生物工程学报  2021, Vol. 37 Issue (3): 1058-1069
http://dx.doi.org/10.13345/j.cjb.200531
中国科学院微生物研究所、中国微生物学会主办
0

文章信息

刘国栋, 高丽伟, 曲音波
Liu Guodong, Gao Liwei, Qu Yinbo
青霉生产木质纤维素降解酶系的研究进展
Progress in the production of lignocellulolytic enzyme systems using Penicillium species
生物工程学报, 2021, 37(3): 1058-1069
Chinese Journal of Biotechnology, 2021, 37(3): 1058-1069
10.13345/j.cjb.200531

文章历史

Received: August 20, 2020
Accepted: October 30, 2020
Published: November 19, 2020
青霉生产木质纤维素降解酶系的研究进展
刘国栋 , 高丽伟 , 曲音波     
山东大学 微生物技术国家重点实验室 国家糖工程技术研究中心,山东 青岛 266237
摘要:木质纤维素降解酶系的高效生产是实现植物生物质大规模生物炼制的重要支撑。就地生产木质纤维素降解酶,有助于降低其使用成本,提高技术经济效益。青霉是自然界常见的木质纤维素降解真菌,可以合成分泌种类多样、组分齐全的木质纤维素降解酶系,已被应用于纤维素酶制剂的工业生产。文中从就地生产降解酶,为木质纤维素生物炼制构建“糖平台”的角度,综述了青霉木质纤维素降解酶系的性质、菌株遗传改造及发酵工艺的研究进展。
关键词木质纤维素降解酶    纤维素酶    生物炼制    青霉    
Progress in the production of lignocellulolytic enzyme systems using Penicillium species
Guodong Liu , Liwei Gao , Yinbo Qu     
State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China
Abstract: The efficient production of lignocellulolytic enzyme systems is an important support for large-scale biorefinery of plant biomass. On-site production of lignocellulolytic enzymes could increase the economic benefits of the process by lowering the cost of enzyme usage. Penicillium species are commonly found lignocellulose-degrading fungi in nature, and have been used for industrial production of cellulase preparations due to their abilities to secrete complete and well-balanced lignocellulolytic enzyme systems. Here, we introduce the reported Penicillium species for cellulase production, summarize the characteristics of their enzymes, and describe the strategies of strain engineering for improving the production and performance of lignocellulolytic enzymes. We also review the progress in fermentation process optimization regarding the on-site production of lignocellulolytic enzymes using Penicillium species, and suggest prospect of future work from the perspective of building a "sugar platform" for the biorefinery of lignocellulosic biomass.
Keywords: lignocellulolytic enzymes    cellulase    biorefinery    Penicillium    

建立与石油炼制规模相媲美的木质纤维素生物炼制产业,实现能源和化学品的可持续生产,是全世界众多科技人员多年来孜孜以求的宏伟目标。目前较被接受的木质纤维素生物炼制模式包括基于热化学技术的“合成气平台” (Synthesis gas)路线以及基于生物技术的“糖平台” (Sugar platform) 路线[1]。在“糖平台”路线中,木质纤维素原料首先被酶降解为可发酵的糖,然后糖经生物、化学等方法被转化为各类下游产品,具有条件温和、过程绿色等诸多优点。尽管纤维素酶、半纤维素酶等木质纤维素降解酶已经在饲料、纺织、食品、造纸等工业领域得到广泛应用,但由于其降解效率低于淀粉酶一个数量级以上[2],用来为大宗低值产品(如乙醇) 的生产提供可发酵糖仍然成本较高。

就地生产与原料组成特点相适应的降解酶系,是解决木质纤维素降解酶成本问题的关键突破口,其原因在于:第一,将酶系的生产过程集成进木质纤维素生物炼制装置内,直接使用发酵粗酶液进行底物糖化,可以省去酶制剂后处理和储运的成本,也可能减少培养基和能源动力成本[3-4]。第二,不同来源及不同预处理工艺得到的木质纤维素原料之间组分差异显著,对降解酶系组成的需求有所区别,因此有必要根据原料的特点生产、调配出与之相适应的降解酶系,以提高降解效率[5-6]

选育具有自主产权的产酶菌种,并研发相关的发酵、酶解工艺等配套技术,是实现上述目标的必然要求。能够合成木质纤维素降解酶系的微生物在自然界中非常常见,但其中仅有一小部分产酶水平高、酶系性能好的种类(主要是丝状真菌) 适合用于工业生产。最早由美国陆军军需研发中心筛选到的里氏木霉Trichoderma reesei经理化诱变、遗传改造后,已成为诺维信(Novozymes A/S)、杜邦(DuPont de Nemours,Inc.) 等酶制剂公司应用最广泛的纤维素酶生产菌[7],并形成了一系列相关的知识产权。里氏木霉生产木质纤维素降解酶系的优缺点都非常明显:一方面,其分泌的酶系对棉花等结晶纤维素具有较强的降解能力,经改良过的菌株的酶产量可达到80 g/L以上[8];另一方面,里氏木霉酶系中的β-葡萄糖苷酶活力不足,且基因组中木质纤维素降解酶编码基因的数量较少,导致其酶系组成(尤其是半纤维素降解酶系) 不够齐全[9]。对于里氏木霉木质纤维素降解酶系的生产,已有很多研究者进行了专题综述[10-12]

一些青霉属Penicillium、篮状菌属Talaromyces、毁丝霉属Myceliophthora的丝状真菌菌株具有较高的木质纤维素降解酶生产能力,且在酶系的降解性能、菌株的生长速度等方面与里氏木霉相比具有一定优势(参见Gusakov的专题综述[13])。其中,青霉属的多种菌株在产酶能力、酶系的完整性、一些酶组分的酶学性质等方面均表现出较好的工业应用潜力,部分菌株已用于工业酶制剂的生产,在里氏木霉以外的纤维素酶系生产菌中具有较强的代表性[14]。基于此,本文从就地生产高效酶系、为生物炼制产业提供可发酵糖的角度,对使用青霉菌生产木质纤维素降解酶系的研究进展进行了综述。考虑到不同的木质纤维素降解酶系生产真菌在菌种选育和工艺开发中面临很多共性问题,也希望本文为其他种属的相关研究工作提供参考(图 1)。

图 1 利用青霉生产木质纤维素降解酶系的主要研究内容 Fig. 1 The major research work for the production of lignocellulolytic enzyme systems using Penicillium species.
1 可用于木质纤维素降解酶系生产的青霉菌株

青霉是自然界普遍存在的纤维素优势降解菌。广西大学张政等从森林中筛选到的305株纤维素降解真菌中,31株产酶能力较强的菌株均为木霉菌或青霉菌[15]。目前得到研究的产木质纤维素降解酶系的青霉菌已有几十种之多[14-16],其中一部分已实现或有望实现纤维素酶系的大规模发酵生产。例如,绳状青霉P. funiculosum已被杜邦及法国安迪苏(Adisseo France SAS) 公司用来生产酶制剂,分别应用于啤酒酿造和饲料添加领域[17-18]。笔者课题组在20世纪80年代初筛选到的草酸青霉(P. oxalicum,原归类为斜卧青霉P. decumbens) 经理化诱变提高酶的产量后,于1996年起就开始在国内企业应用于纤维素酶制剂的生产[19]。此外,P. occitanis和嗜松青霉P. pinophilum在发酵罐中的纤维素酶产量分别可达到每毫升23个和9.8个滤纸酶活力单位(Filter paper unit,FPU)[20-21],疣孢青霉P. verruculosum纤维素酶发酵的蛋白产量可达到47 g/L (滤纸酶活力未见报道)[22],也有较大的应用潜力。总体而言,青霉已经应用于木质纤维素降解酶系的工业生产,但与大规模木质纤维素糖平台对用酶成本严格控制的需求相比,当前菌株的产酶能力和酶系的降解效率均仍有较大的提升空间。

2 青霉木质纤维素降解酶系的组成与性质

与里氏木霉酶系相比,青霉木质纤维素降解酶系一般包括纤维素降解酶(纤维二糖水解酶/外切纤维素酶、内切葡聚糖酶、β-葡萄糖苷酶、裂解性多糖单加氧酶等)、半纤维素降解酶(木聚糖酶、阿拉伯呋喃糖苷酶、乙酰木聚糖酯酶、甘露聚糖酶等) 等数十乃至上百种蛋白组分(图 2),但一般来说其酶组分更为齐全,组分之间的比例更为均衡,具体可归纳为以下几个方面。

图 2 参与纤维素(A) 与木聚糖(B) 酶解的酶系组分作用机制示意图 Fig. 2 Schematic diagram of enzymatic degradation of cellulose (A) and xylan (B). CBH: cellobiohydrolase; EG: endo-β-1, 4-glucanase; LPMO: lytic polysaccharide monooxygenase; BGL: β-glucosidases; XYN: endo-β-1, 4-xylanase; BXL: β-xylosidase; ABF: α-L-arabinofuranosidase; AGU: α-glucuronidase; AGA: α-galactosidase; AXE: acetyl xylan esterase; FAE: feruloyl esterase; Xyl: xylose residue; Ara: arabinose residue; MeGlcA: 4-O-methy-glucuronic acid residue; Gal: galactose residue; Ac: acetyl group; FA: ferulic acid group.

(1) 青霉所产酶系通常具有较高的β-葡萄糖苷酶活性[14, 23-24]。β-葡萄糖苷酶可将纤维素水解的中间产物纤维二糖降解为葡萄糖。纤维二糖不能被很多发酵微生物直接利用,且对纤维素酶的活性有反馈抑制作用。因此,较高的β-葡萄糖苷酶活性有助于提高糖平台中可发酵糖的得率,并可通过降低反馈抑制,促进纤维素的酶解。需要注意的是,在与人工补充过β-葡萄糖苷酶的里氏木霉酶系相比时,一些纤维素水解效率较高的青霉酶系不再具有优势,说明这些酶系中其他纤维素酶的活性可能有待改进[25]

(2) 青霉产生的一些木质纤维素降解酶具有优异的生化性质。Morozova等对疣孢青霉B221-151P的纤维素酶进行了分离纯化和性质研究发现,其纤维二糖水解酶CBH Ⅰ和CBH Ⅱ对结晶纤维素的降解能力均强于里氏木霉来源的同类蛋白[26]。来源于绳状青霉、变灰青霉P. canescens的CBH Ⅰ对木质纤维素原料的水解能力(尤其是水解速度) 也均显著高于里氏木霉来源的CBH Ⅰ[27-28]。Taylor等通过结构域互换、序列突变实验发现,催化结构域上两处结构的不同,是导致绳状青霉CBH Ⅰ活性优于里氏木霉CBH Ⅰ的主要原因[29]。此外,来自P. pulvillorum的CBH Ⅰ在木质素上的吸附能力弱于里氏木霉CBH Ⅰ,使其在木质纤维素原料的水解中较少受到木质素“无效吸附”的影响[30]

(3) 青霉酶系中半纤维素酶、果胶酶含量一般较为丰富。半纤维素和果胶作为植物细胞壁的主要组分,其高效降解是提高底物整体转化率的必然要求。此外,其降解产物木糖、阿拉伯糖、半乳糖醛酸等作为木质纤维素糖平台的重要成员,可进一步转化为糠醛、粘酸等下游产品。比较基因组分析显示,草酸青霉菌株中半纤维素酶和果胶酶编码基因的数目均高于里氏木霉[31],这与其能在同时包含纤维素和半纤维素的“全纤维素”平板上形成透明水解圈的现象是一致的[32]。里氏木霉基因组中未见编码的降解酶,包括阿拉伯聚糖酶、半乳聚糖酶、果胶裂解酶、果胶甲酯酶、阿魏酸酯酶等,这些降解酶在很多青霉中均有研究报道或注释[33]P. subrubescens所产的酶系在麦麸、甜菜粕等复杂底物的降解方面与黑曲霉酶系的效率相当[34],基因组注释显示其植物生物质降解相关糖苷水解酶基因的数目分别是里氏木霉和黑曲霉的3.1倍和1.8倍,蕴藏了丰富的基因资源[35]。贺兆伟等将从烟叶中分离到的81株真菌中果胶酶活性最高的一株鉴定为疣孢青霉[36],并完成了该菌的基因组测序和注释[37]。在蛋白质层面,对草酸青霉、绳状青霉、产黄青霉等的分泌组学分析也确认了它们酶系组分的多样性[31, 38-39]。Gong等比较了同一培养基上草酸青霉与里氏木霉所产胞外酶系的组成,发现前者含有更多的β-1, 3-1, 4-葡聚糖酶和果胶酶,且各类酶组分之间的比例更为均衡[40]

不同种类真菌胞外生物质降解酶系的特点是自然进化的结果,与其生态位有着密切联系。曲霉酶系通常具有较高的淀粉酶、半纤维素酶、果胶酶及β-葡萄糖苷酶活性,有利于其利用环境中的淀粉、半纤维素、果胶、纤维寡糖等相对易降解的植物生物质,但对结晶纤维素的利用能力通常较差[41]。里氏木霉的植物生物质降解酶基因的种类和数目均较少,很多被认为来自水平基因转移[42],但其纤维素酶降解结晶纤维素的能力很强,有利于其在帆布帐篷、枯木等曲霉等微生物难以利用的纤维素材料上生长[43]。青霉所产的胞外酶系在组分齐全方面与曲霉较为相似,但其纤维素酶的产量和活性又比较高,推测其生态位介于曲霉与木霉之间。青霉所产酶系的上述特点,正是其被应用于啤酒酿造、饲料添加等领域的原因,也决定了其在构建木质纤维素生物炼制糖平台中的作用。对于玉米皮、麦麸、甜菜粕、木薯渣等组分复杂的原料,以及预处理后半纤维素保留较多的秸秆、木材原料,青霉木质纤维素降解酶系有较强的应用潜力。而对于稀酸、汽爆等预处理方法得到的以结晶纤维素为主的原料,则更适合使用木霉酶系进行水解[44]。此外,青霉、曲霉来源的性质优异的降解酶组分,可通过复配、异源表达等方式添加到木霉酶系中去,以进一步提高其降解效率[45-46]

3 产木质纤维素降解酶系青霉的遗传改造

野生菌株的木质纤维素降解酶系产量一般较低,需经过进一步选育才能满足工业生产需求。与一般的酶制剂生产相比,木质纤维素具有生物炼制规模巨大、直接经济效益相对较低的特点,对于降解酶系的产量和活性提出了更高的要求。随着对降解酶合成调控机制及酶协同降解机制的深入研究,对菌株进行理性的遗传改造以提高酶系的产量或降解效率,已得到越来越多的报道[47]

3.1 酶系产量的提升策略

木质纤维素降解酶数目众多,在基因转录水平存在共调控现象。因此,对酶合成调控因子进行改造是整体提高酶系产量的有效策略。山东大学及广西大学的研究者通过构建转录因子基因敲除库等手段,较为系统地解析了草酸青霉木质纤维素降解酶的合成调控机制[48-50]。在这些基础研究成果的指导下,通过对酶合成调控相关基因的表达量和/或活性进行调控,使得木质纤维素降解酶的产量有了大幅度提升(表 1)。此外,蛋白质经内质网、高尔基体至质膜的分泌途径也与木质纤维素降解酶的高效生产密切相关,但目前对其机制解析及改造的报道均不多见。

表 1 提高青霉木质纤维素降解酶系产量的遗传改造策略 Table 1 Strategies for improving the production levels of lignocellulolytic enzymes in Penicillium species
Parent strain Engineering strategy Effects References
P. funiculosum NCIM1228 Truncation of mig1 (creA orthologue) Two-fold increase in cellulase production (up to 4.7 FPU/mL) [54]
P. canescens PCA-10 Multi-copy expression of xlnR 2.2- to 4.2-fold increase in specific activity of xylanase [61]
P. oxalicum 114-2 Expression of chimeric transactivator CXC-S 7.3-fold increase in cellulase production [58]
P. oxalicum CXC Expression of araRA731V 54.1- and 7.4-fold increases in α-L-arabinofuranosidase and α-galactosidase production, respectively [57]
P. oxalicum 114-2 Deletion of creA and bgl2; overexpression of clrB 27- and 10-fold increases in cellulase and xylanase production, respectively [60]
P. oxalicum M12 Deletion of creA and overexpression of clrB; expression of xlnRA871V, cbh1 and eg1 10.2- and 30.6-fold increases in cellulase and xylanase production, respectively [56]
P. oxalicum M12 Sequential expression of homologous or heterologous xlnR-cbh1-eg1 cassettes 5.1- and 20-fold increases in cellulase and xylanase production, respectively [62]

碳分解代谢物阻遏因子CreA/CRE1对丝状真菌中包括木质纤维素降解酶在内的多种碳分解代谢酶的表达具有广谱的抑制作用[51]。经诱变获得的里氏木霉和草酸青霉高产菌株中,CreA/CRE1编码基因的突变已被证明是纤维素酶产量提升的重要原因[52-53]。Randhawa等将绳状青霉中的CreA长度缩短为88个氨基酸,破坏了其阻遏功能,使滤纸酶活力提高了2倍以上[54]

木质纤维素降解酶编码基因的转录还受到多种转录因子的激活作用。其中,ClrB/CLR-2是包括青霉在内的很多丝状真菌中保守的纤维素酶转录激活因子,其对于纤维素酶的表达是必需的[55],对其过量表达可提高纤维素酶产量[48]。XlnR和AraR主要激活半纤维素酶的表达并有所分工,同时也参与部分纤维素酶表达的激活[48, 56-57]。此外,PoxCxrA、PoxCxrB和PoxNsdD等转录因子也对草酸青霉纤维素酶和木聚糖酶的表达具有激活作用,显示了调控网络的复杂性[50]。对于转录激活因子,一方面可以使用强启动子对其进行过量表达,另一方面还可通过对其序列进行突变以增强其激活活性。例如,高丽伟等参考里氏木霉中的研究结果,实现了草酸青霉中木聚糖酶转录激活因子XlnR的持续激活突变,显著提升了木聚糖酶、β-木糖苷酶等酶组分的产量[56]。采用类似的策略对AraR进行序列改造,也实现了α-阿拉伯呋喃糖苷酶、α-半乳糖苷酶等产量的提高[57]。Gao等通过将草酸青霉ClrB的DNA结合域与具有持续转录激活能力的XlnR突变体C端序列嵌合,实现了ClrB所调控的纤维素酶基因不依赖于诱导物的表达,诱导条件下的纤维素酶产量也有大幅提升[58]。进一步通过鉴定ClrB自身的转录激活域并构建其“最小化”突变体,实现了纤维素酶在葡萄糖等阻遏性碳源存在条件下的表达[59],有望在纤维素酶的流加补料发酵中得到应用。

不同遗传改造策略对于木质纤维素降解酶产量的提升常常具有叠加乃至协同作用。笔者课题组在草酸青霉中进行了组合遗传操作,获得了一批产酶水平提高、酶系组成有所改变的工程菌株。Yao等对CreA、ClrB及可降解胞内纤维寡糖(纤维素酶诱导物) 的β-葡萄糖苷酶Bgl2的编码基因进行了组合遗传操作,使菌株的产纤维素酶能力提高了27倍,产酶水平与诱变选育多年的工业菌株相当[60]。Gao等对CreA、ClrB、XlnR以及两个纤维素酶的编码基因进行了组合操作,使纤维素酶和木聚糖酶的产量均得到了显著提高[56]

3.2 酶系性能的改进策略

对天然的木质纤维素降解酶系中各组分所占的比例进行调整、优化,有助于提高其单位酶蛋白的降解效率。Du等通过体外蛋白添加实验发现,添加裂解性多糖单加氧酶、木聚糖酶及膨胀因子(Swollenin) 等均有助于提高草酸青霉酶系降解底物的纤维素转化率[63]。尤其值得注意的是,这些蛋白的添加效果呈现明显的底物特异性。其中,添加裂解性多糖单加氧酶对于亚硫酸铵处理麦秸的液化和糖化均具有显著的促进作用。在20%高固含量下进行酶水解时,添加该酶可以降低约一半的酶蛋白用量。此外,不同种类和不同预处理的木质纤维素原料对纤维二糖水解酶和内切葡聚糖酶比例的要求也不尽相同[64]。这些体外酶复配研究的结果为菌株的进一步遗传改造提供了重要参考。

对特定酶组分的编码基因进行过量表达,是改造酶系组成最常用的手段。在疣孢青霉中,使用葡萄糖淀粉酶基因启动子表达木聚糖酶、β-葡萄糖苷酶、裂解性多糖单加氧酶,均可使酶系对特定底物的降解效率得到显著提升[65-67]。当在一株疣孢青霉中同时表达包括β-葡萄糖苷酶在内的4种纤维素降解酶时,所得到新酶系的降解能力反而不如单独表达β-葡萄糖苷酶的酶系[68]。因此,在进行酶组分的过量表达时,需要精细控制遗传改造对酶系整体组成的影响。在草酸青霉中,纤维素酶合成调控网络被改造后的RE-10菌株中纤维二糖水解酶、内切葡聚糖酶的产量显著上调,但β-葡萄糖苷酶在酶系中所占比例反而有所下降[60]。通过使用内源强启动子过表达β-葡萄糖苷酶,使RE-10酶系中该组分得到了补充,减轻了纤维二糖的反馈抑制作用,酶系对纤维素的水解效率得到了显著提高[69]。同样,在RE-10中过表达β-木糖苷酶,也显著减少了富含木聚糖原料的酶解过程中木二糖的积累,不仅木聚糖转化率明显提高,纤维素转化率也有所提升[70]

4 青霉生产木质纤维素降解酶系的发酵策略

发酵工艺的建立、优化和放大是实现木质纤维素降解酶系高效生产的关键性“最后一里”。尽管使用固态发酵的相关报道很多,液体深层发酵仍是大规模生产木质纤维素降解酶系的主流方式。由于木质纤维素降解酶的合成依赖于纤维素类底物(同时作为碳源)的诱导,碳源的种类和浓度是发酵工艺优化的主要方向(表 2)。此外,氮源、pH、溶氧等因素也对木质纤维素降解酶系的产量有重要影响。

表 2 青霉生产木质纤维素降解酶的液体发酵策略 Table 2 Submerged fermentation for lignocellulolytic enzyme production using Penicillium species
Strain Strategy Carbon source Temperature and pH Production level References
P. echinulatum S1M29 Fed-batch Initial: cellulose 10 g/L, sucrose 5 g/L
Fed: cellulose 30 g/L in total
28 ℃, pH 6.0 8.3 FPU/mL at 144 h [71]
P. verruculosum P442-12 Fed-batch Initial: cellulose 40 g/L, wheat bran 10 g/L
Fed: glucose (concentration not reported)
28 ℃, pH 4.5–5.0 47.0 g/L of proteins at 144 h [22]
P. occitanis Pol6 Fed-batch Initial: esparto grass pulp 30 g/L
Fed: cellulose 20 g/L every 20 h
28 ℃, pH not reported 23 FPU/mL at 216 h [20]
P. pinophilum NTG III/6 Batch Cellulose 30 g/L, hammer-milled barley straw 30 g/L 35 ℃, pH not controlled 9.8 FPU/mL at 72 h [21]
P. funiculosum Mig188 Batch Cellulose 24 g/L, wheat bran 21.4 g/L 28 ℃, initial pH 5.0 3.41 FPU/mL and 14.8 g/L of proteins at 120 h [75]
P. oxalicum RE-10 Repeated fed-batch (4 cycles) Delignified corn cob residue 20 g/L, cellulose 6 g/L, wheat bran 45.58 g/L 30 ℃, pH not controlled 11 FPU/mL, 158.38 FPU/(L·h) [72]
P. oxalicum RE-10 Fed-batch Initial: delignified corn cob residue 20 g/L, cellulose 6 g/L, wheat bran 46.5 g/L
Fed: spent ammonium sulphite liquor
30 ℃, pH not controlled 17.66 FPU/mL at 144 h [74]

Dos Reis等研究了纤维素浓度在分批、补料发酵中对刺糙青霉P. echinulatum纤维素酶产量的影响,发现使用适中的纤维素浓度进行补料发酵时产酶水平最高,而过量的纤维素反而导致纤维素酶的产量下降[71]。Brown等使用球磨的大麦秸秆替代部分纤维素培养嗜松青霉,可以实现与以纯纤维素为碳源时相近的产酶水平,有利于降低培养基成本,也有利于实现就地产酶[21]。Han等选择廉价的天然原材料如麸皮、玉米芯废渣等作为培养基的主要成分,采用反复分批补料发酵策略(放出部分发酵液、补充新鲜培养基) 减少了发酵过程中的辅助时间,使纤维素酶的容积生产效率显著提高[72]

使用不溶性纤维素类碳源进行补料发酵在实际生产中操作难度较大,而使用可溶性碳源进行流加补料发酵具有明显优势[73]。然而,乳糖、槐糖等木霉中常用的可溶性诱导物对青霉纤维素酶的表达没有明显的诱导作用,给青霉纤维素酶流加补料发酵带来了挑战。亚硫酸铵法制浆造纸得到的黑液中含有一定量的木寡糖、纤维寡糖等,可以作为木质纤维素降解酶合成的诱导物,但其中含有的毒性物质也对细胞的生长产生抑制作用。Han等采用变速流加亚硫酸铵造纸黑液的策略进行草酸青霉纤维素酶发酵,实现了酶合成的诱导与细胞生长抑制之间的平衡,显著提高了纤维素酶的产量[74]

5 总结与展望

尽管青霉生产木质纤维素降解酶系研究已取得了大量进展,但其使用成本与为大规模生物炼制提供廉价的可发酵糖的要求相比,仍然有一定距离。展望未来这一领域的研究,有不少工作值得开展。

首先,菌株的选育工作仍需加强。目前大部分研究报道的青霉菌株未经过深度、系统的遗传改造,纤维素酶产量大多在1 FPU/mL以下,远远达不到工业生产的要求。借助先进的基因编辑等分子生物学工具、合成生物学理念、高通量筛选方法,系统整合已有的各种遗传改造策略(包括酶合成调控、分泌、蛋白降解等环节),同时继续挖掘新的遗传改造靶点,有望获得酶产量大幅提高的菌株,应用于木质纤维素降解酶系的生产。

其次,降解酶系的性能仍需挖掘和改进。对于青霉酶系来说,一方面可以基于酶系组成特点选择合适的原料加以应用,发挥其酶系齐全、组分均衡的天然优势;另一方面可以通过菌株遗传改造(内源酶编码基因过表达、外源基因异源表达或替换等) 或与木霉酶系复配等,补足其降解效率的短板,获得与原料性质相适应的高活性人工复合酶系。

最后,降解酶系的发酵工艺仍需优化。在植物生物质炼制系统内部寻找廉价、易得、有效的诱导性碳源,建立高效的补料发酵(尤其是流加补料发酵) 工艺,有望最大限度地挖掘高产菌株的就地产酶能力。同时,通过对降解酶合成调控网络的重塑,理论上可以解除产酶对诱导物的依赖和易代谢分解产物对产酶的阻遏,以粗葡萄糖液(可来自糖平台自身) 等为碳源发酵,获得高浓度的酶液。此外,结合菌株改造与工艺优化,使产酶菌株的菌丝形态、氧气需求等性状与液体深层发酵过程相适应,也是未来工作的方向之一。

参考文献
[1]
Werpy T, Petersen G. Top value added chemicals from biomass: volume Ⅰ— results of screening for potential candidates from sugars and synthesis gas[R]. National Renewable Energy Lab, Golden, CO (US). 2004-08-01.
[2]
Wang M, Li Z, Fang X, et al. Cellulolytic enzyme production and enzymatic hydrolysis for second-generation bioethanol production. Adv Biochem Eng Biotechnol, 2012, 128: 1-24.
[3]
曲音波, 毕衍金, 李雪芝, 等. 纤维素乙醇产业化的突破口——集成就地产酶工艺的多联产生物精炼. 生物产业技术, 2017(3): 36-40.
Qu YB, Bi YJ, Li XZ, et al. Breakthrough point for commercialization of cellulosic ethanol — Integrated biorefinery with on-site cellulase production. Biotech Business, 2017(3): 36-40 (in Chinese). DOI:10.3969/j.issn.1674-0319.2017.03.005
[4]
Johnson E. Integrated enzyme production lowers the cost of cellulosic ethanol. Biofuels Bioprod Bioref, 2016, 10(2): 164-174. DOI:10.1002/bbb.1634
[5]
Chylenski P, Forsberg Z, Stahlberg J, et al. Development of minimal enzyme cocktails for hydrolysis of sulfite-pulped lignocellulosic biomass. J Biotechnol, 2017, 246: 16-23. DOI:10.1016/j.jbiotec.2017.02.009
[6]
Hu J, Arantes V, Pribowo A, et al. The synergistic action of accessory enzymes enhances the hydrolytic potential of a "cellulase mixture" but is highly substrate specific. Biotechnol Biofuels, 2013, 6(1): 112. DOI:10.1186/1754-6834-6-112
[7]
Bischof RH, Ramoni J, Seiboth B. Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microb Cell Fact, 2016, 15(1): 106. DOI:10.1186/s12934-016-0507-6
[8]
Fonseca LM, Parreiras LS, Murakami MT. Rational engineering of the Trichoderma reesei RUT-C30 strain into an industrially relevant platform for cellulase production. Biotechnol Biofuels, 2020, 13: 93. DOI:10.1186/s13068-020-01732-w
[9]
Martinez D, Berka RM, Henrissat B, et al. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol, 2008, 26(5): 553-560. DOI:10.1038/nbt1403
[10]
Druzhinina IS, Kubicek CP. Genetic engineering of Trichoderma reesei cellulases and their production. Microb Biotechnol, 2017, 10(6): 1485-1499. DOI:10.1111/1751-7915.12726
[11]
Novy V, Nielsen F, Seiboth B, et al. The influence of feedstock characteristics on enzyme production in Trichoderma reesei: a review on productivity, gene regulation and secretion profiles. Biotechnol Biofuels, 2019, 12: 238. DOI:10.1186/s13068-019-1571-z
[12]
Gupta VK, Steindorff AS, de Paula RG, et al. The post-genomic era of Trichoderma reesei: What's next?. Trends Biotechnol, 2016, 34(12): 970-982. DOI:10.1016/j.tibtech.2016.06.003
[13]
Gusakov AV. Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol, 2011, 29(9): 419-425. DOI:10.1016/j.tibtech.2011.04.004
[14]
Gusakov AV, Sinitsyn AP. Cellulases from Penicillium species for producing fuels from biomass. Biofuels, 2012, 3(4): 463-477. DOI:10.4155/bfs.12.41
[15]
Zhang Z, Liu J, Lan J, et al. Predominance of Trichoderma and Penicillium in cellulolytic aerobic filamentous fungi from subtropical and tropical forests in China, and their use in finding highly efficient β-glucosidase. Biotechnol Biofuels, 2014, 7(1): 107. DOI:10.1186/1754-6834-7-107
[16]
孙宪昀, 曲音波, 刘自勇. 青霉木质纤维素降解酶系研究进展. 应用与环境生物学报, 2007, 13(5): 736-740.
Sun XY, Qu YB, Liu ZY. Progress in research of lignocellulose-degrading enzymes from Penicillium. China J Appl Environ Biol, 2007, 13(5): 736-740 (in Chinese). DOI:10.3321/j.issn:1006-687x.2007.05.027
[17]
Dominiak M, Sondergaard KM, Wichmann J, et al. Application of enzymes for efficient extraction, modification, and development of functional properties of lime pectin. Food Hydrocolloid, 2014, 40: 273-282. DOI:10.1016/j.foodhyd.2014.03.009
[18]
[19]
曲音波. 木质纤维素降解酶系的基础和技术研究进展. 山东大学学报(理学版), 2011, 46(10): 160-170.
Qu YB. Progress in basic and technological research of enzyme system for lignocellulosics biodegradation. J Shandong Univ (Nat Sci), 2011, 46(10): 160-170 (in Chinese).
[20]
Belghith H, Ellouz-Chaabouni S, Gargouri A. Biostoning of denims by Penicillium occitanis (Pol6) cellulases. J Biotechnol, 2001, 89(2/3): 257-262.
[21]
Brown JA, Collin SA, Wood TM. Development of a medium for high cellulase, xylanase and β-glucosidase production by a mutant strain (NTG Ⅲ/6) of the cellulolytic fungus Penicillium pinophilum. Enzyme Microb Technol, 1987, 9(6): 355-360. DOI:10.1016/0141-0229(87)90059-7
[22]
Solov'eva IV, Okunev ON, Vel'kov VV, et al. The selection and properties of Penicillium verruculosum mutants with enhanced production of cellulases and xylanases. Microbiology, 2005, 74(2): 141-146. DOI:10.1007/s11021-005-0043-6
[23]
Shen Y, Zhang Y, Ma T, et al. Simultaneous saccharification and fermentation of acid-pretreated corncobs with a recombinant Saccharomyces cerevisiae expressing β-glucosidase. Bioresour Technol, 2008, 99(11): 5099-5103. DOI:10.1016/j.biortech.2007.09.046
[24]
Berlin A, Gilkes N, Kilburn D, et al. Evaluation of novel fungal cellulase preparations for ability to hydrolyze softwood substrates — evidence for the role of accessory enzymes. Enzyme Microb Technol, 2005, 37(2): 175-184. DOI:10.1016/j.enzmictec.2005.01.039
[25]
Martins LF, Kolling D, Camassola M, et al. Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates. Bioresour Technol, 2008, 99(5): 1417-1424. DOI:10.1016/j.biortech.2007.01.060
[26]
Morozova VV, Gusakov AV, Andrianov RM, et al. Cellulases of Penicillium verruculosum. Biotechnol J, 2010, 5(8): 871-880. DOI:10.1002/biot.201000050
[27]
Adney WS, Baker JO, Decker SR, et al. Superactive cellulase formulation using cellobiohydrolase-1 from Penicillium funiculosum: US, 7449550. 2008-11-11.
[28]
Volkov PV, Rozhkova AM, Gusakov AV, et al. Homologous cloning, purification and characterization of highly active cellobiohydrolase Ⅰ (Cel7A) from Penicillium canescens. Protein Expr Purif, 2014, 103: 1-7. DOI:10.1016/j.pep.2014.08.011
[29]
Taylor LE, 2nd, Knott BC, Baker JO, et al. Engineering enhanced cellobiohydrolase activity. Nat Commun, 2018, 9(1): 1186. DOI:10.1038/s41467-018-03501-8
[30]
Marjamaa K, Toth K, Bromann PA, et al. Novel Penicillium cellulases for total hydrolysis of lignocellulosics. Enzyme Microb Technol, 2013, 52(6-7): 358-369. DOI:10.1016/j.enzmictec.2013.03.003
[31]
Liu G, Zhang L, Wei X, et al. Genomic and secretomic analyses reveal unique features of the lignocellulolytic enzyme system of Penicillium decumbens. PLoS One, 2013, 8(2): e55185. DOI:10.1371/journal.pone.0055185
[32]
曲音波, 高培基, 王祖农. 青霉的纤维素酶抗降解物阻遏突变株的选育. 真菌学报, 1984, 3(4): 238-243.
Qu YB, Gao PJ, Wang ZN. Screening of catabolite repression-resistant mutants of cellulase producing Penicillium spp. Acta Mycol Sin, 1984, 3(4): 238-243 (in Chinese).
[33]
Lombard V, Golaconda RH, Drula E, et al. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res, 2014, 42(Database issue): D490-495.
[34]
Makela MR, Mansouri S, Wiebenga A, et al. Penicillium subrubescens is a promising alternative for Aspergillus niger in enzymatic plant biomass saccharification. N Biotechnol, 2016, 33(6): 834-841. DOI:10.1016/j.nbt.2016.07.014
[35]
Peng M, Dilokpimol A, Makela MR, et al. The draft genome sequence of the ascomycete fungus Penicillium subrubescens reveals a highly enriched content of plant biomass related CAZymes compared to related fungi. J Biotechnol, 2017, 246: 1-3. DOI:10.1016/j.jbiotec.2017.02.012
[36]
贺兆伟, 奚家勤, 邓宾玲, 等. 烟叶中高产果胶酶菌株的筛选及酶学性质. 烟草科技, 2013(5): 72-76.
He ZW, Xi JQ, Deng BL, et al. Screening of highly pectinase-producing strain from tobacco leaf and enzymatic properties thereof. Tob Sci Tech, 2013(5): 72-76 (in Chinese). DOI:10.3969/j.issn.1002-0861.2013.05.018
[37]
Hu L, Taujale R, Liu F, et al. Draft genome sequence of Talaromyces verruculosus ("Penicillium verruculosum") strain TS63-9, a fungus with great potential for industrial production of polysaccharide- degrading enzymes. J Biotechnol, 2016, 219: 5-6. DOI:10.1016/j.jbiotec.2015.12.017
[38]
Ogunmolu FE, Kaur I, Pasari N, et al. Quantitative multiplexed profiling of Penicillium funiculosum secretome grown on polymeric cellulase inducers and glucose. J Proteomics, 2018, 179: 150-160. DOI:10.1016/j.jprot.2018.03.025
[39]
Yang Y, Yang J, Liu J, et al. The composition of accessory enzymes of Penicillium chrysogenum P33 revealed by secretome and synergistic effects with commercial cellulase on lignocellulose hydrolysis. Bioresour Technol, 2018, 257: 54-61. DOI:10.1016/j.biortech.2018.02.028
[40]
Gong W, Zhang H, Liu S, et al. Comparative secretome analysis of Aspergillus niger, Trichoderma reesei, and Penicillium oxalicum during solid-state fermentation. Appl Biochem Biotechnol, 2015, 177(6): 1252-1271. DOI:10.1007/s12010-015-1811-z
[41]
Coutinho PM, Andersen MR, Kolenova K, et al. Post-genomic insights into the plant polysaccharide degradation potential of Aspergillus nidulans and comparison to Aspergillus niger and Aspergillus oryzae. Fungal Genet Biol, 2009, 46(Suppl 1): S161-S169.
[42]
Druzhinina IS, Chenthamara K, Zhang J, et al. Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts. PLoS Genet, 2018, 14(4): e1007322. DOI:10.1371/journal.pgen.1007322
[43]
Druzhinina IS, Kubicek CP. Familiar stranger: ecological genomics of the model saprotroph and industrial enzyme producer Trichoderma reesei breaks the stereotypes. Adv Appl Microbiol, 2016, 95: 69-147.
[44]
Song W, Han X, Qian Y, et al. Proteomic analysis of the biomass hydrolytic potentials of Penicillium oxalicum lignocellulolytic enzyme system. Biotechnol Biofuels, 2016, 9: 68. DOI:10.1186/s13068-016-0477-2
[45]
Ma L, Zhang J, Zou G, et al. Improvement of cellulase activity in Trichoderma reesei by heterologous expression of a β-glucosidase gene from Penicillium decumbens. Enzyme Microb Technol, 2011, 49(4): 366-371. DOI:10.1016/j.enzmictec.2011.06.013
[46]
Shibata N, Suetsugu M, Kakeshita H, et al. A novel GH10 xylanase from Penicillium sp. accelerates saccharification of alkaline-pretreated bagasse by an enzyme from recombinant Trichoderma reesei expressing Aspergillus β-glucosidase. Biotechnol Biofuels, 2017, 10: 278. DOI:10.1186/s13068-017-0970-2
[47]
Alazi E, Ram AFJ. Modulating transcriptional regulation of plant biomass degrading enzyme networks for rational design of industrial fungal strains. Front Bioeng Biotechnol, 2018, 6: 133. DOI:10.3389/fbioe.2018.00133
[48]
Li Z, Yao G, Wu R, et al. Synergistic and dose-controlled regulation of cellulase gene expression in Penicillium oxalicum. PLoS Genet, 2015, 11(9): e1005509. DOI:10.1371/journal.pgen.1005509
[49]
Zhao S, Yan YS, He QP, et al. Comparative genomic, transcriptomic and secretomic profiling of Penicillium oxalicum HP7-1 and its cellulase and xylanase hyper-producing mutant EU2106, and identification of two novel regulatory genes of cellulase and xylanase gene expression. Biotechnol Biofuels, 2016, 9: 203. DOI:10.1186/s13068-016-0616-9
[50]
Yan YS, Zhao S, Liao LS, et al. Transcriptomic profiling and genetic analyses reveal novel key regulators of cellulase and xylanase gene expression in Penicillium oxalicum. Biotechnol Biofuels, 2017, 10: 279. DOI:10.1186/s13068-017-0966-y
[51]
Adnan M, Zheng W, Islam W, et al. Carbon catabolite repression in filamentous fungi. Int J Mol Sci, 2017, 19(1): 48. DOI:10.3390/ijms19010048
[52]
Nakari-Setala T, Paloheimo M, Kallio J, et al. Genetic modification of carbon catabolite repression in Trichoderma reesei for improved protein production. Appl Environ Microbiol, 2009, 75(14): 4853-4860. DOI:10.1128/AEM.00282-09
[53]
Liu G, Zhang L, Qin Y, et al. Long-term strain improvements accumulate mutations in regulatory elements responsible for hyper-production of cellulolytic enzymes. Sci Rep, 2013, 3: 1569. DOI:10.1038/srep01569
[54]
Randhawa A, Ogunyewo OA, Eqbal D, et al. Disruption of zinc finger DNA binding domain in catabolite repressor Mig1 increases growth rate, hyphal branching, and cellulase expression in hypercellulolytic fungus Penicillium funiculosum NCIM1228. Biotechnol Biofuels, 2018, 11: 15. DOI:10.1186/s13068-018-1011-5
[55]
Coradetti ST, Craig JP, Xiong Y, et al. Conserved and essential transcription factors for cellulase gene expression in ascomycete fungi. Proc Natl Acad Sci USA, 2012, 109(19): 7397-7402. DOI:10.1073/pnas.1200785109
[56]
Gao L, Li Z, Xia C, et al. Combining manipulation of transcription factors and overexpression of the target genes to enhance lignocellulolytic enzyme production in Penicillium oxalicum. Biotechnol Biofuels, 2017, 10: 100. DOI:10.1186/s13068-017-0783-3
[57]
Gao L, Li S, Xu Y, et al. Mutation of a conserved alanine residue in transcription factor AraR leads to hyperproduction of α-L-arabinofuranosidases in Penicillium oxalicum. Biotechnol J, 2019, 14(7): e1800643. DOI:10.1002/biot.201800643
[58]
Gao L, Xia C, Xu J, et al. Constitutive expression of chimeric transcription factors enables cellulase synthesis under non-inducing conditions in Penicillium oxalicum. Biotechnol J, 2017, 12(11): 1700119. DOI:10.1002/biot.201700119
[59]
Gao L, Xu Y, Song X, et al. Deletion of the middle region of the transcription factor ClrB in Penicillium oxalicum enables cellulase production in the presence of glucose. J Biol Chem, 2019, 294(49): 18685-18697. DOI:10.1074/jbc.RA119.010863
[60]
Yao G, Li Z, Gao L, et al. Redesigning the regulatory pathway to enhance cellulase production in Penicillium oxalicum. Biotechnol Biofuels, 2015, 8: 71. DOI:10.1186/s13068-015-0253-8
[61]
Serebryanyi VA, Sinitsyna OA, Fedorova EA, et al. Synthesis of xylanolytic enzymes and other carbohydrases by the fungus Penicillium canescens: Transformants with an altered copy number of the gene xlnR and an encoding transcriptional activator. Appl Biochem Microb, 2006, 42(6): 584-591. DOI:10.1134/S0003683806060081
[62]
Xia C, Li Z, Xu Y, et al. Introduction of heterologous transcription factors and their target genes into Penicillium oxalicum leads to increased lignocellulolytic enzyme production. Appl Microbiol Biotechnol, 2019, 103(6): 2675-2687. DOI:10.1007/s00253-018-09612-y
[63]
Du J, Song W, Zhang X, et al. Differential reinforcement of enzymatic hydrolysis by adding chemicals and accessory proteins to high solid loading substrates with different pretreatments. Bioproc Biosyst Eng, 2018, 41(8): 1153-1163. DOI:10.1007/s00449-018-1944-x
[64]
Du J, Liang J, Gao X, et al. Optimization of an artificial cellulase cocktail for high-solids enzymatic hydrolysis of cellulosic materials with different pretreatment methods. Bioresour Technol, 2020, 295: 122272. DOI:10.1016/j.biortech.2019.122272
[65]
Bulakhov AG, Volkov PV, Rozhkova AM, et al. Using an inducible promoter of a gene encoding Penicillium verruculosum glucoamylase for production of enzyme preparations with enhanced cellulase performance. PLoS ONE, 2017, 12(1): e0170404. DOI:10.1371/journal.pone.0170404
[66]
Sinitsyn AP, Volkov PV, Rubtsova EA, et al. Using an inducible promoter of the glucoamylase gene to construct new multienzyme complexes from Penicillium verruculosum. Catal Ind, 2018, 10(1): 75-82. DOI:10.1134/S2070050418010105
[67]
Semenova MV, Gusakov AV, Volkov PV, et al. Enhancement of the enzymatic cellulose saccharification by Penicillium verruculosum multienzyme cocktails containing homologously overexpressed lytic polysaccharide monooxygenase. Mol Biol Rep, 2019, 46(2): 2363-2370. DOI:10.1007/s11033-019-04693-y
[68]
Sinitsyn AP, Korotkova OG, Sinitsyna OA, et al. Optimizing the composition of cellulase enzyme complex from Penicillium verruculosum: Enhancing hydrolytic capabilities via genetic engineering. Catal Ind, 2016, 8(1): 101-106. DOI:10.1134/S2070050416010128
[69]
Yao G, Wu R, Kan Q, et al. Production of a high-efficiency cellulase complex via β-glucosidase engineering in Penicillium oxalicum. Biotechnol Biofuels, 2016, 9: 78. DOI:10.1186/s13068-016-0491-4
[70]
Ye Y, Li X, Cao Y, et al. A β-xylosidase hyper-production Penicillium oxalicum mutant enhanced ethanol production from alkali-pretreated corn stover. Bioresour Technol, 2017, 245(Pt A): 734-742.
[71]
dos Reis L, Fontana RC, da Silva Delabona P, et al. Increased production of cellulases and xylanases by Penicillium echinulatum S1M29 in batch and fed-batch culture. Bioresour Technol, 2013, 146: 597-603. DOI:10.1016/j.biortech.2013.07.124
[72]
Han X, Song W, Liu G, et al. Improving cellulase productivity of Penicillium oxalicum RE-10 by repeated fed-batch fermentation strategy. Bioresource Technology, 2017, 227: 155-163. DOI:10.1016/j.biortech.2016.11.079
[73]
Ellilä S, Fonseca L, Uchima C, et al. Development of a low-cost cellulase production process using Trichoderma reesei for Brazilian biorefineries. Biotechnol Biofuels, 2017, 10: 30. DOI:10.1186/s13068-017-0717-0
[74]
Han X, Liu G, Song W, et al. Continuous feeding of spent ammonium sulphite liquor improves the production and saccharification performance of cellulase by Penicillium oxalicum. Bioresour Technol, 2017, 245(Pt A): 984-992.
[75]
Ogunyewo OA, Randhawa A, Joshi M, et al. Engineered Penicillium funiculosum produces potent lignocellulolytic enzymes for saccharification of various pretreated biomasses. Process Biochem, 2020, 92: 49-60. DOI:10.1016/j.procbio.2020.02.029