生物工程学报  2021, Vol. 37 Issue (11): 4024-4035
http://dx.doi.org/10.13345/j.cjb.210091
中国科学院微生物研究所、中国微生物学会主办
0

文章信息

闫伽宁, 胥义
Yan Jianing, Xu Yi
脱细胞基质生物墨水制备方法及应用进展
Preparation and application of decellularized extracellular matrix bioink: a review
生物工程学报, 2021, 37(11): 4024-4035
Chinese Journal of Biotechnology, 2021, 37(11): 4024-4035
10.13345/j.cjb.210091

文章历史

Received: January 28, 2021
Accepted: May 18, 2021
Published: May 31, 2021
脱细胞基质生物墨水制备方法及应用进展
闫伽宁 , 胥义     
上海理工大学 医疗器械与食品学院,上海 200093
摘要:组织器官脱细胞后制备成的脱细胞基质(Decellularized extracellular matrix,dECM) 含有许多蛋白质和生长因子,不仅能够为细胞提供三维支架还能够调控细胞再生,是目前最具有生物结构的生物材料。3D生物打印可以层层打印dECM和自体细胞的组合,构建载细胞组织结构。文中综述了不同来源的组织器官脱细胞基质生物墨水制备方法,包括脱细胞、交联等,以及脱细胞基质生物墨水在生物打印中的应用,并展望了其未来的应用前景。
关键词3D生物打印    组织工程    生物墨水    脱细胞基质    
Preparation and application of decellularized extracellular matrix bioink: a review
Jianing Yan , Yi Xu     
School of Medical Instrument and Food Engineering, niversity of Shanghai for Science and Technology, Shanghai 200093, China
Abstract: Decellularized extracellular matrix (dECM), which contains many proteins and growth factors, can provide three-dimensional scaffolds for cells and regulate cell regeneration. 3D bioprinting can print the combination of dECM and autologous cells layer by layer to construct the tissue structure of carrier cells. In this paper, the preparation methods of tissue and organ dECM bioink from different sources, including decellularization, crosslinking, and the application of dECM bioink in bioprinting are reviewed, with future applications prospected.
Keywords: 3D bioprinting    tissue engineering    bioink    decellularized extracellular matrix    

自2003年首次报道载细胞打印证实了打印器官的可能性后[1],3D生物打印技术常用于生物医学中生物支架的构建上[2]。其中,生物墨水是制约3D生物打印效果的关键因素之一。生物墨水即在生物打印制造中能够包含细胞和其他生物活性成分的材料[3],是目前的研究热点。近年来,研究者相继开发出了陶瓷、聚合物、弹性体和脂类等生物墨水,并取得了一定的应用进展。

脱细胞基质[4] (Decellularized extracellular matrix,dECM) 作为天然聚合物的一种,具有含细胞生长和分化所需因子以及各种蛋白质[5]、可以调节生物平衡,以及较低的毒性和免疫原性[6]等优点,在组织平衡、生长和成熟中起着至关重要的作用。并且相较于其他天然聚合物如海藻酸钠[7]、胶原蛋白[8]、琼脂糖[9]和透明质酸[10]等更具有仿生性,还能通过一定方法形成具有三维网络结构的水凝胶,提供可容纳大量水并且细胞友好的环境,因此,可以在体外模拟细胞体内生长的微环境[11-12]

dECM不仅在结构和成分上与天然细胞外基质相似并能促进组织再生,还可诱导宿主体内干细胞增殖分化,调控细胞信号通路和基因表达,符合生物墨水需要满足的可印刷性、良好的机械性能以及生物相容性[13]等特点。因此,dECM生物墨水和生物打印结合的打印方案不仅可以解决组织工程上不能获得理想支架的问题,如无法对支架孔隙孔径等进行精确控制[14]、2D细胞培养中与体内环境不符的缺陷[15]等,还能进行器官和组织制造的临床应用[16],现有的研究表明已开发多种器官的dECM生物墨水并合理应用[17],例如肺[18]、肾[19]、脑[20]、脊髓[21]、骨[22]等,可用于制造组织结构、药物筛选以及靶向药物和/或细胞递送。本文针对不同来源的dECM的制备及其应用进行综述,能够较全面地了解dECM生物墨水的前期制备,主要包括脱细胞和交联,以及后续可行性及相关应用,为今后dECM作为生物墨水的开发及进一步实现组织工程应用加工提供参考。

1 dECM生物墨水的制备方法 1.1 组织器官的来源

一般来讲,dECM的主要来源有动物源组织器官、植物组织以及人源组织器官。其中,由于人源组织器官面临伦理、法律等问题,其研究应用较少,近年来,分别在上肢[23]、卵巢[24]、皮肤[25]以及肺[26]等方面有一定探讨。

目前,动物源组织器官因其易获取、丰富且可持续,能解决组织器官的短缺问题[27],已广泛应用于dECM的制备。例如,猪[28-29]、牛[30]、山羊[31]和大鼠[32]的组织器官,被用作制备dECM生物墨水,具有良好的细胞相容性。但动物源dECM在植入体内后可能引起免疫排斥反应,还有待进一步深入研究[33]

近年来,有研究表明植物源组织因其交互的网络结构、较大的表面积、不同程度的亲水性以及较好的机械性能使其成为组织工程中血管化的合适候选材料[34]。例如,欧芹茎具有较高的亲水性和较大的孔径,可以改善细胞的粘附和增殖,并且细胞培养显示细胞沿着植物微观结构排列,揭示了结构形状在未来研究中的重要性[35]。然而植物源dECM的机械性能无法支撑其植入体内,需要进一步完善其制备过程。

1.2 组织器官脱细胞方法

脱细胞是指在保护天然细胞外基质的组成和结构完整性的同时,有效地去除组织或器官中的DNA和RNA等成分,从而达到避免异种移植物和同种异体移植物易因细胞抗原引起排斥反应的目的[27]。常用的脱细胞方法有物理法(冻融法、机械搅拌法、压力法、超临界流体法等)[36-37]、化学法(处理试剂包括酸、碱、非离子型除垢剂、离子型除垢剂、两性离子除垢剂、低渗和高渗盐水、醇类、磷酸三丁酯等)[38-39]和生物法(酶、螯合剂和毒素等)[40]等(表 1)。这些方法单独使用时均会破坏ECM的成分、力学特性及植入体内后的宿主反应,需要进一步优化脱细胞方法[41-43]

表 1 不同脱细胞方法的应用 Table 1 Application of different decellularization methods
Methods Sources Decellularize process References
Chemical method Rat kidney 1. 1% triton X-100, 70 mL/h, 90 min
2. PBS, 30 min
3. 1% SDS, 90 min
4. PBS, 30 min
5. 0.9% NaCl, 60 mL/h, 60 min
6. Penicillin+streptomycin
[38]
Pig kidney 1. PBS, 25 mL/min, 30 min
2. 0.1% SDS until the color turns white
3. PBS, 8 h
4. 0.1% CH3COOOH, 2 h
5. PBS, 12 h
[39]
Chemical+physical+
enzyme method
Human kidney 1. Stored at −80 ℃
2. 2×PBS+penicillin+streptococcin 15min
3. 0.02% trypsin, 1 h; 2% tween-20, 2 h; 4% sodium deoxycholate, 3 h; 1% SDS overnight
4. 2×PBS+penicillin+stallimycin, 4 h+1×PBS, 4 h
[36]
Enzyme method Rat sciatic nerve 1. Ultra pure water, 1 h
2. 0.5% triton X-100, 48 h
3. Ultra pure water, 48 h
4. DNase, RNase, 37 ℃ 12 h
[40]
Chemical+physical method Rat heart Freeze drying at −80 ℃
1. 0.02% trypsin, 0.05% EDTA, 0.05% NaN3, 20 min
2. 1% SDS, 0.05% NaN3, 10 min
3. 3% triton X-100, 0.05% EDTA 0.05% NaN3, 10 min
4. 4% DCA, 5–10 min
[44]

近年来,为了减少传统脱细胞方法对dECM造成的不利影响,在对组织器官进行脱细胞处理时更偏向于以上脱细胞方法的联合应用[44-45]。胡东等[46]联合冻融和灌注法对大鼠肾脱细胞,得到了更为理想且有效的大鼠肾脱细胞支架,为肾脏组织工程构建再生肾脏以及肾脏体外研究奠定了一定基础。Roth等[47]通过冻融循环和非离子除垢剂Triton X-100的联合处理对肌腱进行脱细胞处理。同时,Tavassoli等[48]采用物理和化学相结合的方法对肌腱进行脱细胞。结果表明,在液氮中快速冻融5个循环,加上2.5%十二烷基硫酸钠处理4 h,脱细胞效果最佳。Lee等[49]用0.5% SDS和0.1% NH4OH成功制备了骨dECM,弥补了硬组织脱细胞方法研究的不足。

虽然联合脱细胞方法相比传统方法单独使用时对细胞外基质损伤更小,但现有的脱细胞方法对细胞外基质有着不可避免的不良影响,需要在后续制备过程中进一步改善dECM力学、结构和生物学性能,以弥补脱细胞过程中细胞外基质的损伤。

1.3 dECM在生物打印中形成交联结构的方法

生物墨水在打印过程中形成稳定的交联结构有利于提升3D生物打印结构的机械性能,并提供细胞友好型环境。目前,常用的交联方法包括添加化学交联剂[50-51]、天然交联剂[52-53]进行交联以及物理法[54] (表 2)。其中,物理交联方法主要有光氧化法[55]和热脱氢法[56]。因它们不易控制交联条件,目前单独应用的研究相对较少。

表 2 不同交联剂在dECM生物支架中的应用 Table 2 Application of different crosslinking agents in dECM scaffolds
Methods Crosslinking agents Effects Advantages/disadvantages References
Chemical crosslinker Glutaraldehyde Glutaraldehyde reacts with amino groups in protein molecules to improve the strength, hardness and anti degradation performance of materials Toxic, easy to cause tissue calcification [42]
Carbodiimide Carbodiimide is crosslinked with collagen to improve the properties Low toxicity; no calcification inhibition [43]
Natural crosslinker Genipin (GP) Genipin reacts with free amino groups of lysine, hydroxylysine and arginine in some biomaterials Low toxicity; stable and robust enzyme resistance [52]
Procyanidins (PC) Proanthocyanidins form hydrogen bonds with elastin and elastin in collagen Non-toxic; it has antioxidant, anti-inflammatory, anti-calcification and cardiovascular protective effects [53]

通过化学交联剂交联,可以提高组织的力学性能,但大部分化学交联剂如环氧化合物、碳二亚胺(CDI)、戊二醛(GA)、己二胺氨基甲酸酯(HMDC) 等具有毒性,此外,还可能导致体内严重的免疫排斥反应和钙化等不良结果[53, 57-58]

近年来,天然交联剂[44-45, 59]因其含有较低的细胞毒性并且对dECM的组成改变较小,受到广泛关注。Wang等[60]对比使用化学交联剂戊二醛和天然交联剂京尼平来降低猪肝dECM的免疫原性,结果表明与化学交联方法相比,使用京尼平交联降低了dECM异种移植后的免疫反应,表明京尼平具有很好交联dECM的潜力。在另一项研究中,Wang等[53]报道了原花青素可以交联弹性蛋白并抑制其引发的钙化,同时保持了天然结构,具有大孔径以及高孔隙率。说明PC交联dECM可促进体内再细胞化,并显示出有效的抗血栓、血液相容性和抗炎潜力。但基于天然交联剂的交联方法价格昂贵且需要较长的凝胶时间,这并不适合用于结构复杂的组织,例如3D肿瘤模型[61]

2 dECM在3D生物打印中的应用进展

dECM生物墨水具有类似细胞生长增殖所需的生长环境,已被广泛应用于组织工程的研究。目前已有研究将dECM结合细胞应用于生物打印中进行特异性组织的构建,为今后dECM临床应用奠定重要基础。

2.1 中枢神经系统的修复

dECM本身具有一定的消炎作用,对于中枢神经系统的构建和修复,可以起到消除障碍的作用。Hong等[62]制备的猪脑dECM和Ⅰ型胶原蛋白复合水凝胶,通过影响巨噬细胞的活动来进行消炎,达到治疗脊髓损伤小鼠的目的,证明dECM可以解决哺乳动物中枢神经系统修复障碍的问题。但是凝胶降解速度过快会使消炎作用未来得及发挥就降解,这也是限制其应用的一个因素。

Tukmachev等[63]、Medberry等[21]以及Crapo等[64]分别制备基于猪脊髓dECM、猪脑dECM以及基于猪脊髓dECM的水凝胶,发现中枢神经系统衍生的脱细胞基质能够刺激新生血管形成和轴突向内生长,修复脊髓损伤。但是只有脑dECM增加了轴突的长度,表明存在组织特异性效应。神经系统水凝胶对三维轴突延伸的支持也表明,这些水凝胶提供了促进体内轴突修复所需的支架。在中枢神经系统再生医学应用中提供组织特异性优势。

2.2 类肾脏组织结构的构建及应用

在组织工程中,肾脏的供体短缺一直是一个问题,亟需探索肾脏组织结构的构建问题。Ali等[54]以猪肾dECM为生物墨水的一部分,混合明胶、透明质酸、甘油制成复合生物墨水,提供了所需的印刷性和结构完整性,以及肾特异性微环境,可以支持人肾细胞成熟和组织形成。另外,由于肾脏是一个高度血管化的器官,所以现有的研究主要以开发肾组织类似物为主,用于肾毒性预测、药物筛选和疾病建模[65]。Singh等[66]制备了猪肾dECM、海藻酸钠复合生物墨水,通过数字可调协同轴打印技术,根据所需要的间隔切换沿管长度,打印出单层、双层结构和复杂可灌注空心管结构。这是细胞微流控/血管化肾小管组织的打印肾复杂结构的基础。

2.3 类食道组织结构的构建及应用

常规的食道疾病治疗手段是用大肠、皮肤组织等来修复食管组织,手术过程及术后会引起术后并发症和外科疾病。因此,3D生物打印食道成为最优选择。Nam等[67]开发了一种新的拖动打印方式,能够控制单个挤压过程中孔隙的大小和形状。通过对打印聚己内脂(Polycaprolactone,PCL) 过程孔隙和孔径进行控制,打印出具有食道特性的PCL支架后,向不同层之间注入载有食管组织黏膜和肌肉层细胞的猪食道dECM溶液,形成具有多层特征的三维食管结构,应用于食管组织再生。

2.4 类肝脏组织结构的构建及应用

肝脏是人体的重要器官,能够为体内代谢物或化学物质解毒[68]。通常通过肝移植来治疗肝脏疾病,可是肝脏的需求远远大于供给。Lee等[69]使用PCL与猪肝dECM混合制成复合生物墨水,干细胞分化和细胞功能在猪肝dECM生物墨水中表现良好,表明猪肝dECM能诱导干细胞分化,增强HepG2的细胞功能。Mao等[70]将甲基丙烯酸明胶(GelMA) 与肝dECM相结合,通过光固化制备了肝dECM特异性复合生物墨水,并将人诱导的肝细胞(hiHep细胞) 包裹成载细胞生物墨水,打印出具有内齿轮状结构的肝脏微组织有利于肝脏功能的恢复。这些研究中肝脏dECM生物墨水具有良好的可印刷性,且打印过程中没有明显的细胞死亡,进一步证明了肝脏dECM可以应用到肝脏的组织工程中。

2.5 类肺组织结构的构建及应用

将肺dECM应用到组织工程上可以为患有肺部疾病的患者提供一种有前途的解决方法。Gupta等[31]对山羊肺dECM进行了探究,证实了山羊肺dECM具有抗菌性以及良好的生物相容性。研究进一步证明了肺dECM应用到肺组织工程支架的潜在可行性。Young等[71]为探究肺dECM是否必须通过丢失蛋白来增强,以实现适当的上皮屏障形成,对dECM涂层的上皮屏障功能进行了评估,通过比较不同组合的Ⅰ型胶原、纤维连接蛋白、层粘连蛋白和dECM作为体外涂层的屏障功能,证明具有层粘连蛋白的dECM肺泡上皮具有更好的屏障功能。

2.6 类心脏组织的构建及应用

Jang等[72]首次使用维生素B2作为光引发剂,利用UVA辐照进行交联猪源心脏dECM。维生素B2和UVA辐照交联dECM的结构比热交联dECM结构硬度高33倍。Yu等[73]也利用基于数字光处理(Digital light processing,DLP) 的可光交联的组织特异性猪源心脏dECM生物墨水,制造具有高度控制复杂微结构和机械性能的患者特定组织(图 1A)。另外,只有从心脏左心室获得的心脏dECM水凝胶才能进入治疗心肌梗死的临床试验。Traverse等[74]将猪心dECM和纳米黏土混合制成一种注射生物墨水替代传统栓塞剂用于经导管栓塞手术,实验证明,dECM水凝胶具有促生、抗菌性能和良好的机械特性,以及在抗凝血液中的优异性能,与纳米黏土形成的复合水凝胶能够发挥更好的作用。

图 1 基于脱细胞基质的生物墨水的应用[83] Fig. 1 Application of bioink based on dECM. (A) a: gelation behavior of heart dECM (hdECM) bioink with (+) or without (–) vitamin B2 (VB2). b: procedure to induce covalent crosslinking of dECM by exposure to UVA light during printing, followed by physical crosslinking of dECM bioink after printing. c: printed ''IMS"-shaped structure and physical stability after two-step crosslinking. d: structural stability of printed and two-step crosslinked structure for 23 days in normal saline. e: an image of a 10 layer printed bioconstruct[72]. (B) Ⅰ: heart tissue construct was printed with hdECM. Ⅱ: cartilage and adipose tissues were printed with cartilage dECM (cdECM) and Ⅲ adipose dECM (adECM) respectively, and in combination with PCL framework[79]. (C) Fabrication and structural configuration of the BBVs. i: the ionic gelation of alginate in realized BBV printing, ii: the thermal crosslinking of collagen fibers was induced by incubation at 37 ℃, iii: medium immersion dissolved and removed CPF127 to obtain BBV with a hollow tubular shape. a: combinations of various core and shell nozzles allowed the production of tubes with different inner diameters. b: adjusting the bioink flow in the shell nozzle allows BBV with different wall thickness to be achieved. c: BBV was successfully prepared[81]. (D) a–d: schematic of biomaterial preparation; e–i: a CaCl2 pretreatment was used to remove remnant surfactant from the scaffold[83].
2.7 类脂肪组织的构建及应用

脂肪的形成是由组织微环境中的因素调节的,包括生长因子、激素和细胞外基质。dECM的机械性能以及生化特性会影响脂肪细胞功能[75]。Uriel等[76]制备脂肪dECM生物墨水,表明了可以在体外提供支持脂肪细胞聚集和分化的环境,以及在体内血管化脂肪的形成。Choi及其同事[77]证明猪脂肪dECM通过诱导脂肪生成可作为异种移植组织工程的替代材料。此外,Pati等[78]平行制备了猪脂肪dECM (adECM) 等3种不同器官来源的dECM水凝胶,在研究adECM过程中的高密度条件(5×106个细胞/mL)下,脂肪分化增强,细胞形态更圆,小鼠体内实验可看出有血管生成且体内存在动态重塑(图 1B)。

2.8 类皮肤组织的构建及应用

皮肤dECM中含有层粘连蛋白b3、胶原Ⅳ和胶原Ⅶ,这些都是皮肤具有一定功能所必需的。Pilipchuk[79]用戊二醛交联大鼠真皮dECM,并对制成的水凝胶进行测试,后发现经过戊二醛处理的水凝胶能够增强力学特性、缓解降解和延长使用寿命。Ahn等[80]使用猪皮来源的dECM作为生物墨水进行打印制备生物支架,并通过修改原本的打印机形成了一种新的打印系统,达到每层生物墨水凝胶的同时精确生成细胞负载结构,并且不影响打印后细胞的存活能力,具有高保真的三维结构以及高细胞活力。这些材料在体外和体内诱导血管化组织形成,表明它们在组织工程中具有重要的潜力。

2.9 类血管组织的构建及应用

3D同轴生物打印因为能够通过耦合的核、壳喷嘴打印生物材料,显示了血管组织工程的潜力,直接制造可灌注的血管模拟结构进行应用。Gao等[81]同轴打印了含有血管dECM和海藻酸钠的复合生物墨水,制得生物血管(BBV)。该血管可以将内皮细胞和促血管生成药物(阿托伐他汀) 输送到缺血损伤部位,并且促进细胞的增殖、分化和新生血管的生成(图 1C)。另外,有些研究考虑到成本以及批量差异问题,所以运用植物dECM避免这一问题。植物组织含有硬成分和软成分[82],排列在复杂的层次结构中,有利于其在组织工程支架上的应用。Hickey等[83]用苹果dECM皮下植入小鼠背部,证明存在血管生成和细胞迁移(图 1D)。

2.10 类软骨组织的构建及应用

软骨是一种无血管承载组织,其低细胞性和无血管特性导致软骨损伤后自我修复能力有限[84],应用移植物可能影响修复结果[85]。Rothrauff等[86]通过从关节软骨和半月板中提取软骨dECM在载细胞打印后发现该生物墨水在促进骨髓基质细胞增殖方面发挥了重要作用。Luo等[87]将另一种成体干细胞接种在软骨dECM支架上,也观察到细胞增殖增强。这些研究表明软骨dECM为软骨细胞黏附、增殖提供一个更合适的三维环境。

2.11 类骨组织的构建及应用

目前常用打印骨支架的生物墨水有生物陶瓷、水凝胶、非水凝胶聚合物及其复合材料。Lee等[88]制备了甲基丙烯酸脱细胞基质(Ma-dECM)与海藻酸钠复合生物墨水,相比于海藻酸钠具有更高的细胞存活率,并且骨dECM可诱导更高的细胞活性。Choi等[89]通过将静电纺丝制备的PCL纤维支架包裹骨脱细胞基质制备生物支架。相比PCL,骨dECM对支架力学特性没有影响,但是对细胞黏附和增殖以及分化有显著影响。因此,运用骨脱细胞基质复合材料生物墨水不仅可以使支架具有骨传导性,还改变支架的物理特性和生物学性能,进一步满足骨组织工程的需求。

3 总结与展望

脱细胞基质是一个复杂的结构,包括传导化学信号所必需的各种蛋白及糖胺聚糖,从而影响细胞行为、组织再生、血运重建和调节内稳态。现有的研究表明,dECM由于其自身的生物学优势,在组织工程领域具有广阔的应用前景并得到了发展,在很多方面,如组织工程、细胞移植、体内外建模以及药物传递中都显示出了巨大的优势和潜力。

尽管已有很多研究表明dECM材料可以应用于临床治疗中,但dECM在应用中仍面临着许多难题,未来可以从以下几个方面深入研究:(1) 优化dECM生物墨水制备方案。脱细胞过程中残留的DNA可能产生免疫反应,且容易导致血栓的形成和炎症。因此需要制定标准化的脱细胞方案。在去除核酸的同时更完整地保留其他活性成分和结构;另外,寻找安全有效的交联方法,在保证安全性的前提下改善生物墨水的机械性能,可以扩大生物墨水的应用范围。(2) 细胞外基质与细胞和体内微环境相互作用的更详细机制目前尚不清楚。除此之外,需要控制脱细胞基质的可降解性。降解后的dECM可释放内皮生长因子、转化生长因子等,可局部促进血管生成以及诱导细胞向损伤部位迁移修复。但是脱细胞基质促进细胞行为、组织再生和血管生成的具体组成尚不清楚,相关的细胞和分子机制也值得研究。(3) 现有的研究都是在实验室中进行的,扩大生产规模的同时提高dECM批次的可重复性的转变也是一项挑战。

随着以上难题的解决,具有更好的生物相容性和功能重建的dECM生物墨水将不断涌现。在此之前,还需要不断加深对其作用机制的认识,不断改进技术,采用更多的方法,结合更广泛的知识背景,使其具有更广泛的应用。

参考文献
[1]
An J, Teoh JEM, Suntornnond R, et al. Design and 3D printing of scaffolds and tissues. Engineering, 2015, 1(2): 261-268. DOI:10.15302/J-ENG-2015061
[2]
Loh QL, Choong C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev, 2013, 19(6): 485-502. DOI:10.1089/ten.teb.2012.0437
[3]
Groll J, Burdick JA, Cho DW, et al. A definition of bioinks and their distinction from biomaterial inks. Biofabrication, 2018, 11(1): 013001. DOI:10.1088/1758-5090/aaec52
[4]
Pati F, Ha DH, Jang J, et al. Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials, 2015, 62: 164-175. DOI:10.1016/j.biomaterials.2015.05.043
[5]
Raza F, Zafar H, Zhu Y, et al. A review on recent advances in stabilizing peptides/proteins upon fabrication in hydrogels from biodegradable polymers. Pharmaceutics, 2018, 10(1): 16. DOI:10.3390/pharmaceutics10010016
[6]
Taylor DA, Sampaio LC, Ferdous Z, et al. Decellularized matrices in regenerative medicine. Acta Biomater, 2018, 74: 74-89. DOI:10.1016/j.actbio.2018.04.044
[7]
Chang R, Emami K, Wu H, et al. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication, 2010, 2(4): 045004. DOI:10.1088/1758-5082/2/4/045004
[8]
Duarte Campos DF, Blaeser A, Korsten A, et al. The stiffness and structure of three-dimensional printed hydrogels direct the differentiation of mesenchymal stromal cells toward adipogenic and osteogenic lineages. Tissue Eng Part A, 2015, 21(3/4): 740-756.
[9]
Blaeser A, Duarte Campos DF, Weber M, et al. Biofabrication under fluorocarbon: a novel freeform fabrication technique to generate high aspect ratio tissue-engineered constructs. Biores Open Access, 2013, 2(5): 374-384. DOI:10.1089/biores.2013.0031
[10]
Skardal A, Zhang J, McCoard L, et al. Dynamically crosslinked gold nanoparticle-hyaluronan hydrogels. Adv Mater, 2010, 22(42): 4736-4740. DOI:10.1002/adma.201001436
[11]
Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials, 2006, 27(19): 3675-3683.
[12]
Hoshiba T, Lu H, Kawazoe N, et al. Decellularized matrices for tissue engineering. Expert Opin Biol Ther, 2010, 10(12): 1717-1728. DOI:10.1517/14712598.2010.534079
[13]
Ji S, Guvendiren M. Recent advances in bioink design for 3D bioprinting of tissues and organs. Front Bioeng Biotechnol, 2017, 5: 23. DOI:10.3389/fbioe.2017.00023
[14]
Sahranavard M, Zamanian A, Ghorbani F, et al. A critical review on three dimensional-printed chitosan hydrogels for development of tissue engineering. Bioprinting, 2020, 17: e00063. DOI:10.1016/j.bprint.2019.e00063
[15]
Boland T, Mironov V, Gutowska A, et al. Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. Anat Rec, 2003, 272A(2): 497-502. DOI:10.1002/ar.a.10059
[16]
Badylak SF, Freytes DO, Gilbert TW. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater, 2009, 5(1): 1-13. DOI:10.1016/j.actbio.2008.09.013
[17]
Saldin LT, Cramer MC, Velankar SS, et al. Extracellular matrix hydrogels from decellularized tissues: structure and function. Acta Biomater, 2017, 49: 1-15. DOI:10.1016/j.actbio.2016.11.068
[18]
Pouliot RA, Link PA, Mikhaiel NS, et al. Development and characterization of a naturally derived lung extracellular matrix hydrogel. J Biomed Mater Res A, 2016, 104(8): 1922-1935. DOI:10.1002/jbm.a.35726
[19]
Nagao RJ, Xu J, Luo P, et al. Decellularized human kidney cortex hydrogels enhance kidney microvascular endothelial cell maturation and quiescence. Tissue Eng Part A, 2016, 22(19/20): 1140-1150.
[20]
DeQuach JA, Yuan SH, Goldstein LS, et al. Decellularized porcine brain matrix for cell culture and tissue engineering scaffolds. Tissue Eng Part A, 2011, 17(21/22): 2583-2592.
[21]
Medberry CJ, Crapo PM, Siu BF, et al. Hydrogels derived from central nervous system extracellular matrix. Biomaterials, 2013, 34(4): 1033-1040. DOI:10.1016/j.biomaterials.2012.10.062
[22]
Paduano F, Marrelli M, White LJ, et al. Odontogenic differentiation of human dental pulp stem cells on hydrogel scaffolds derived from decellularized bone extracellular matrix and collagen type Ⅰ. PLoS ONE, 2016, 11(2): e0148225. DOI:10.1371/journal.pone.0148225
[23]
Gerli MFM, Guyette JP, Evangelista-Leite D, et al. Perfusion decellularization of a human limb: a novel platform for composite tissue engineering and reconstructive surgery. PLoS ONE, 2018, 13(1): e0191497. DOI:10.1371/journal.pone.0191497
[24]
Hassanpour A, Talaei-khozani T, Kargar-Abarghouei E, et al. Decellularized human ovarian scaffold based on a sodium lauryl ester sulfate (SLES)-treated protocol, as a natural three-dimensional scaffold for construction of bioengineered ovaries. Stem Cell Res Ther, 2018, 9(1): 252. DOI:10.1186/s13287-018-0971-5
[25]
Milan PB, Lotfibakhshaiesh N, Joghataie MT, et al. Accelerated wound healing in a diabetic rat model using decellularized dermal matrix and human umbilical cord perivascular cells. Acta Biomater, 2016, 45: 234-246. DOI:10.1016/j.actbio.2016.08.053
[26]
Gilpin SE, Wagner DE. Acellular human lung scaffolds to model lung disease and tissue regeneration. Eur Respir Rev, 2018, 27(148): 180021. DOI:10.1183/16000617.0021-2018
[27]
Denner J, Tonjes RR. Infection barriers to successful xenotransplantation focusing on porcine endogenous retroviruses. Clin Microbiol Rev, 2012, 25(2): 318-43. DOI:10.1128/CMR.05011-11
[28]
Docheva D, Muller SA, Majewski M, et al. Biologics for tendon repair. Adv Drug Deliv Rev, 2015, 84: 222-239. DOI:10.1016/j.addr.2014.11.015
[29]
Ma X, Yu C, Wang P, et al. Rapid 3D bioprinting of decellularized extracellular matrix with regionally varied mechanical properties and biomimetic microarchitecture. Biomaterials, 2018, 185: 310-321. DOI:10.1016/j.biomaterials.2018.09.026
[30]
Toprakhisar B, Nadernezhad A, Bakirci E, et al. Development of bioink from decellularized tendon extracellular matrix for 3D bioprinting. Macromol Biosci, 2018, 18(10): e1800024. DOI:10.1002/mabi.201800024
[31]
Gupta SK, Dinda AK, Mishra NC. Antibacterial activity and composition of decellularized goat lung extracellular matrix for its tissue engineering applications. Biol Eng Med, 2017, 2(1): 1-7.
[32]
Geerts S, Ozer S, Jaramillo M, et al. Nondestructive methods for monitoring cell removal during rat liver decellularization. Tissue Eng Part C Methods, 2016, 22(7): 671-678. DOI:10.1089/ten.tec.2015.0571
[33]
Porzionato A, Stocco E, Barbon S, et al. Tissue-engineered grafts from human decellularized extracellular matrices: a systematic review and future perspectives. Int J Mol Sci, 2018, 19(12): 4117. DOI:10.3390/ijms19124117
[34]
Adamski M, Fontana G, Gershlak JR, et al. Two methods for decellularization of plant tissues for tissue engineering applications. J Vis Exp, 2018, 135: e57586. DOI:10.3791/57586
[35]
Fontana G, Gershlak J, Adamski M, et al. Biofunctionalized plants as diverse biomaterials for human cell culture. Adv Healthc Mater, 2017, 6(8): 1601225. DOI:10.1002/adhm.201601225
[36]
Bombelli S, Meregalli C, Scalia C, et al. Nephrosphere-derived cells are induced to multilineage differentiation when cultured on human decellularized kidney scaffolds. Am J Pathol, 2018, 188(1): 184-195. DOI:10.1016/j.ajpath.2017.09.012
[37]
Brown BN, Valentin JE, Stewart-Akers AM, et al. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials, 2009, 30(8): 1482-1491. DOI:10.1016/j.biomaterials.2008.11.040
[38]
Peloso A, Citro A, Corradetti V, et al. In-lab manufacturing of decellularized rat renal scaffold for kidney bioengineering. Methods Mol Biol, 2018, 1577: 103-110.
[39]
Hussein KH, Saleh T, Ahmed E, et al. Biocompatibility and hemocompatibility of efficiently decellularized whole porcine kidney for tissue engineering. J Biomed Mater Res A, 2018, 106(7): 2034-2047. DOI:10.1002/jbm.a.36407
[40]
Wang Q, Zhang C, Zhang L, et al. The preparation and comparison of decellularized nerve scaffold of tissue engineering. J Biomed Mater Res A, 2014, 102(12): 4301-4308.
[41]
Woods T, Gratzer PF. Effectiveness of three extraction techniques in the development of a decellularized bone-anterior cruciate ligament-bone graft. Biomaterials, 2005, 26(35): 7339-7349. DOI:10.1016/j.biomaterials.2005.05.066
[42]
Grauss RW, Hazekamp MG, Oppenhuizen F, et al. Histological evaluation of decellularised porcine aortic valves: matrix changes due to different decellularisation methods. Eur J Cardiothorac Surg, 2005, 27(4): 566-571. DOI:10.1016/j.ejcts.2004.12.052
[43]
赵宇, 于淼, 柏树令. 脱细胞技术及其在组织工程中的应用研究进展. 中国修复重建外科杂志, 2013, 27(8): 950-954.
Zhao Y, Yu M, Bai SL, et al. Research progress of decellularization and application in tissue engineering. Chin J Repar Reconstr Surg, 2013, 27(8): 950-954 (in Chinese).
[44]
Lu TY, Lin B, Kim J, et al. Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells. Nat Commun, 2013, 4: 2307. DOI:10.1038/ncomms3307
[45]
Hussey GS, Dziki JL, Badylak SF. Extracellular matrix-based materials for regenerative medicine. Nat Rev Mater, 2018, 3(7): 159-73. DOI:10.1038/s41578-018-0023-x
[46]
胡东, 张德迎, 刘博, 等. 冻融联合灌注法优化大鼠肾脏脱细胞支架的制备. 生物工程学报, 2019, 35(2): 307-318.
Hu D, Zhang DY, Liu B, et al. Optimization of preparation of rat kidney decellularized scaffold by combining freeze-thawing with perfusion. Chin J Biotech, 2019, 35(2): 307-318 (in Chinese).
[47]
Roth SP, Erbe I, Burk J. Decellularization of large tendon specimens: combination of manually performed freeze-thaw cycles and detergent treatment. Methods Mol Biol, 2018, 1577: 227-237.
[48]
Tavassoli A, Matin MM, Niaki MA, et al. Mesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold. Iranian Journal of Basic Medical Sciences, 2015, 18: 1221-1227.
[49]
Lee DJ, Diachina S, Lee YT, et al. Decellularized bone matrix grafts for calvaria regeneration. J Tissue Eng, 2016, 7: 2041731416680306. DOI:10.1177/2041731416680306
[50]
Dalgliesh AJ, Parvizi M, Lopera-Higuita M, et al. Graft-specific immune tolerance is determined by residual antigenicity of xenogeneic extracellular matrix scaffolds. Acta Biomater, 2018, 79: 253-264. DOI:10.1016/j.actbio.2018.08.016
[51]
Davidenko N, Schuster CF, Bax DV, et al. Control of crosslinking for tailoring collagen-based scaffolds stability and mechanics. Acta Biomater, 2015, 25: 131-142. DOI:10.1016/j.actbio.2015.07.034
[52]
Zhou X, Wang J, Fang W, et al. Genipin cross-linked type Ⅱ collagen/chondroitin sulfate composite hydrogel-like cell delivery system induces differentiation of adipose-derived stem cells and regenerates degenerated nucleus pulposus. Acta Biomater, 2018, 71: 496-509. DOI:10.1016/j.actbio.2018.03.019
[53]
Wang X, Zhai W, Wu C, et al. Procyanidins- crosslinked aortic elastin scaffolds with distinctive anti-calcification and biological properties. Acta Biomater, 2015, 16: 81-93. DOI:10.1016/j.actbio.2015.01.028
[54]
Ali M, Pr AK, Yoo JJ, et al. A photo-crosslinkable kidney ECM-derived bioink accelerates renal tissue formation. Adv Healthc Mater, 2019, 8(7): e1800992. DOI:10.1002/adhm.201800992
[55]
Kozlowska J, Sionkowska A, Osyczka AM, et al. Stabilizing effect of carbodiimide and dehydrothermal treatment crosslinking on the properties of collagen/hydroxyapatite scaffolds. Polymer International, 2017, 66(8): 1164-72. DOI:10.1002/pi.5371
[56]
Lu WD, Sun RF, Hu YR, et al. Photooxidatively crosslinked acellular tumor extracellular matrices as potential tumor engineering scaffolds. Acta Biomater, 2018, 71: 460-473. DOI:10.1016/j.actbio.2018.03.020
[57]
Poursamar SA, Lehner AN, Azami M, et al. The effects of crosslinkers on physical, mechanical, and cytotoxic properties of gelatin sponge prepared via in-situ gas foaming method as a tissue engineering scaffold. Mater Sci Eng C Mater Biol Appl, 2016, 63: 1-9. DOI:10.1016/j.msec.2016.02.034
[58]
Dalgliesh AJ, Parvizi M, Lopera-higuita M, et al. Graft-specific immune tolerance is determined by residual antigenicity of xenogeneic extracellular matrix scaffolds. Acta Biomater, 2018, 79: 253-264. DOI:10.1016/j.actbio.2018.08.016
[59]
Ma B, Wang X, Wu C, et al. Crosslinking strategies for preparation of extracellular matrix-derived cardiovascular scaffolds. Regen Biomater, 2014, 1(1): 81-89. DOI:10.1093/rb/rbu009
[60]
Wang Y, Bao J, Wu X, et al. Genipin crosslinking reduced the immunogenicity of xenogeneic decellularized porcine whole-liver matrices through regulation of immune cell proliferation and polarization. Sci Rep, 2016, 6: 24779. DOI:10.1038/srep24779
[61]
Spang MT, Christman KL. Extracellular matrix hydrogel therapies: in vivo applications and development. Acta Biomater, 2018, 68: 1-14. DOI:10.1016/j.actbio.2017.12.019
[62]
Hong JY, Seo Y, Davaa G, et al. Decellularized brain matrix enhances macrophage polarization and functional improvements in rat spinal cord injury. Acta Biomater, 2020, 101: 357-371. DOI:10.1016/j.actbio.2019.11.012
[63]
Tukmachev D, Forostyak S, Koci Z, et al. Injectable extracellular matrix hydrogels as scaffolds for spinal cord injury repair. Tissue Eng Part A, 2016, 22(3/4): 306-317.
[64]
Crapo PM, Medberry CJ, Reing JE, et al. Biologic scaffolds composed of central nervous system extracellular matrix. Biomaterials, 2012, 33(13): 3539-3547. DOI:10.1016/j.biomaterials.2012.01.044
[65]
Desrochers TM, Palma E, Kaplan DL. Tissue-engineered kidney disease models. Adv Drug Deliv Rev, 2014, 69/70: 67-80. DOI:10.1016/j.addr.2013.12.002
[66]
Singh NK, Han W, Nam SA, et al. Three-dimensional cell-printing of advanced renal tubular tissue analogue. Biomaterials, 2020, 232: 119734. DOI:10.1016/j.biomaterials.2019.119734
[67]
Nam H, Jeong HJ, Jo Y, et al. Multi-layered free-form 3D cell-printed tubular construct with decellularized inner and outer esophageal tissue-derived bioinks. Sci Rep, 2020, 10(1): 7255. DOI:10.1038/s41598-020-64049-6
[68]
Cornu R, Beduneau A, Martin H. Influence of nanoparticles on liver tissue and hepatic functions: a review. Toxicology, 2020, 430: 152344. DOI:10.1016/j.tox.2019.152344
[69]
Lee H, Han W, Kim H, et al. Development of liver decellularized extracellular matrix bioink for three-dimensional cell printing-based liver tissue engineering. Biomacromolecules, 2017, 18(4): 1229-1237. DOI:10.1021/acs.biomac.6b01908
[70]
Mao QJ, Wang YF, Li Y, et al. Fabrication of liver microtissue with liver decellularized extracellular matrix (dECM) bioink by digital light processing (DLP) bioprinting. Mater Sci Eng: C, 2020, 109: 110625. DOI:10.1016/j.msec.2020.110625
[71]
Young BM, Shankar K, Tho CK, et al. Laminin-driven Epac/Rap1 regulation of epithelial barriers on decellularized matrix. Acta Biomater, 2019, 100: 223-234. DOI:10.1016/j.actbio.2019.10.009
[72]
Jang J, Kim TG, Kim BS, et al. Tailoring mechanical properties of decellularized extracellular matrix bioink by vitamin B2-induced photo-crosslinking. Acta Biomater, 2016, 33: 88-95. DOI:10.1016/j.actbio.2016.01.013
[73]
Yu C, Ma X, Zhu W, et al. Scanningless and continuous 3D bioprinting of human tissues with decellularized extracellular matrix. Biomaterials, 2019, 194: 1-13. DOI:10.1016/j.biomaterials.2018.12.009
[74]
Traverse JH, Henry TD, Dib N, et al. First-in-man study of a cardiac extracellular matrix hydrogel in early and late myocardial infarction patients. JACC Basic Transl Sci, 2019, 4(6): 659-669. DOI:10.1016/j.jacbts.2019.07.012
[75]
Hu JJ, Altun I, Zhang Z, et al. Bioactive- tissue-derived nanocomposite hydrogel for permanent arterial embolization and enhanced vascular healing. Adv Mater, 2020, 32(33): e2002611. DOI:10.1002/adma.202002611
[76]
Uriel S, Huang JJ, Moya ML, et al. The role of adipose protein derived hydrogels in adipogenesis. Biomaterials, 2008, 29(27): 3712-3719. DOI:10.1016/j.biomaterials.2008.05.028
[77]
Choi YC, Choi JS, Kim BS, et al. Decellularized extracellular matrix derived from porcine adipose tissue as a xenogeneic biomaterial for tissue engineering. Tissue Eng Part C Methods, 2012, 18(11): 866-876. DOI:10.1089/ten.tec.2012.0009
[78]
Pati F, Jang J, Ha DH, et al. Printing three- dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun, 2014, 5: 3935. DOI:10.1038/ncomms4935
[79]
Pilipchuk SP, Vaicik MK, Larson JC, et al. Influence of crosslinking on the stiffness and degradation of dermis-derived hydrogels. J Biomed Mater Res A, 2013, 101(10): 2883-2895. DOI:10.1002/jbm.a.34602
[80]
Ahn G, Min KH, Kim C, et al. Precise stacking of decellularized extracellular matrix based 3D cell-laden constructs by a 3D cell printing system equipped with heating modules. Sci Rep, 2017, 7(1): 8624. DOI:10.1038/s41598-017-09201-5
[81]
Gao G, Lee JH, Jang J, et al. Tissue engineered bio-blood-vessels constructed using a tissue-specific bioink and 3D coaxial cell printing technique: a novel therapy for ischemic disease. Advanced Functional Materials, 2017, 27(33): 1700798. DOI:10.1002/adfm.201700798
[82]
Gibson LJ. The hierarchical structure and mechanics of plant materials. J R Soc Interface, 2012, 9(76): 2749-2766. DOI:10.1098/rsif.2012.0341
[83]
Hickey RJ, Modulevsky DJ, Cuerrier CM, et al. Customizing the shape and microenvironment biochemistry of biocompatible macroscopic plant-derived cellulose scaffolds. ACS Biomater Sci Eng, 2018, 4(11): 3726-3736. DOI:10.1021/acsbiomaterials.8b00178
[84]
Correa D, Lietman SA. Articular cartilage repair: current needs, methods and research directions. Semin Cell Dev Biol, 2017, 62: 67-77. DOI:10.1016/j.semcdb.2016.07.013
[85]
Bedi A, Feeley BT, Williams RJ Ⅲ. Management of articular cartilage defects of the knee. J Bone Jo Surg-Am Vol, 2010, 92(4): 994-1009. DOI:10.2106/JBJS.I.00895
[86]
Rothrauff BB, Shimomura K, Gottardi R, et al. Anatomical region-dependent enhancement of 3-dimensional chondrogenic differentiation of human mesenchymal stem cells by soluble Meniscus extracellular matrix. Acta Biomater, 2017, 49: 140-151. DOI:10.1016/j.actbio.2016.11.046
[87]
Luo L, Eswaramoorthy R, Mulhall KJ, et al. Decellularization of porcine articular cartilage explants and their subsequent repopulation with human chondroprogenitor cells. J Mech Behav Biomed Mater, 2015, 55: 21-31.
[88]
Lee J, Hong J, Kim W, et al. Bone-derived dECM/alginate bioink for fabricating a 3D cell-laden mesh structure for bone tissue engineering. Carbohydr Polym, 2020, 250: 116914. DOI:10.1016/j.carbpol.2020.116914
[89]
Choi E, Bae S, Kim D, et al. Characterization and intracellular mechanism of electrospun poly (ε-caprolactone) (PCL) fibers incorporated with bone-dECM powder as a potential membrane for guided bone regeneration. J Ind Eng Chem, 2021, 94: 282-291. DOI:10.1016/j.jiec.2020.11.001