中国科学院微生物研究所、中国微生物学会主办
文章信息
- 郭鹏, 李长菲, 鞠莹, 刘二龙, 张含, 胡俊, 孟颂东
- Guo Peng, Li Changfei, Ju Ying, Liu Erlong, Zhang Han, Hu Jun, Meng Songdong
- N-糖基化修饰对热休克蛋白gp96免疫学功能的影响
- N-glycosylation modification of heat shock protein gp96 affects its immunological function
- 生物工程学报, 2021, 37(11): 4036-4046
- Chinese Journal of Biotechnology, 2021, 37(11): 4036-4046
- 10.13345/j.cjb.200786
-
文章历史
- Received: December 10, 2020
- Accepted: February 3, 2021
- Published: February 22, 2021
2. 中国科学院大学,北京 100049;
3. 北京热休生物技术有限公司,北京 100123;
4. 北京康明海慧生物科技有限公司,北京 100101
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Heat Shock Biotechnology Co., Ltd., Beijing 100123, China;
4. Cominghealth Biotechnology Co., Ltd., Beijing 100101, China
热休克蛋白gp96 (Glycoprotein 96,糖蛋白96) 是HSP90家族的成员,又称为HSP90B1、内质酶和GRP94 (Glucose-regulated protein 94,糖调控蛋白94)[1]。gp96是一种遗传单态性分子,在种属之间氨基酸序列高度保守。gp96蛋白包含4个结构域:N端结构域、连接域(Linker domain,LD)、中间结构域(Middle domain,MD) 和C端结构域。其中N端包括核苷酸结合域以及多肽结合位点,酸性区包含至少一个高亲和力的钙结合位点[2],调节蛋白的相互作用。C端包括多肽结合位点、客户端蛋白结合区(Client protein binding domain) 以及二聚化域[3],此外C端还具有内质网(Endoplasmic reticulum,ER) 腔定位滞留信号KDEL序列(Lys-Asp-Glu-Leu)。gp96具有一定Mg2+依赖的ATPase活性,其对于gp96构象改变、底物释放和客户蛋白成熟起重要作用。研究发现抗原肽与gp96分子以ATP依赖的方式结合,利用gp96的ATPase活性水解ATP释放能量,使gp96结合的抗原肽经加工修剪后转移到MHCⅠ类分子,供CD8+ T细胞识别[4-5]。
gp96是真核细胞内质网中最丰富的糖蛋白[6],作为分子伴侣有促进蛋白质正确折叠以及在内质网中的质量控制等功能。研究表明,gp96在天然免疫和获得性免疫中都发挥着重要的作用。在天然免疫中,gp96能通过Toll样受体(Toll-like receptors,TLRs) 信号通路活化NF-κB信号通路,促进免疫细胞分泌细胞因子[7];可诱导巨噬细胞和树突状细胞生成一氧化氮(Nitric oxide,NO) 合成酶,进而合成NO[8]。在获得性免疫中,一方面gp96可诱导树突细胞(Dendritic cell,DC) 成熟,增强DC的抗原呈递能力[9];另一方面gp96可以与病毒或肿瘤抗原肽结合[10-11],形成复合物,通过抗原呈递细胞(Antigen presenting cell,APC) 表面的受体CD91等内吞进入细胞,交叉呈递到MHCⅠ类分子[12],刺激机体产生特异性抗肿瘤或抗病毒的多个和多种细胞毒性T淋巴细胞(Cytotoxic T lymphocyte,CTL) 克隆以及产生长期记忆的抗肿瘤或抗病毒的T细胞,杀伤肿瘤和病毒感染的细胞,并有效防止免疫逃逸[13-18]。
作为糖蛋白,除了O-糖基化外,gp96有6个潜在的N-糖基化位点Asn62、Asn107、Asn217、Asn445、Asn481和Asn502[1]。N-糖基化主要是糖链在内质网和高尔基体中通过与gp96中特定的天冬酰胺(N-X-S/T) 连接的翻译后修饰。在T细胞中,N聚糖修饰通过改变T细胞受体的聚集或信号传导,以及细胞表面一些分子的定位,比如CD4、CD8和细胞毒性T淋巴细胞相关蛋白4 (Cytotoxic T-lymphocyte-associated protein 4,CTLA-4),来调节发育、生长、分化和自身免疫[19]。1994年有研究报道,gp96只有第217位的天冬酰胺被正常糖基化修饰,而第445、481、502位是gp96高度糖基化修饰的位点,这两种糖基化形式是由gp96的N端决定的,并且N-糖基化修饰可能改变gp96的折叠方式[1, 20-21]。随后Suriano等发现不同肿瘤组织中的gp96的单糖含量不同,而且gp96的糖基化修饰与细胞的转化和癌症的进程密切相关[22]。后来有研究发现,gp96会依赖钙离子和N糖基化修饰的方式促进TLR4和TLR9蛋白的加工、成熟,并且TLR4和TLR9会优先结合高度N-糖基化修饰的gp96[23]。
目前为止没有直接证据证实糖基化修饰能影响gp96的免疫学功能。笔者实验室前期利用汉逊酵母和昆虫细胞成功表达了具有免疫学功能的重组gp96[16, 24-25],发现重组的gp96与天然组织来源的gp96的糖含量有明显的差异。鉴于有文献报道提示N-糖基化可能对gp96的功能产生影响[1, 22],因此,本研究进一步探究N-糖基化修饰对gp96免疫学功能的影响,包括对ATP酶活力、抗原交叉呈递和佐剂功能的影响,这将为设计基于gp96的佐剂疫苗和药物提供理论基础。
1 材料与方法 1.1 细胞培养、多肽及其他试剂小鼠腹腔巨噬细胞、脾脏淋巴细胞在含10%胎牛血清的RPMI 1640培养基中培养,培养基中添加了25 µg/mL的硫酸链霉素和100 U/mL氨苄青霉素。
Kb限制性表位OVA8 (SIINFEKL) 以及OVA20 (SGLEQLESIINFEKLTEWTS)、Kd-限制性表位NP147–155 (TYQRTRALV),由金斯瑞生物科技股份有限公司化学合成,其纯度均大于95%。实验所用H1N1流感裂解疫苗原液,不含任何佐剂及其他辅助成分,由北京科兴生物制品有限公司(Sinovac Biotech) 提供,疫苗毒株源自NYMC X-179A。
PerCP-Cy5.5-conjugated anti-mouse CD3、PE-conjugated anti-mouse CD8、APC-conjugated anti-mouse IFN-γ购自eBioscience,用于流式检测;ELISPOT试剂盒购自BD;gp96抗体购自Santa Cruz,用于Western blotting。
1.2 N-糖基化位点突变设计将6个潜在的N-糖基化位点的天冬酰胺氨基酸序列(AAC/T) 突变为天冬氨酸序列(GAC/T),序列与pFast Bac1载体连接形成重组质粒,进行后续实验。
1.3 gp96蛋白的制备及Western blotting鉴定利用Bac-to-Bac®杆状病毒表达系统表达重组gp96 (Recombinant gp96,rgp96) 和N-糖基化位点突变gp96 (Mutant gp96,mgp96)。同时提取胎盘中的天然gp96蛋白(Natural gp96,ngp96),上述3种蛋白经离子交换、亲和层析纯化后[26],进一步进行SDS-PAGE,并通过Western blotting进行鉴定。纯化后的蛋白进行内毒素检测,结果显示蛋白样品中内毒素浓度低于10 EU/mg,可以用于免疫。
1.4 gp96蛋白的糖染鉴定和糖含量测定利用糖蛋白染色试剂盒(Thermo Fisher Scientific,USA) 对不同来源的gp96蛋白按照说明书进行糖染色鉴定。利用苯酚-硫酸法对糖蛋白的糖含量进行定量分析,向含有1 mL葡萄糖对照品和样品的试管中加入0.6 mL 6%苯酚溶液,混匀,迅速加入3 mL浓硫酸,混匀,置沸水浴中反应20 min。显色后冷却至室温,在波长490 nm处测定吸光度值[27]。
1.5 gp96蛋白的ATPase活性测定利用Transcreener®ADP2 FI检测试剂盒(Sigma,Germany) 检测ATPase的活力,该试剂盒以竞争性荧光免疫分析法为基础,ATPase活性越强,测量到的荧光偏振值越低。首先加入10 μmol/L的ATP与不同浓度的gp96反应,终体积是10 μL,37 ℃孵育1.0–1.5 h,加入10 μL ADP检测混合物(ADP2 antibody,ADP alexa fluor*633 tacer,1X stop & detect buffer B,水),室温孵育1 h后进行检测。
1.6 小鼠免疫6–8周的雌性BALB/c及C57BL/6小鼠购自斯贝福(北京) 生物技术有限公司,饲养于中国科学院微生物研究所SPF级实验动物中心。每组5只小鼠,在C57BL/6或BALB/c小鼠第6、7、9周龄时进行皮下免疫,共3次。每次免疫时,多肽(OVA20、OVA8、NP147–155) 免疫剂量为50 μg/只,H1N1裂解病毒疫苗免疫剂量为1.5 μg HA/只,3种不同gp96蛋白均为20 μg/只。每次免疫前将抗原与gp96蛋白在50 ℃条件下孵育10 min,然后室温静置30 min,以形成gp96-肽复合物[16]。三次免疫完成后,一般在2–4 d内处死小鼠进行实验。
1.7 IFN-γ EISPOT分析使用ELISPOT (Enzyme linked immunospot assay,酶联免疫斑点实验) 试剂盒检测3种gp96激活抗原特异性T细胞分泌IFN-γ的能力。实验分为5组,每组5只小鼠。每只小鼠分别设置阴性孔、阳性孔和实验孔。以牛血清白蛋白(Bovine serum albumin,BSA) 处理的T细胞为阴性孔,以CD3、CD28抗体处理的T细胞为阳性孔,以20 μg/mL疫苗处理的T细胞作为实验孔。根据ELISPOT检测试剂盒说明书(BD-Pharmingen,San Diego,CA) 检测抗原特异性的T细胞应答。
1.8 流式染色分析取2×106个脾脏淋巴细胞,体外经过20 μg/mL的NP147–155肽或H1N1流感病毒裂解疫苗刺激5 d后,用磷酸盐缓冲液(Phosphate buffered saline,PBS) 洗2次,用含1% BSA的PBS封闭30 min,加PerCP-Cy5.5-conjugated anti-mouse CD3、PE-conjugated anti-mouse CD8,4 ℃避光孵育30 min,PBS清洗,每管加入等体积100 μL固定/破膜剂(eBioscience),4 ℃孵育20 min,后用清洗剂(eBioscience) 清洗2次,在100 μL体系中加入APC-conjugated anti-mouse IFN-γ,4 ℃避光孵育30 min,清洗剂清洗2次,用流式细胞仪(FACS Calibur,BD,USA) 检测。
1.9 抗原呈递实验 1.9.1 体外抗原呈递选取6–8周雌性未做任何处理的C57BL/6小鼠,按照之前描述的实验方法提取腹腔巨噬细胞[28],取5×104个腹腔巨噬细胞铺于96孔板,加入终浓度10 ng/mL OVA20和8 μg/mL gp96的复合物,形成条件具体见1.6,刺激2 h,洗去多余的复合物,加入1×105个OVA8肽特异性T细胞。37 ℃孵育48 h,收取上清,使用ELISA试剂盒(eBioscience) 检测IFN-γ水平。
1.9.2 体内抗原呈递利用NP147–155肽联合3种gp96蛋白免疫小鼠3次,3免后2–4 d内取小鼠脾脏淋巴细胞,在体外用20 μg/mL的NP147–155肽刺激培养5 d后,通过流式细胞术分析特异性IFN-γ+ T细胞的比例。
2 结果与分析 2.1 天然和重组gp96的N-糖基化修饰位点的预测和分析有研究报道称gp96有6个潜在的N-糖基化位点,分别位于蛋白第62、107、217、445、448、502位天冬酰胺(Asn,N) (图 1)。在北京百泰派克生物科技有限公司对gp96蛋白进行糖基化位点检测,通过酶切、液质联用(LC-MS/MS) 等技术检测分析了天然提取的gp96 (ngp96) 和昆虫细胞表达的重组gp96 (rgp96) 这两种蛋白的糖基化位点,结果表明,ngp96有5个N-糖基化位点,分别为第62、217、445、481、502位氨基酸残基;rgp96有3个明显的N-糖基化位点,分别为第107、217、481位氨基酸残基,这6个氨基酸位点全是天冬酰胺(表 1),从而确定了gp96的N-糖基化位置在这6个氨基酸位点上。
Sources of gp96 | Amino acid sequences (N-linked glycosylation sites) | |||||
Predicted amino acid sites | DGLNASQ (62) | LISNASD (107) | KHNNDTQ (217) | LPLNVSR (445) | DKYNDTF (481) | DHSNRTR (502) |
ngp96 | Y | N | Y | Y | Y | Y |
rgp96 | N | Y | Y | N | Y | N |
Note: the red letter represents the N-glycosylation site. “Y” or “N” means that this site is or is not a N-glycosylation site. |
将6个潜在N-糖基化位点的天冬酰胺突变为天冬氨酸(Asp,D) (AAC/T突变为GAC/T) (图 2A),利用昆虫系统表达野生型gp96 (rgp96) 和突变gp96 (mgp96),同时提取天然组织ngp96作为对照。将gp96蛋白纯化后通过10%的SDS-PAGE分离,进行考马斯亮蓝染色,对染色条带进行扫描分析gp96纯度在95%以上,通过Western blotting对ngp96、rgp96和mgp96蛋白进行鉴定(图 2B)。进一步利用糖蛋白特异性显色反应对gp96蛋白的糖含量进行初步分析,结果显示,rgp96和mgp96的糖含量相对较少(图 2C)。后利用苯酚-硫酸法对野生型与突变重组gp96蛋白的糖含量进行了定量分析,发现与野生型重组蛋白相比,突变重组gp96糖含量下降27.8%,有显著性差异(P < 0.01) (图 2D),以上结果说明,糖基化位点突变成功,mgp96蛋白的糖基化修饰水平降低。
2.3 N-糖基化位点突变的gp96蛋白抗原呈递能力降低首先利用鸡卵白蛋白(Ovalbumin,OVA) 体外抗原呈递系统[29]研究N-糖基化对gp96抗原交叉呈递能力的影响。将20 mer的OVA前体肽(OVA20) 与gp96蛋白孵育形成复合物,同时利用OVA8-ngp96复合物免疫C57BL/6小鼠后,分离OVA8肽特异性的CD8+ T细胞。将小鼠巨噬细胞作为抗原呈递细胞,OVA8肽特异性的CD8+ T细胞作为效应细胞,通过ELISA检测活化的T细胞分泌的IFN-γ[14],研究gp96抗原交叉呈递能力。结果如图 3A所示,与单独OVA20肽相比,rgp96和mgp96的抗原交叉呈递能力分别增加了约1.9倍和1.4倍(P < 0.05),相对于rgp96,mgp96抗原呈递能力降低了23.1% (P < 0.05)。而单独rgp96和mgp96或煮沸变性的gp96-OVA20复合物刺激T细胞分泌IFN-γ的水平与对照(OVA20) 相比无明显区别(图 3B),说明该体外抗原呈递体系具有特异性。
接着利用小鼠体内呈递流感病毒Kd-限制性表位NP147–155实验研究gp96的抗原呈递功能。将NP147–155肽或ngp96-、rgp96-或mgp96-NP147–155肽复合物分别免疫小鼠(图 3C)。如图 3D所示,与多肽单独免疫对照组相比,rgp96-或mgp96-肽复合物免疫后,多肽特异性CD8+ T细胞比例分别增加了约3.2倍和1.9倍,突变gp96免疫组特异性T细胞水平明显低于野生型gp96组(P < 0.01)。这些结果提示,N-糖基化位点突变会减弱gp96的抗原呈递功能。
2.4 N-糖基化位点突变减弱gp96的ATPase活性由于ATPase的活性直接影响gp96抗原呈递和蛋白相互作用能力,因此我们进一步利用荧光偏振原理检测野生型和突变gp96的ATPase活性,结果表明,gp96蛋白的ATPase活性随蛋白浓度呈剂量依赖性增加,直至达到饱和浓度。在400 μg/mL的蛋白浓度下,与rgp96相比,mgp96的ATPase活性明显降低(P < 0.001) (图 4)。以上数据说明,N-糖基化修饰位点突变会降低gp96的ATPase活性。
2.5 N-糖基化修饰突变降低gp96的免疫佐剂功能最后,通过gp96蛋白联合H1N1流感病毒裂解疫苗免疫实验研究N-糖基化对其活化T细胞免疫佐剂功能的影响。结果表明,rgp96和mgp96-佐剂疫苗组疫苗抗原特异性CD8+ T细胞水平分别是单独疫苗组的2.1倍和1.4倍(P < 0.01),其中与rgp96佐剂疫苗组相比mgp96佐剂疫苗组特异性CD8+ T细胞水平显著降低(P < 0.05) (图 5A、B),通过ELISPOT检测也得到类似的结果(图 5C),mgp96佐剂活化特异性CD8+ T细胞水平和ELISPOT斑点数分别比rgp96下降了32.5%和72.0%。说明N-糖基化位点突变明显降低gp96佐剂活化疫苗特异性T细胞应答的能力。
3 讨论热休克蛋白gp96在天然免疫和获得性免疫中的功能已经在很多实验中得到验证,一方面,gp96具有与肿瘤或病毒肽相结合的能力[30-31],免疫后gp96-抗原肽复合物可以被巨噬细胞和树突细胞表面的CD91等受体识别,将抗原肽交叉呈递给MHCⅠ类分子,引起特异性的CD8+ T细胞反应[32]。另一方面,外源性的gp96与APCs上的TLRs (TLR2、TLR4) 或者CD91结合,激活下游的NF-κB信号通路,导致APCs的成熟,刺激分泌细胞因子并上调共刺激分子的表达,增强天然免疫反应,发挥其免疫佐剂的功能[33-34]。近来研究者利用gp96增强机体抗肿瘤和抗病毒的特性,设计疫苗和药物,进行抗肿瘤或病毒的预防和治疗。这些研究需要大量的gp96蛋白,天然组织提取的gp96不能满足其需要。昆虫细胞表达系统虽然能高效表达有免疫学功能的重组gp96蛋白,但是该系统的糖基化修饰水平与天然提取的蛋白有很大的差异。本文对N-糖基化修饰对gp96免疫学功能的影响进行了探究,发现突变N-糖基化位点使gp96的ATPase活性、抗原交叉呈递能力和免疫佐剂功能都会减弱,提示糖基化水平对gp96的免疫学功能产生直接影响,这为将来利用重组蛋白设计疫苗或药物提供了理论基础。
目前N-糖基化修饰影响gp96的免疫学功能的具体机制还不是很清楚。可能的机制有3个:一个是gp96的ATP结合位点和催化残基位于N端和M端,而N-糖基化位点位于N端和M端,且位置相隔较近,将位点替换为天冬氨酸,N-糖基化修饰消失,可能会影响gp96的局部空间构象,进而影响与ATP的结合和ATPase的活力,而ATPase活性水解直接调节gp96构象变化和与抗原肽的结合与分离,进而影响其ATP依赖的加工呈递抗原、活化特异性T细胞的能力,该假设得到本研究数据的支持;第二个机制可能是gp96的N端为多肽结合位点[35],N-糖基化修饰可能改变空间构象,直接影响gp96与多肽结合,进而影响其免疫功能;第三个机制可能是N-糖基化修饰影响gp96与CD91受体、TLRs或内质网膜上其他抗原呈递链分子(包括抗原加工相关转运体(Transporter associated with antigen processing,TAP)、钙联素等) 的相互作用[21],进而影响其进入抗原呈递细胞、活化免疫细胞或参与抗原传递链的功能[36],这需要进一步深入研究。
本研究利用氨基酸位点突变的方法构建了N-糖基化位点突变的gp96,并不能完全排除由于氨基酸突变后直接引起蛋白功能改变。因为天冬氨酸和天冬酰胺的化学性质不同,很可能引起蛋白质构象改变,进而影响其功能,这有待进一步的验证。另外,我们也检测到gp96蛋白还存在O-糖基化修饰,关于其功能研究的文献报道相对较少。后续我们将对rgp96蛋白进行单个N-糖基化位点的突变以及O-糖基化位点的突变等,进一步深入研究糖基化修饰对gp96免疫学功能的影响。
[1] |
Hoter A, Amiri M, Warda M, et al. Molecular cloning, cellular expression and characterization of Arabian camel (Camelus dromedarius) endoplasmin. Int J Biol Macromol, 2018, 117: 574-585. DOI:10.1016/j.ijbiomac.2018.05.196
|
[2] |
Eletto D, Dersh D, Argon Y. GRP94 in ER quality control and stress responses. Semin Cell Dev Biol, 2010, 21(5): 479-485. DOI:10.1016/j.semcdb.2010.03.004
|
[3] |
Linderoth NA, Popowicz A, Sastry S. Identification of the peptide-binding site in the heat shock chaperone/tumor rejection antigen gp96 (Grp94). J Biol Chem, 2000, 275(8): 5472-5477. DOI:10.1074/jbc.275.8.5472
|
[4] |
Udono H, Srivastava PK. Comparison of tumor-specific immunogenicities of stress-induced proteins gp96, hsp90, and hsp70. J Immunol, 1994, 152(11): 5398-5403.
|
[5] |
Li Z, Srivastava PK. Tumor rejection antigen gp96/grp94 is an ATPase: implications for protein folding and antigen presentation. EMBO J, 1993, 12(8): 3143-3151. DOI:10.1002/j.1460-2075.1993.tb05983.x
|
[6] |
Robert J. Evolution of heat shock protein and immunity. Dev Comp Immunol, 2003, 27(6/7): 449-464.
|
[7] |
Basu S, Binder RJ, Suto R, et al. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-κB pathway. Int Immunol, 2000, 12(11): 1539-1546. DOI:10.1093/intimm/12.11.1539
|
[8] |
Panjwani NN, Popova L, Srivastava PK. Heat shock proteins gp96 and hsp70 activate the release of nitric oxide by APCs. J Immunol, 2002, 168(6): 2997-3003. DOI:10.4049/jimmunol.168.6.2997
|
[9] |
Zheng H, Dai J, Stoilova D, et al. Cell surface targeting of heat shock protein gp96 induces dendritic cell maturation and antitumor immunity. J Immunol, 2001, 167(12): 6731-6735. DOI:10.4049/jimmunol.167.12.6731
|
[10] |
Argon Y, Simen BB. GRP94, an ER chaperone with protein and peptide binding properties. Semin Cell Dev Biol, 1999, 10(5): 495-505. DOI:10.1006/scdb.1999.0320
|
[11] |
Nieland TJF, Tan MCAA, Muijen MMV, et al. Isolation of an immunodominant viral peptide that is endogenously bound to the stress protein GP96/GRP94. Proc Natl Acad Sci USA, 1996, 93(12): 6135-6139. DOI:10.1073/pnas.93.12.6135
|
[12] |
Robert J, Ramanayake T, Maniero GD, et al. Phylogenetic conservation of glycoprotein 96 ability to interact with CD91 and facilitate antigen cross-presentation. J Immunol, 2008, 180(5): 3176-3182. DOI:10.4049/jimmunol.180.5.3176
|
[13] |
Hutchins J, Tahiliani V, Miriyala J, et al. Effect on anti-tumor immunity and long-term memory CD8+ T-cell generation with a novel, allogeneic cell-based, Gp96-Ig/OX40L cancer vaccine. J Clin Oncol, 2019, 37(15): e14016.
|
[14] |
Binder RJ, Srivastava PK. Essential role of CD91 in re-presentation of gp96-chaperoned peptides. Proc Natl Acad Sci USA, 2004, 101(16): 6128-6133. DOI:10.1073/pnas.0308180101
|
[15] |
Murshid A, Gong JL, Calderwood SK. The role of heat shock proteins in antigen cross presentation. Front Immunol, 2012, 3: 63.
|
[16] |
Liu WW, Chen M, Li XH, et al. Interaction of Toll-like receptors with the molecular chaperone gp96 is essential for its activation of cytotoxic T lymphocyte response. PLoS ONE, 2016, 11(5): e0155202. DOI:10.1371/journal.pone.0155202
|
[17] |
Ju Y, Fan HX, Liu J, et al. Heat shock protein gp96 adjuvant induces T cell responses and cross-protection to a split influenza vaccine. Vaccine, 2014, 32(23): 2703-2711. DOI:10.1016/j.vaccine.2014.03.045
|
[18] |
Guo BN, Xu PF, Chai DF, et al. gB co-immunization with gp96 enhances pulmonary- resident CD8 T cells and exerts a long-term defence against MCMV pneumonitis. J Cell Mol Med, 2020, 24(24): 14426-14440. DOI:10.1111/jcmm.16065
|
[19] |
Araujo L, Khim P, Mkhikian H, et al. Glycolysis and glutaminolysis cooperatively control T cell function by limiting metabolite supply to N-glycosylation. eLife, 2017, 6: e21330. DOI:10.7554/eLife.21330
|
[20] |
Qu DF, Mazzarella RA, Green M. Analysis of the structure and synthesis of Grp94, an abundant stress protein of the endoplasmic reticulum. DNA Cell Biol, 1994, 13(2): 117-124. DOI:10.1089/dna.1994.13.117
|
[21] |
Yan PR, Patel HJ, Sharma S, et al. Molecular stressors engender protein connectivity dysfunction through aberrant N-glycosylation of a chaperone. Cell Rep, 2020, 31(13): 107840. DOI:10.1016/j.celrep.2020.107840
|
[22] |
Suriano R, Ghosh SK, Ashok BT, et al. Differences in glycosylation patterns of heat shock protein, gp96: implications for prostate cancer prevention. Cancer Res, 2005, 65(14): 6466-6475. DOI:10.1158/0008-5472.CAN-04-4639
|
[23] |
Yang Y, Liu B, Dai J, et al. Heat shock protein gp96 is a master chaperone for Toll-like receptors and is important in the innate function of macrophages. Immunity, 2007, 26(2): 215-226. DOI:10.1016/j.immuni.2006.12.005
|
[24] |
Li Y, Song HL, Li J, et al. Hansenula polymorpha expressed heat shock protein gp96 exerts potent T cell activation activity as an adjuvant. J Biotechnol, 2011, 151(4): 343-349. DOI:10.1016/j.jbiotec.2010.12.006
|
[25] |
Liu FX, Wu XD, Li L, et al. Formation of peste des petits ruminants spikeless virus-like particles by co-expression of M and N proteins in insect cells. Res Vet Sci, 2014, 96(1): 213-216. DOI:10.1016/j.rvsc.2013.10.012
|
[26] |
Meng SD, Song J, Rao ZH, et al. Three-step purification of gp96 from human liver tumor tissues suitable for isolation of gp96-bound peptides. J Immunol Methods, 2002, 264(1/2): 29-35.
|
[27] |
杨晓华, 于广利, 赵峡, 等. 灰树花糖蛋白中总糖含量的测定. 中国海洋大学学报, 2006, 36(6): 929-931. Yang XH, Yu GL, Zhao X, et al. Determination of total sugar in glycoprotein of grifola frondosa. Period Ocean Univ China, 2006, 36(6): 929-931 (in Chinese). |
[28] |
Ray A, Dittel BN. Isolation of mouse peritoneal cavity cells. J Vis Exp, 2010(35): 1488.
|
[29] |
Messmer MN, Pasmowitz J, Kropp LE, et al. Identification of the cellular sentinels for native immunogenic heat shock proteins in vivo. J Immunol, 2013, 191(8): 4456-4465. DOI:10.4049/jimmunol.1300827
|
[30] |
Li HZ, Li CW, Li CY, et al. Isolation and identification of renal cell carcinoma-derived peptides associated with gp96. Technol Cancer Res Treat, 2013, 12(4): 285-293. DOI:10.7785/tcrt.2012.500326
|
[31] |
Srivastava P. Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol, 2002, 2(3): 185-194. DOI:10.1038/nri749
|
[32] |
Wang SF, Qiu LP, Liu GZ, et al. Heat shock protein gp96 enhances humoral and T cell responses, decreases Treg frequency and potentiates the anti-HBV activity in BALB/c and transgenic mice. Vaccine, 2011, 29(37): 6342-6351. DOI:10.1016/j.vaccine.2011.05.008
|
[33] |
Vabulas RM, Braedel S, Hilf N, et al. The endoplasmic reticulum-resident heat shock protein gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway. J Biol Chem, 2002, 277(23): 20847-20853. DOI:10.1074/jbc.M200425200
|
[34] |
Pawaria S, Binder RJ. CD91-dependent programming of T-helper cell responses following heat shock protein immunization. Nat Commun, 2011, 2: 521. DOI:10.1038/ncomms1524
|
[35] |
Gidalevitz T, Biswas C, Ding H, et al. Identification of the N-terminal peptide binding site of glucose-regulated protein 94. J Biol Chem, 2004, 279(16): 16543-16552. DOI:10.1074/jbc.M313060200
|
[36] |
郭鹏, 张含, 李长菲, 等. Toll样受体通路调节Tregs功能的研究进展. 生物工程学报, 2020, 36(9): 1701-1712. Guo P, Zhang H, Li CF, et al. Research progress on Toll-like receptors pathways regulating function of regulatory T cells. Chin J Biotech, 2020, 36(9): 1701-1712 (in Chinese). |