016/j.femsec.2004.07.013
[74]
Farnet AM, Gil G, Ruaudel F, et al. Polycyclic aromatic hydrocarbon transformation with laccases of a white-rot fungus isolated from a Mediterranean schlerophyllous litter. Geoderma, 2009, 149(3/4): 267-271.
[75]
Launen L, Pinto L, Wiebe C, et al. The oxidation of pyrene and benzo[a]pyrene by nonbasidiomycete soil fungi. Can J Microbiol, 1995, 41(6): 477-488.
[76]
Zheng Z, Obbard JP. Oxidation of polycyclic aromatic hydrocarbons by fungal isolates from an oil contaminated refinery soil. Environ Sci Pollut Res Int, 2003, 10(3): 173-176.
[77]
Capotorti G, Digianvincenzo P, Cesti P, et al. Pyrene and benzo(a)pyrene metabolism by an Aspergillus terreus strain isolated from a polycyclic aromatic hydrocarbons polluted soil. Biodegradation, 2004, 15(2): 79-85.
[78]
Pothuluri JV, Selby A, Evans FE, et al. Transformation of chrysene and other polycyclic aromatic hydrocarbon mixtures by the fungus Cunninghamella elegans. Can J Bot, 1995, 73(S1): 1025-1033.
[79]
Sack U, Heinze TM, Deck J, et al. Comparison of phenanthrene and Pyrene degradation by different wood-decaying fungi. Appl Environ Microbiol, 1997, 63(10): 3919-3925.
[80]
Pérez G, Pangilinan J, Pisabarro AG, et al. Telomere organization in the ligninolytic basidiomycete Pleurotus ostreatus. Appl Environ Microbiol, 2009, 75(5): 1427-1436.
[81]
刘鹏浩. 平菇对土壤中苊烯和苯并[a]蒽稳定性的影响. 科技与创新, 2016(7): 106.
Liu PH. The effect of Pleurotus ostreatus on the stability of acenaphthylene and benzo[a]anthracene in soil. Sci Technol Innov, 2016(7): 106 (in Chinese).
[82]
Chulalaksananukul S, Gadd GM, Sangvanich P, et al. Biodegradation of benzo(a)Pyrene by a newly isolated Fusarium sp... FEMS Microbiol Lett, 2006, 262(1): 99-106.
[83]
Wang X, Gong ZQ, Li PJ, et al. Degradation of pyrene and benzo(a)pyrene in contaminated soil by immobilized fungi. Environ Eng Sci, 2008, 25(5): 677-684.
[84]
马涛, 原文婷, 彭英, 等. 黄孢原毛平革菌对氯代蒽的生物降解及降解途径. 环境化学, 2019, 38(7): 1636-1644.
Ma T, Yuan WT, Peng Y, et al. Biodegradation of chlorinated anthracene by Phanerochaete chrysosporium and its degradation pathway. Environ Chem, 2019, 38(7): 1636-1644 (in Chinese).
[85]
Eggen T, Majcherczyk A. Removal of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil by white rot fungus Pleurotus ostreatus. Int Biodeterior Biodegrad, 1998, 41(2): 111-117.
[86]
Song HG. Comparsion of pyrene biodegradation by white rot fungi. World J Microbiol Biotechnol, 1999, 15: 669-672.
[87]
Potin O, Rafin C, Veignie E. Bioremediation of an aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soil by filamentous fungi isolated from the soil. Int Biodeterior Biodegrad, 2004, 54(1): 45-52.
[88]
Romero MC, Salvioli ML, Cazau MC, et al. Pyrene degradation by yeasts and filamentous fungi. Environ Pollut, 2002, 117(1): 159-163.
[89]
唐涛涛, 李江, 杨钊, 等. 多环芳烃生物降解及转化途径的研究进展. 石油学报(石油加工), 2019, 35(2): 403-413.
Tang TT, Li J, Yang Z, et al. Research progress on biodegradation and transformation pathways of polycyclic aromatic hydrocarbons. Acta Petrolei Sin Petroleum Process Sect, 2019, 35(2): 403-413 (in Chinese).
[90]
Chang W, Um Y, Hoffman B, et al. Molecular characterization of polycyclic aromatic hydrocarbon (PAH)-degrading methanogenic communities. Biotechnol Prog, 2005, 21(3): 682-688.
[91]
Christensen N, Batstone DJ, He Z, et al. Removal of polycyclic aromatic hydrocarbons (PAHs) from sewage sludge by anaerobic degradation. Water Sci Technol, 2004, 50(9): 237-244.
[92]
Berdugo-Clavijo C, Dong X, Soh J, et al. Methanogenic biodegradation of two-ringed polycyclic aromatic hydrocarbons. FEMS Microbiol Ecol, 2012, 81(1): 124-133.
[93]
Oko BJ, Tao Y, Stuckey DC. Dynamics of two methanogenic microbiomes incubated in polycyclic aromatic hydrocarbons, naphthenic acids, and oil field produced water. Biotechnol Biofuels, 2017, 10(1): 123.
[94]
Schmidt O, Hink L, Horn MA, et al. Peat: home to novel syntrophic species that feed acetate-and hydrogen-scavenging methanogens. Isme J, 2016, 10(8): 1954-1966.
[95]
Cerniglia CE, van Baalen C, Gibson DT. Metabolism of naphthalene by the cyanobacterium Oscillatoria sp., strain JCM. Microbiology, 1980, 116(2): 485-494.
[96]
Lei AP, Wong YS, Tam NF. Removal of Pyrene by different microalgal species. Water Sci Technol, 2002, 46(11/12): 195-201.
[97]
Narro ML, Cerniglia CE, Van Baalen C, et al. Metabolism of phenanthrene by the marine cyanobacterium Agmenellum quadruplicatum PR-6. Appl Environ Microbiol, 1992, 58(4): 1351-1359.
[98]
Warshawsky D, Cody T, Radike M, et al. Biotransformation of benzo[a]Pyrene and other polycyclic aromatic hydrocarbons and heterocyclic analogs by several green algae and other algal species under gold and white light. Chem-Biol Interactions, 1995, 97(2): 131-148.
[99]
Chan SMN, Luan T, Wong MH, et al. Removal and biodegradation of polycyclic aromatic hydrocarbons by Selenastrum capricornutum. Environ Toxicol Chem, 2006, 25(7): 1772-1779.
[100]
Luo LJ. Degradation of high molecular weight polycyclic aromatic hydrocarbons by Selenastrum capricornutum. Guangzhou: Sun Yat-sen University, 2013.
[101]
吕笑非. PAHs污染土壤修复植物的筛选及其根际微生态特征研究[D]. 杭州: 浙江大学, 2010. Lü
XF. Selection of phytoremediation species for PAHs polluted soils and study on the micro- ecological characteristics in plant rhizosphere[D]. Hangzhou: Zhejiang University, 2010 (in Chinese).
[102]
王建刚, 陈倩, 郭淼, 等. 石油污染土壤修复技术研究现状与展望. 山东化工, 2017, 46(23): 52-54.
Wang JG, Chen Q, Guo M, et al. Research progress in the soil remediation technology by oil pollution. Shandong Chem Ind, 2017, 46(23): 52-54 (in Chinese).
[103]
Bourceret A, Leyval C, Faure P, et al. High PAH degradation and activity of degrading bacteria during alfalfa growth where a contrasted active community developed in comparison to unplanted soil. Environ Sci Pollut Res Int, 2018, 25(29): 29556-29571. DOI:10.1007/s11356-018-2744-1
[104]
吴枭雄, 王红旗, 刘自力. 多环芳烃污染土壤的微生物修复技术研究进展. 环境与发展, 2018, 30(7): 108-109.
Wu XX, Wang HQ, Liu ZL. Progress in research on microbial remediation of polycyclic aromatic hydrocarbon contaminated soil. Environ Dev, 2018, 30(7): 108-109 (in Chinese).
[105]
范聪, 肖炜, 张仕颖. 微生物修复污染土壤的应用研究进展. 贵州农业科学, 2017, 45(8): 53-58.
Fan C, Xiao W, Zhang SY. Advances in application of microorganisms in contaminated soils. Guizhou Agric Sci, 2017, 45(8): 53-58 (in Chinese).
[106]
刘莉, 陈玉成, 于萍萍. 多环芳烃微生物降解的研究进展. 安徽农业科学, 2006, 34(23): 6289-6291.
Liu L, Chen YC, Yu PP. Research progress in the microorganism decomposition of polycyclic aromatic hydrocarbons in the environment. J Anhui Agric Sci, 2006, 34(23): 6289-6291 (in Chinese).
[107]
王山榕, 翟亚男, 王永剑, 等. 多环芳烃污染土壤修复技术的研究进展. 化工环保, 2021, 41(3): 247-254.
Wang SR, Zhai YN, Wang YJ, et al. Research progresses on remediation of polycyclic aromatic hydrocarbons contaminated soil. Environ Prot Chem Ind, 2021, 41(3): 247-254 (in Chinese).
[108]
Li XY. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons and its combination with Cu. Fuzhou: Fujian Normal University, 2010.
[109]
Romantschuk M, Sarand I, Petänen T, et al. Means to improve the effect of in situ bioremediation of contaminated soil: an overview of novel approaches. Environ Pollut, 2000, 107(2): 179-185.
[110]
王乔, 郑瑞, 孙学婷, 等. 睾丸酮丛毛单胞菌对羊草根际土壤PAHs降解及细菌群落结构的影响. 生物工程学报, 2020, 36(12): 2657-2673.
Wang Q, Zheng R, Sun XT, et al. Effects of Comamonas testosteroni on PAHs degradation and bacterial community structure in Leymus chinensis rhizosphere soil. Chin J Biotech, 2020, 36(12): 2657-2673 (in Chinese).
[111]
Zhou MF, Rhue RD. Screening commercial surfactants suitable for remediating DNAPL source zones by solubilization. Environ Sci Technol, 2000, 34(10): 1985-1990.
[112]
顾平, 周启星, 王鑫, 等. 一株苯并[a]芘降解菌-紫茉莉联合修复污染土壤的研究. 环境科学学报, 2018, 38(4): 1613-1620.
Gu P, Zhou QX, Wang X, et al. Joint remediation of contaminated soil by an effective degradation bacteria of B[a]P and Mirabilis jalapa. Acta Sci Circumstantiae, 2018, 38(4): 1613-1620 (in Chinese).
[113]
Kashir M, Barker J, McGregor R, et al. Aerobic biodegradation of hydrocarbons in high temperature and saline groundwater. Remediation, 2014, 24(2): 77-90.
[114]
Liu J, Liu S, Sun K, et al. Colonization on root surface by a phenanthrene-degrading endophytic bacterium and its application for reducing plant phenanthrene contamination. PLoS One, 2014, 9(9): e108249.
[115]
Gutierrez T, Rhodes G, Mishamandani S, et al. Polycyclic aromatic hydrocarbon degradation of phytoplankton-associated Arenibacter spp. and description of Arenibacter algicola sp. nov., an aromatic hydrocarbon-degrading bacterium. Appl Environ Microbiol, 2014, 80(2): 618-628.
[116]
Peng RH, Fu XY, Zhao W, et al. Phytoremediation of phenanthrene by transgenic plants transformed with a naphthalene dioxygenase system from Pseudomonas. Environ Sci Technol, 2014, 48(21): 12824-12832.