[1] |
Sherin K, Shahidi Latham, Sucharita M, et al. Evaluation of an accurate mass approach for the simultaneous detection of drug and metabolite distributions via whole-body mass spectrometric imaging. Anal Chem, 2012, 84(16): 7158-7165. DOI:10.1021/ac3015142
|
|
[2] |
Palandra J, Weller D, Hudson G, et al. Flexible automated approach for quantitative liquid handling of complex biological samples. Anal Chem, 2007, 79(21): 8010-8015. DOI:10.1021/ac070618s
|
|
[3] |
许晓辉, 邱国玉, 景武堂, 等. 液质联用技术在新药研发中的应用. 转化医学电子杂志, 2018, 5(11): 90-94. Xu XH, Qiu GY, Jing WT, et al. The application of liquid chromatography-mass spectrometry technology in the research and development of new drug. E J Transl Med, 2018, 5(11): 90-94 (in Chinese). DOI:10.12095/j.issn.2095-6894.2018.11.022
|
|
[4] |
滑静, 王建立, 张淑萍. 动物性食品中四环素类药物残留的检测方法. 动物科学与动物医学, 2004(7): 26-27, 33. Hua J, Wang JL, Zhang SP. The methods of determination of residual tetracyclines in animal food. Animal Sci Vet Med, 2004(7): 26-27, 33 (in Chinese). DOI:10.3969/j.issn.1673-5358.2004.07.010
|
|
[5] | |
|
[6] |
Hauvermale AL, Steber CM. GA signaling is essential for the embryo-to-seedling transition during Arabidopsis seed germination, a ghost story. Plant Signal Behav, 2020, 15(1): 1705028. DOI:10.1080/15592324.2019.1705028
|
|
[7] |
Han YQ, Shi Y, Gao YM, et al. Treatment of Glycine max seeds with gibberellins alters root morphology, anatomy, and transcriptional networks. Biol Plant, 2020, 64: 32-42. DOI:10.32615/bp.2019.124
|
|
[8] |
Lorrai R, Boccaccini A, Ruta V, et al. Abscisic acid inhibits hypocotyl elongation acting on gibberellins, DELLA proteins and auxin. AoB Plants, 2018, 10(5): ply061.
|
|
[9] |
Qi TC, Huang H, Wu DW, et al. Arabidopsis DELLA and JAZ proteins bind the WD-repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy. Plant Cell, 2014, 26(3): 1118-1133. DOI:10.1105/tpc.113.121731
|
|
[10] |
Huang H, Gong YL, Liu B, et al. The DELLA proteins interact with MYB21 and MYB24 to regulate filament elongation in Arabidopsis. BMC Plant Biol, 2020, 20(1): 64. DOI:10.1186/s12870-020-2274-0
|
|
[11] |
Alseekh S, Perez de Souza L, Benina M, et al. The style and substance of plant flavonoid decoration; towards defining both structure and function. Phytochemistry, 2020, 174: 112347. DOI:10.1016/j.phytochem.2020.112347
|
|
[12] |
Kojima M, Kamada-Nobusada T, Komatsu H, et al. Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography-tandem mass spectrometry: an application for hormone profiling in Oryza sativa. Plant Cell Physiol, 2009, 50(7): 1201-1214. DOI:10.1093/pcp/pcp057
|
|
[13] | |
|
[14] |
Du FY, Ruan GH, Liu HW. Erratum to: analytical methods for tracing plant hormones. Anal Bioanal Chem, 2012, 404(5): 1615. DOI:10.1007/s00216-012-6222-1
|
|
[15] |
Yi XH, Hua Q, Lu YT. Determination of organophoaphoms pesticide residues in the roots of Platycodon grandiflorum by solid-phase extraction and gas chromatography with flame photometric detection. J Assoc OffAhal Chem, 2006, 89(1): 225-229.
|
|
[16] |
Liu H, Li T, Shao J. Determination of plant growth regulator residues in fruits by quick extraction and high performance liquid chromatography. J Anal Sci, 2014, 30(4): 500-506.
|
|
[17] |
Zhou F, Lin QB, Zhu LH, et al. D14–SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature, 2013, 504(7480): 406-420. DOI:10.1038/nature12878
|
|
[18] |
Xin PY, Li BB, Yan JJ, et al. Pursuing extreme sensitivity for determination of endogenous brassinosteroids through direct fishing from plant matrices and eliminating most interferences with boronate affinity magnetic nanoparticles. Anal and Bioanal Chem, 2018, 410(4): 1363-1374. DOI:10.1007/s00216-017-0777-9
|
|
[19] |
Xu X, Hou X, Han M, et al. Simultaneous determination of multiclass plant growth regulators in fruits using the quick, easy, cheap, effective, rugged, and safe method and ultra-high performance liquid chromatography-tandem mass spectrometry. J Sep Sci, 2020, 43(4): 788-798. DOI:10.1002/jssc.201900771
|
|
[20] |
Xin PY, Guo QH, Li BB, et al. A tailored high-efficiency sample pretreatment method for simultaneous quantification of 10 classes of known endogenous phytohormones. Plant Commun, 2020, 1(3): 1-10.
|
|
[21] |
Ding QQ, Chen H, Huang CH, et al. A fish scale-like magnetic nanomaterial as a highly efficient sorbent for monitoring the changes in auxin levels under cadmium stress. Analyst, 2020, 145(8): 5925-5932.
|
|
[22] |
Li N, Wu D, Li XT. Effective enrichment and detection of plant growth regulators in fruits and vegetables using a novel magnetic covalent organic framework material as the adsorbents. Food Chem, 2020, 306(15): 125446-125455.
|
|
[23] |
Wang CJ, Ding CY, Wu QW, et al. Molecularly imprinted polymers with dual template and bifunctional monomers for selective and simultaneous solid-phase extraction and gas chromatographic determination of four plant growth regulators in plant-derived tissues and foods. Food Anal Methods, 2019, 12(4): 1160-1169.
|
|
[24] |
中华人民共和国卫生部. 食品中泛酸的测定: GB/T 5009.210—2008. 北京: 中国标准出版社, 2009. Ministry of Health of the People's Republic of China. Determination of pantothenic acid in foods: GB/T 5009.210—2008. Beijing: Standards Press of China, 2009 (in Chinese).
|
|
[25] |
Bailey LB, Stover PJ, McNulty H, et al. Biomarkers of nutrition for development-folate review. J Nutr, 2015, 145(7): 1636S-1680S. DOI:10.3945/jn.114.206599
|
|
[26] |
Beaudin AE, Stover PJ. Folate-mediated one-carbon metabolism and neural tube defects: balancing genome synthesis and gene expression. Birth Defects Res C Embryo Today Rev, 2007, 81(3): 183-203. DOI:10.1002/bdrc.20100
|
|
[27] |
Hueston WJ. Folic acid for the prevention of neural tube defects. Am Fam Physician, 1993, 47(5): 1058-1060.
|
|
[28] |
张艳, 霍胜楠, 胡明燕, 等. 婴幼儿乳粉中泛酸测定的不确定度研究. 食品研究与开发, 2014, 35(9): 92-95. Zhang Y, Huo SN, Hu MY, et al. Uncertainty evaluation for pantothenic acid determination in infant formula. Food Res Dev, 2014, 35(9): 92-95 (in Chinese). DOI:10.3969/j.issn.1005-6521.2014.09.024
|
|
[29] |
王海霞, 齐飞, 李涛, 等. 高效液相色谱法测水溶性维生素综述. 药物分析杂志, 2015, 49(19): 15-19. Wang HX, Qi F, Li T, et al. Review on determination of water-soluble vitamins by high performance liquid chromatography. J Pharm Anal, 2015, 49(19): 15-19 (in Chinese).
|
|
[30] |
Szpylka J, De Vries J, Cheney A, et al. Determination of total folates in infant formula and adult nutritionals by trienzyme extraction and UPLC-MS/MS quantitation: first action 2011.06. J AOAC Int, 2019, 95(6): 1547-1554.
|
|
[31] |
邵丽华, 王莉, 白文文, 等. 山西谷子资源叶酸含量分析及评价. 中国农业科学, 2014, 47(7): 1265-1272. Shao LH, Wang L, Bai WW, et al. Evaluation and analysis of folic acid content in millet from different ecological regions in Shanxi province. Sci Agric Sin, 2014, 47(7): 1265-1272 (in Chinese). DOI:10.3864/j.issn.0578-1752.2014.07.003
|
|
[32] |
李富兰, 颜杰, 郭金全, 等. 蚕沙中叶酸的提取与分析检测. 食品科技, 2009, 34(10): 211-213. Li FL, Yan J, Guo JQ, et al. Extraction and analysis of silkworm folic acid. Food Sci Technol, 2009, 34(10): 211-213 (in Chinese).
|
|
[33] |
Wang C, Riedl KM, Schwartz SJ. A liquid chromatography-tandem mass spectrometric method for quantitative determination of native 5-methyltetrahydrofolate and its polyglutamyl derivatives in raw vegetables. J Chromatogr B, 2010, 878(29): 2949-2958. DOI:10.1016/j.jchromb.2010.08.043
|
|
[34] |
王竹. 样品前处理对食物中叶酸测定的影响. 卫生研究, 2000, 29(6): 404-406. Wang Z. Effect of pretreatment on the measurement of folate in foods. J Hyg Res, 2000, 29(6): 404-406 (in Chinese). DOI:10.3969/j.issn.1000-8020.2000.06.017
|
|
[35] |
Ye X, Kang W, Li Q, et al. Determination of folic acid in fruits by high performance liquid chromatography tandem mass spectrometry and its stability. Food Ind, 2020, 41(1): 311-315.
|
|
[36] |
黄进丽, 杨祖伟, 陈叶兰, 等. 微生物法检测叶酸、生物素、维生素B 12接种液制备方法的优化. 食品安全质量检测学报, 2020, 11(1): 99-105. Huang JL, Yang ZW, Chen YL, et al. Optimization of preparation method of inoculating solution for microbial detection of folic acid, biotin and vitamin B 12. J Food Saf & Qual, 2020, 11(1): 99-105 (in Chinese).
|
|
[37] |
郭丽琼, 曹秋旭, 吴厚玖. 果蔬中叶酸分析方法研究的进展. 食品工业科技, 2012, 33(10): 402-406, 411. Guo LQ, Cao QX, Wu HJ. Research progress of folic acid analysis in fruit and vegetable. Sci Technol Food Ind, 2012, 33(10): 402-406, 411 (in Chinese).
|
|
[38] |
Chandra-Hioe MV, Bucknall MP, Arcot J. Folate analysis in foods by UPLC-MS/MS: development and validation of a novel, high throughput quantitative assay; folate levels determined in Australian fortified breads. Anal Bioanal Chem, 2011, 401(3): 1035-1042. DOI:10.1007/s00216-011-5156-3
|
|
[39] |
Pawlosky RJ, Hertrampf E, Flanagan VP, et al. Mass spectral determinations of the folic acid content of fortified breads from chile. J Food Compos Anal, 2003, 16(3): 281-286. DOI:10.1016/S0889-1575(03)00033-4
|
|
[40] |
Li X, Yang SB, Qiu YP, et al. Urinary metabolomics as a potentially novel diagnostic and stratification tool for knee osteoarthritis. Metabolomics, 2010, 6(1): 109-118. DOI:10.1007/s11306-009-0184-0
|
|
[41] |
赵淑军, 董姣姣, 刘洁, 等. 黄芪中黄酮类化合物的超临界流体色谱分离方法研究. 分析测试学报, 2021, 40(9): 1311-1317. Zhao SJ, Dong JJ, Liu J, et al. Study on separation of flavonoids in Astragalus membranaceus by supercritical fluid chromatography. J Instrum Anal, 2021, 40(9): 1311-1317 (in Chinese).
|
|
[42] |
郭亚健, 范莉, 王晓强, 张兰珍. 关于NaNO 2- Al(NO 3) 3-NaOH比色法测定总黄酮方法的探讨. 药物分析杂志, 2002, 22(2): 97-99. Guo YJ, Fan L, Wang XQ, et al. Discussion about NaNO 2-Al (NO 3) 3-NaOH colorimetry for determination of total flavonoids. Chin J Pharm Anal, 2002, 22(2): 97-99 (in Chinese).
|
|
[43] |
王海燕, 李玉琴, 郑晓园. 毛细管电泳法测定金银花中芦丁、绿原酸、槲皮素和咖啡酸的含量. 西北药学杂志, 2012, 27(6): 521-523. Wang HY, Li YQ, Zheng XY. Simultaneous determination of rutin, chlorogenic acid, quercetin, coffeic acid in Lonicera japonica Thunb. by capillary electrophoresis. Northwest Pharm J, 2012, 27(6): 521-523 (in Chinese).
|
|
[44] |
Cao W, Ye LH, Cao J, et al. Quantitative analysis of flavanones from Citrus fruits by using mesoporous molecular sieve-based miniaturized solid phase extraction coupled to ultrahigh-performance liquid chromatography and quadrupole time-of-flight mass spectrometry. J Chromatogr A, 2015, 1406: 68-77.
|
|
[45] |
李珍柱, 苏学素, 焦必宁, 等. 柑橘中类黄酮的前处理及检测技术研究进展. 食品工业科技, 2018, 39(4): 329-336. Li ZZ, Su XS, Jiao BN, et al. Advances on pretreatment and determination technologies for flavonoids in Citrus. Sci Technol Food Ind, 2018, 39(4): 329-336 (in Chinese).
|
|
[46] |
Lee YH, Charles AL, Kung HF, et al. Extraction of nobiletin and tangeretin from Citrus depressa Hayata by supercritical carbon dioxide with ethanol as modifier. Ind Crops Prod, 2010, 31(1): 59-64.
|
|
[47] |
袁杰, 龚又明, 鞠鹏, 孔令义. HPLC-MS~2法分析朝鲜淫羊藿中的化学成分. 中草药, 2004, 35(4): 371-374. Yuan J, Gong YM, Ju P, et al. HPLC-MS~2 analysis of chemical constituents in Epimedium koreanum. Chin Tradit Herb Drugs, 2004, 35(4): 371-374 (in Chinese).
|
|
[48] |
史颖珠, 侯建波, 谢文, 等. 液相色谱-串联质谱法测定山银花中有机酸和黄酮类化合物的含量. 现代食品科技, 2021, 37(3): 275-285. Shi YZ, Hou JB, Xie W, et al. Simultaneous determination of organic acids and flavonoids in lonicerae Flos by liquid chromatography-tandem mass spectrometry. Mod Food Sci Technol, 2021, 37(3): 275-285 (in Chinese).
|
|
[49] |
车庆明, 黄新立, 李艳梅, 张坤, 赤尾光昭, 服部征雄. 黄芩苷的药物代谢产物研究. 中国中药杂志, 2001, 26(11): 768-769. Che QM, Huang XL, Li YM, et al. Studies on metabolites of baicalin in human urine. China J Chin Mater Med, 2001, 26(11): 768-769 (in Chinese).
|
|