[1] |
Vos T, Barber RM, Bell B, et al. Global burden of disease study 2013 collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the global burden of disease study 2013. Lancet, 2015, 386(9995): 743-800.
|
|
[2] |
欧阳雪梅. 中国大健康产业如何塑造未来医养模式. 人民论坛, 2020(28): 71-73. Ouyang XM. How does China's great health industry shape the future medical care model. Peoples Tribune, 2020(28): 71-73 (in Chinese). DOI:10.3969/j.issn.1004-3381.2020.28.020
|
|
[3] |
Miranda LP, Alewood PF. Accelerated chemical synthesis of peptides and small proteins. Proc Natl Acad Sci USA, 1999, 96(4): 1181-1186. DOI:10.1073/pnas.96.4.1181
|
|
[4] | |
|
[5] |
Minkiewicz, Iwaniak, Darewicz. BIOPEP-UWM database of bioactive peptides: current opportunities. Int J Mol Sci, 2019, 20(23): 5978. DOI:10.3390/ijms20235978
|
|
[6] |
施安辉, 单宝龙, 贾朋辉, 等. 国内蛋白质饲料资源开发利用的现状及前景. 饲料博览, 2006(6): 40-43. Shi AH, Shan BL, Jia PH, et al. Current situation and prospect of development and utilization of protein feed resources in China. Feed Rev, 2006(6): 40-43 (in Chinese). DOI:10.3969/j.issn.1001-0084.2006.06.014
|
|
[7] | |
|
[8] |
Ianzer D, Konno K, Marques-Porto R, et al. Identification of five new bradykinin potentiating peptides (BPPs) from Bothrops jararaca crude venom by using electrospray ionization tandem mass spectrometry after a two-step liquid chromatography. Peptides, 2004, 25(7): 1085-1092. DOI:10.1016/j.peptides.2004.04.006
|
|
[9] |
DiBianco R. Adverse reactions with angiotensin converting enzyme (ACE) inhibitors. Med Toxicol, 1986, 1(2): 122-141. DOI:10.1007/BF03259832
|
|
[10] |
Masuda O, Nakamura Y, Takano T. Antihypertensive peptides are present in aorta after oral administration of sour milk containing these peptides to spontaneously hypertensive rats. J Nutr, 1996, 126(12): 3063-3068. DOI:10.1093/jn/126.12.3063
|
|
[11] |
Yamamoto N, Akino A, Takano T. Antihypertensive effects of different kinds of fermented milk in spontaneously hypertensive rats. Biosci Biotechnol Biochem, 1994, 58(4): 776-778. DOI:10.1271/bbb.58.776
|
|
[12] | |
|
[13] | |
|
[14] | |
|
[15] |
Christensen M, Knop FK, Holst JJ, et al. Lixisenatide, a novel GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus. IDrugs, 2009, 12(8): 503-513.
|
|
[16] |
Nauck MA, Petrie JR, Sesti G, et al. The once-weekly human GLP-1 analogue semaglutide provides significant reductions in HbA1c and body weight in patients with type 2 diabetes. Abstracts of the 48th EASD Annual Meeting of the European Association for the Study of Diabetes. Diabetologia, 2012, 55(S1): 1-538. DOI:10.1007/s00125-012-2688-9
|
|
[17] |
Giguère S, Laviolette F, Marchand M, et al. Machine learning assisted design of highly active peptides for drug discovery. PLoS Comput Biol, 2015, 11(4): e1004074. DOI:10.1371/journal.pcbi.1004074
|
|
[18] |
Joo SH, Pei DH. Synthesis and screening of support-bound combinatorial peptide libraries with free C-termini: determination of the sequence specificity of PDZ domains. Biochemistry, 2008, 47(9): 3061-3072. DOI:10.1021/bi7023628
|
|
[19] |
Fang C, Moriwaki Y, Li CH, et al. Prediction of antifungal peptides by deep learning with character embedding. IPSJ Trans Bioinform, 2019, 12: 21-29. DOI:10.2197/ipsjtbio.12.21
|
|
[20] |
Agrawal P, Bhalla S, Chaudhary K, et al. In silico approach for prediction of antifungal peptides. Front Microbiol, 2018, 9: 323. DOI:10.3389/fmicb.2018.00323
|
|
[21] |
任美娟. 杏鲍菇多肽口服液研制及抗氧化功能评价. 太谷: 山西农业大学, 2018. Ren MJ. Preparation of Pleurotus eryngii polypeptide oral liquid and evaluation of its antioxidant activity. Taigu, China: Shanxi Agricultural University, 2018 (in Chinese).
|
|
[22] |
孙金沅, 姜云松, 刘国英, 等. 白酒酒醅中两种多肽的鉴定及其抗氧化和降血压功能评价. 食品与发酵工业, 2019, 45(18): 1-8. Sun JY, Jiang YS, Liu GY, et al. In vitro antioxidant and angiotensinz-converting enzyme inhibitory activities of two oligopeptides in Jiupei of Baijiu. Food Ferment Ind, 2019, 45(18): 1-8 (in Chinese).
|
|
[23] |
李继海. 梅花鹿茸活性成分提取分离、功能评价及功能食品研究[D]. 北京: 中国农业大学, 2005. Li JH. Study on extraction, purification and function evaluation of active composition in pilose antler and function food development[D]. Beijing: China Agricultural University, 2005 (in Chinese).
|
|
[24] |
戴媛. 大豆多肽TTYY的抗氧化功能及其代谢组学研究[D]. 长春: 吉林大学, 2017. Dai Y. Studies on antioxidant function and its metabonomics of soybean polypeptide TTYY[D]. Changchun: Jilin University, 2017 (in Chinese).
|
|
[25] | |
|
[26] |
Nongonierma AB, FitzGerald RJ. An in silico model to predict the potential of dietary proteins as sources of dipeptidyl peptidase Ⅳ (DPP-Ⅳ) inhibitory peptides. Food Chemistry, 2014, 165: 489-498. DOI:10.1016/j.foodchem.2014.05.090
|
|
[27] |
Sánchez-Rivera L, Martínez-Maqueda D, Cruz-Huerta E, et al. Peptidomics for discovery, bioavailability and monitoring of dairy bioactive peptides. Food Res Int, 2014, 63: 170-181. DOI:10.1016/j.foodres.2014.01.069
|
|
[28] |
Nongonierma AB, Mooney C, Shields DC, et al. In silico approaches to predict the potential of milk protein-derived peptides as dipeptidyl peptidase Ⅳ (DPP-Ⅳ) inhibitors. Peptides, 2014, 57: 43-51. DOI:10.1016/j.peptides.2014.04.018
|
|
[29] |
Zhou P, Yang C, Ren Y, et al. What are the ideal properties for functional food peptides with antihypertensive effect? A computational peptidology approach. Food Chem, 2013, 141(3): 2967-2973. DOI:10.1016/j.foodchem.2013.05.140
|
|
[30] |
Acharya C, Kufareva I, Ilatovskiy AV, et al. PeptiSite: a structural database of peptide binding sites in 4D. Biochem Biophys Res Commun, 2014, 445(4): 717-723. DOI:10.1016/j.bbrc.2013.12.132
|
|
[31] |
张贵川. 食源三肽ACE抑制活性构效关系研究[D]. 重庆: 西南大学, 2009. Zhang GC. Studies of QSAR on angiotensin- converting enzyme tri-peptides inhibitors derived from food proteins[D]. Chongqing: Southwest University, 2009 (in Chinese).
|
|
[32] |
Umezawa H, Aoyagi T, Ogawa K, et al. Diprotins A and B, inhibitors of dipeptidyl aminopeptidase Ⅳ, produced by bacteria. J Antibiot, 1984, 37(4): 422-425. DOI:10.7164/antibiotics.37.422
|
|
[33] |
Guan CG, Iwatani S, Xing XH, et al. Strategic preparations of DPP-Ⅳ inhibitory peptides from val-pro-xaa and ile-pro-xaa peptide mixtures. Int J Pept Res Ther, 2021, 27(1): 735-743. DOI:10.1007/s10989-020-10122-7
|
|
[34] |
Nongonierma AB, Dellafiora L, Paolella S, et al. In silico approaches applied to the study of peptide analogs of ile-pro-ile in relation to their dipeptidyl peptidase Ⅳ inhibitory properties. Front Endocrinol, 2018, 9: 329. DOI:10.3389/fendo.2018.00329
|
|
[35] |
Nongonierma AB, FitzGerald RJ. Tryptophan- containing milk protein-derived dipeptides inhibit xanthine oxidase. Peptides, 2012, 37(2): 263-272. DOI:10.1016/j.peptides.2012.07.030
|
|
[36] |
黎青勇. 核桃源降尿酸肽靶向抑制黄嘌呤氧化酶活性的构效机制研究[D]. 广州: 华南理工大学, 2018. Li QY. Study on the structure-activity mechanism of targeting inhibition of xanthine oxidase by uric acid-lowering peptides derived from walnut[D]. Guangzhou: South China University of Technology, 2018 (in Chinese).
|
|
[37] |
何伟炜. 金枪鱼黄嘌呤氧化酶抑制肽的分离鉴定及其作用机制初探[D]. 广州: 华南理工大学, 2019. He WW. Study on identification and mechanism of xanthine oxidase inhibitory peptides from tuna protein[D]. Guangzhou: South China University of Technology, 2019 (in Chinese).
|
|
[38] | |
|
[39] |
曹伯良. 一种从养殖水中直接提取生物活性肽的方法和装置: CN111034669A. 2019-12-15. Cao BL. A method and a device for directly extracting bioactive peptide from aquaculture water: CN111034669A. 2019-12-15(in Chinese).
|
|
[40] | |
|
[41] | |
|
[42] |
Ohsawa K, Nakamura F, Uchida N, et al. Lactobacillus helveticus-fermented milk containing lactononadecapeptide (NIPPLTQTPVVVPPFLQPE) improves cognitive function in healthy middle-aged adults: a randomised, double-blind, placebo-controlled trial. Int J Food Sci Nutr, 2018, 69(3): 369-376. DOI:10.1080/09637486.2017.1365824
|
|
[43] |
Rein D, Ternes P, Demin R, et al. Artificial intelligence identified peptides modulate inflammation in healthy adults. Food Funct, 2019, 10(9): 6030-6041. DOI:10.1039/C9FO01398A
|
|
[44] |
Kennedy K, Cal R, Casey R, et al. The anti-ageing effects of a natural peptide discovered by artificial intelligence. Int J Cosmet Sci, 2020, 42(4): 388-398. DOI:10.1111/ics.12635
|
|
[45] |
Guzman F, Barberis S, Illanes A. Peptide synthesis: chemical or enzymatic. Electron J Biotechnol, 2007, 10(2): 279-314.
|
|
[46] |
Gallego M, Mora L, Hayes M, et al. Effect of cooking and in vitro digestion on the antioxidant activity of dry-cured ham by-products. Food Res Int, 2017, 97: 296-306. DOI:10.1016/j.foodres.2017.04.027
|
|
[47] |
Homayouni-Tabrizi M, Asoodeh A, Soltani M. Cytotoxic and antioxidant capacity of camel milk peptides: effects of isolated peptide on superoxide dismutase and catalase gene expression. J Food Drug Anal, 2017, 25(3): 567-575. DOI:10.1016/j.jfda.2016.10.014
|
|
[48] |
Lassoued I, Mora L, Barkia A, et al. Bioactive peptides identified in thornback ray skin's gelatin hydrolysates by proteases from Bacillus subtilis and Bacillus amyloliquefaciens. J Proteom, 2015, 128: 8-17. DOI:10.1016/j.jprot.2015.06.016
|
|
[49] |
Lassoued I, Mora L, Nasri R, et al. Characterization and comparative assessment of antioxidant and ACE inhibitory activities of thornback ray gelatin hydrolysates. J Funct Foods, 2015, 13: 225-238. DOI:10.1016/j.jff.2014.12.042
|
|
[50] |
Abdelhedi O, Jridi M, Jemil I, et al. Combined biocatalytic conversion of smooth hound viscera: protein hydrolysates elaboration and assessment of their antioxidant, anti-ACE and antibacterial activities. Food Res Int, 2016, 86: 9-23. DOI:10.1016/j.foodres.2016.05.013
|
|
[51] |
Wang Y, Chen H, Wang X, et al. Isolation and identification of a novel peptide from zein with antioxidant and antihypertensive activities. Food Funct, 2015, 6(12): 3799-3806. DOI:10.1039/C5FO00815H
|
|
[52] |
Mirzapour M, Rezaei K, Sentandreu MA, et al. In vitro antioxidant activities of hydrolysates obtained from Iranian wild almond ( Amygdalus scoparia) protein by several enzymes. Int J Food Sci Technol, 2016, 51(3): 609-616. DOI:10.1111/ijfs.12996
|
|
[53] |
Nongonierma AB, Le Maux S, Dubrulle C, et al. Quinoa ( Chenopodium quinoa Willd.) protein hydrolysates with in vitro dipeptidyl peptidase Ⅳ (DPP-Ⅳ) inhibitory and antioxidant properties. J Cereal Sci, 2015, 65: 112-118. DOI:10.1016/j.jcs.2015.07.004
|
|
[54] |
Cheng FY, Lai IC, Lin LC, et al. The in vitro antioxidant properties of alcalase hydrolysate prepared from silkie fowl ( Gallus gallus) blood protein. Anim Sci J, 2016, 87(7): 921-928. DOI:10.1111/asj.12509
|
|
[55] |
Karamać M, Kosińska-Cagnazzo A, Kulczyk A. Use of different proteases to obtain flaxseed protein hydrolysates with antioxidant activity. Int J Mol Sci, 2016, 17(7): 1027. DOI:10.3390/ijms17071027
|
|
[56] |
Arrutia F, Puente Á, Riera FA, et al. Influence of heat pre-treatment on BSA tryptic hydrolysis and peptide release. Food Chem, 2016, 202: 40-48. DOI:10.1016/j.foodchem.2016.01.107
|
|
[57] |
Chang SK, Ismail A, Yanagita T, et al. Antioxidant peptides purified and identified from the oil palm ( Elaeis guineensis Jacq.) kernel protein hydrolysate. J Funct Foods, 2015, 14: 63--75. DOI:10.1016/j.jff.2015.01.011
|
|
[58] |
Lajmi K, Gómez-Estaca J, Hammami M, et al. Upgrading collagenous smooth hound by-products: effect of hydrolysis conditions, in vitro gastrointestinal digestion and encapsulation on bioactive properties. Food Biosci, 2019, 28: 99-108. DOI:10.1016/j.fbio.2019.01.014
|
|
[59] |
Mudgil P, Kamal H, Yuen GC, et al. Characterization and identification of novel antidiabetic and anti-obesity peptides from camel milk protein hydrolysates. Food Chem, 2018, 259: 46-54. DOI:10.1016/j.foodchem.2018.03.082
|
|
[60] |
Nongonierma AB, Paolella S, Mudgil P, et al. Identification of novel dipeptidyl peptidase Ⅳ (DPP-Ⅳ) inhibitory peptides in camel milk protein hydrolysates. Food Chem, 2018, 244: 340-348. DOI:10.1016/j.foodchem.2017.10.033
|
|
[61] |
Nongonierma AB, Cadamuro C, Le Gouic A, et al. Dipeptidyl peptidase Ⅳ (DPP-Ⅳ) inhibitory properties of a camel whey protein enriched hydrolysate preparation. Food Chem, 2019, 279: 70-79. DOI:10.1016/j.foodchem.2018.11.142
|
|
[62] |
Yu Z, Wu S, Zhao W, et al. Identification and the molecular mechanism of a novel myosin-derived ACE inhibitory peptide. Food Funct, 2018, 9(1): 364-370. DOI:10.1039/C7FO01558E
|
|
[63] | |
|
[64] |
Admassu H, Gasmalla MAA, Yang R, et al. Bioactive peptides derived from seaweed protein and their health benefits: antihypertensive, antioxidant, and antidiabetic properties. J Food Sci, 2018, 83(1): 6-16. DOI:10.1111/1750-3841.14011
|
|
[65] |
阮晓慧, 韩军岐, 张润光, 等. 食源性生物活性肽制备工艺、功能特性及应用研究进展. 食品与发酵工业, 2016, 42(6): 248-253. Ruan XH, Han JQ, Zhang RG, et al. Progress in the preparation, functional properties and applications of food-derived bioactive peptides. Food Ferment Ind, 2016, 42(6): 248-253 (in Chinese).
|
|
[66] | |
|
[67] |
Montemurro M, Pontonio E, Gobbetti M, et al. Investigation of the nutritional, functional and technological effects of the sourdough fermentation of sprouted flours. Int J Food Microbiol, 2019, 302: 47-58. DOI:10.1016/j.ijfoodmicro.2018.08.005
|
|
[68] |
Aredes Fernández PA, Stivala MG, Rodríguez Vaquero MJ, et al. Increase in antioxidant and antihypertensive activity by Oenococcus oeni in a yeast autolysis wine model. Biotechnol Lett, 2011, 33(2): 359-364. DOI:10.1007/s10529-010-0446-y
|
|
[69] |
Obaroakpo JU, Liu L, Zhang SW, et al. Α glucosidase and ACE dual inhibitory protein hydrolysates and peptide fractions of sprouted quinoa yoghurt beverages inoculated with Lactobacillus casei. Food Chem, 2019, 299: 124985. DOI:10.1016/j.foodchem.2019.124985
|
|
[70] |
Rizzello CG, Lorusso A, Russo V, et al. Improving the antioxidant properties of quinoa flour through fermentation with selected autochthonous lactic acid bacteria. Int J Food Microbiol, 2017, 241: 252-261. DOI:10.1016/j.ijfoodmicro.2016.10.035
|
|
[71] |
Chakrabarti S, Guha S, Majumder K. Food-derived bioactive peptides in human health: challenges and opportunities. Nutrients, 2018, 10(11): 1738. DOI:10.3390/nu10111738
|
|
[72] |
Daliri EB-M, Lee BH, Park MH, et al. Novel angiotensinⅠ-converting enzyme inhibitory peptides from soybean protein isolates fermented by Pediococcus pentosaceus SDL1409. LWT, 2018, 93: 88-93. DOI:10.1016/j.lwt.2018.03.026
|
|
[73] |
Moslehishad M, Ehsani MR, Salami M, et al. The comparative assessment of ACE-inhibitory and antioxidant activities of peptide fractions obtained from fermented camel and bovine milk by Lactobacillus rhamnosus PTCC 1637. Int Dairy J, 2013, 29(2): 82-87. DOI:10.1016/j.idairyj.2012.10.015
|
|
[74] |
Masuda O, Nakamura Y, Takano T. Antihypertensive peptides are present in aorta after oral administration of sour milk containing these peptides to spontaneously hypertensive rats. J Nutr, 1996, 126(12): 3063-3068. DOI:10.1093/jn/126.12.3063
|
|
[75] |
DiBianco R. Adverse reactions with angiotensin converting enzyme (ACE) inhibitors. Med Toxicol, 1986, 1(2): 122-141. DOI:10.1007/BF03259832
|
|
[76] |
Nakamura Y, Masuda O, Takano T. Decrease of tissue angiotensin I-converting enzyme activity upon feeding sour milk in spontaneously hypertensive rats. Biosci Biotechnol Biochem, 1996, 60(3): 488-489. DOI:10.1271/bbb.60.488
|
|
[77] | |
|
[78] |
Merrifield RB. Solid phase peptide synthesis. Ⅰ. the synthesis of a tetrapeptide. J Am Chem Soc, 1963, 85(14): 2149-2154. DOI:10.1021/ja00897a025
|
|
[79] | |
|
[80] | |
|
[81] |
徐珂, 张丽萍, 张园园, 等. 微生物源抗菌肽表达系统研究进展及改造策略. 河北科技大学学报, 2019, 40(5): 454-460. Xu K, Zhang LP, Zhang YY, et al. Advances in microbial antimicrobial peptides expression system and transformation strategy. J Hebei Univ Sci Technol, 2019, 40(5): 454-460 (in Chinese).
|
|
[82] |
Deng T, Ge H, He H, et al. The heterologous expression strategies of antimicrobial peptides in microbial systems. Protein Expr Purif, 2017, 140: 52-59. DOI:10.1016/j.pep.2017.08.003
|
|
[83] |
Prak K, Utsumi S. Production of a bioactive peptide (ⅡAEK) in Escherichia coli using soybean proglycinin A1aB1b as a carrier. J Agric Food Chem, 2009, 57(9): 3792-3799. DOI:10.1021/jf8034258
|
|
[84] |
Guo C, Huang Y, Zheng H, et al. Secretion and activity of antimicrobial peptide cecropin D expressed in Pichia pastoris. Exp Ther Med, 2012, 4(6): 1063-1068. DOI:10.3892/etm.2012.719
|
|
[85] |
Meng DM, Dai HX, Gao XF, et al. Expression, purification and initial characterization of a novel recombinant antimicrobial peptide mytichitin-A in Pichia pastoris. Protein Expr Purif, 2016, 127: 35-43. DOI:10.1016/j.pep.2016.07.001
|
|
[86] |
Zhang J, Yang Y, Teng D, et al. Expression of plectasin in Pichia pastoris and its characterization as a new antimicrobial peptide against Staphyloccocus and Streptococcus. Protein Expr Purif, 2011, 78(2): 189-196. DOI:10.1016/j.pep.2011.04.014
|
|
[87] |
吕星星, 王莎莎, 赵震, 等. 基于重组毕赤酵母的鳜鱼β-防御素生物合成及其抑菌活性. 上海海洋大学学报, 2020, 29(4): 568-577. X X, Wang SS, Zhao Z, et al. Biosynthesis of Siniperca chuatsi β-defensin based on recombinant Pichia pastoris and its antibacterial activity. J Shanghai Ocean Univ, 2020, 29(4): 568-577 (in Chinese).
|
|
[88] |
Koos JD, Link AJ. Heterologous and in vitro reconstitution of fuscanodin, a lasso peptide from Thermobifida fusca. J Am Chem Soc, 2019, 141(2): 928-935. DOI:10.1021/jacs.8b10724
|
|
[89] |
Liu SJ, Li YM, Xu ZW, et al. Immune responses elicited in mice with recombinant Lactococcus lactis expressing F4 fimbrial adhesin FaeG by oral immunization. Vet Res Commun, 2010, 34(6): 491-502. DOI:10.1007/s11259-010-9418-x
|
|
[90] |
Murray CJ, Baliga R. Cell-free translation of peptides and proteins: from high throughput screening to clinical production. Curr Opin Chem Biol, 2013, 17(3): 420-426. DOI:10.1016/j.cbpa.2013.02.014
|
|
[91] |
Kragol G, Lovas S, Varadi G, et al. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry, 2001, 40(10): 3016-3026. DOI:10.1021/bi002656a
|
|
[92] |
Taniguchi M, Ochiai A, Kondo H, et al. Pyrrhocoricin, a proline-rich antimicrobial peptide derived from insect, inhibits the translation process in the cell-free Escherichia coli protein synthesis system. J Biosci Bioeng, 2016, 121(5): 591-598. DOI:10.1016/j.jbiosc.2015.09.002
|
|