[1] | |
|
[2] |
Consortium EBR. Engineering biology: a research roadmap for the next-generation bioeconomy[EB/OL]. [2019-06]. https://roadmap.ebrc.org.
|
|
[3] |
Agarwal KL, Buchi H, Caruthers MH, et al. Total synthesis of the gene for an alanine transfer ribonucleic acid from yeast. Nature, 1970, 227(5253): 27-34. DOI:10.1038/227027a0
|
|
[4] |
Notka F, Liss M, Wagner R. Industrial scale gene synthesis. Methods Enzymol, 2011, 498: 247-275.
|
|
[5] |
Chao R, Yuan YB, Zhao HM. Recent advances in DNA assembly technologies. FEMS Yeast Res, 2015, 15(1): 1-9. DOI:10.1093/femsyr/fou003
|
|
[6] | |
|
[7] |
Anastas P, Eghbali N. Green chemistry: principles and practice. Chem Soc Rev, 2010, 39: 301. DOI:10.1039/B918763B
|
|
[8] |
Yantsevich AV, Shchur VV, Usanov SA. Oligonucleotide preparation approach for assembly of DNA synthons. SLAS Technol, 2019, 24(6): 556-568. DOI:10.1177/2472630319850534
|
|
[9] |
Pon RT, Yu SY, Guo ZQ, et al. Reusable solid-phase supports for oligonucleotides and antisense therapeutics. J Chem Soc Perkin Trans 1, 2001(20): 2638-2643.
|
|
[10] |
Hyodo M, Morimura M, Hayakawa Y. A solid support with a hydroxyallyl linker, full parts of which are potentially reusable for the synthesis of oligonucleotides. Nucleosides Nucleotides Nucleic Acids, 2005, 24(5/6/7): 585-588.
|
|
[11] |
Kumar P, Mahajan S, Gupta KC. Universal reusable polymer support for oligonucleotide synthesis. J Org Chem, 2004, 69(19): 6482-6485. DOI:10.1021/jo049575v
|
|
[12] |
Sanghvi YS, Ravikumar VT, Scozzari AN, et al. Applications of green chemistry in the manufacture of oligonucleotide drugs. Pure Appl Chem, 2001, 73(1): 175-180. DOI:10.1351/pac200173010175
|
|
[13] | |
|
[14] |
Hughes RA, Ellington AD. Synthetic DNA synthesis and assembly: putting the synthetic in synthetic biology. Cold Spring Harb Perspect Biol, 2017, 9(1): a023812. DOI:10.1101/cshperspect.a023812
|
|
[15] |
Kumar G, Poonian M. Improvements in oligodeoxyribonucleotide synthesis: methyl N, N-dialkylphosphoramidite dimer units for solid support phosphite methodology. J Org Chem, 1984, 49: 4905-4912. DOI:10.1021/jo00199a032
|
|
[16] |
Kayushin AL, Korosteleva MD, Miroshnikov AI, et al. A convenient approach to the synthesis of trinucleotide phosphoramidites--synthons for the generation of oligonucleotide/peptide libraries. Nucleic Acids Res, 1996, 24(19): 3748-3755. DOI:10.1093/nar/24.19.3748
|
|
[17] |
Suchsland R, Appel B, Janczyk M, et al. Solid phase assembly of fully protected trinucleotide building blocks for codon-based gene synthesis. Applied Sciences-Basel, 2019, 9(11): 2199-2209. DOI:10.3390/app9112199
|
|
[18] |
Sierzchala AB, Dellinger DJ, Betley JR, et al. Solid-phase oligodeoxynucleotide synthesis: a two-step cycle using peroxy anion deprotection. J Am Chem Soc, 2003, 125(44): 13427-13441. DOI:10.1021/ja030376n
|
|
[19] |
Jensen M, Roberts L, Johnson A, et al. Next generation 1 536-well oligonucleotide synthesizer with on-the-fly dispense. J Biotechnol, 2014, 171: 76-81. DOI:10.1016/j.jbiotec.2013.11.027
|
|
[20] |
Cheng JY, Chen HH, Kao YS, et al. High throughput parallel synthesis of oligonucleotides with 1 536 channel synthesizer. Nucleic Acids Res, 2002, 30(18): e93. DOI:10.1093/nar/gnf092
|
|
[21] |
Lietard J, Schaudy E, Holz K, et al. High-density DNA and RNA microarrays-photolithographic synthesis, hybridization and preparation of large nucleic acid libraries. J Vis Exp, 2019(150): e59936.
|
|
[22] |
Lietard J, Ameur D, Damha MJ, et al. High-density RNA microarrays synthesized in situ by photolithography. Angewandte Chemie Int Ed, 2018, 57(46): 15257-15261. DOI:10.1002/anie.201806895
|
|
[23] |
Hoelz K, Hoi JK, Schaudy E, et al. High-efficiency reverse (5'→3') synthesis of complex DNA microarrays. Sci Reports, 2018, 8: 15099-15110.
|
|
[24] |
Sinyakov AN, Nikolaenkova EB, Os'kina IA, et al. Photogenerator of trichloroacetic acid as a promising detritylation agent for oligonucleotide microarray synthesis. Russ J Bioorg Chem, 2014, 40(5): 586-588. DOI:10.1134/S1068162014050124
|
|
[25] |
Agbavwe C, Kim C, Hong D, et al. Efficiency, error and yield in light-directed maskless synthesis of DNA microarrays. J Nanobiotechnol, 2011, 9: 57-73. DOI:10.1186/1477-3155-9-57
|
|
[26] |
Chow BY, Emig CJ, Jacobson JM. Photoelectrochemical synthesis of DNA microarrays. PNAS, 2009, 106(36): 15219. DOI:10.1073/pnas.0813011106
|
|
[27] |
Saaem I, Ma KS, Marchi AN, et al. In situ synthesis of DNA microarray on functionalized cyclic olefin copolymer substrate. ACS Appl Mater Interfaces, 2010, 2(2): 491-497. DOI:10.1021/am900884b
|
|
[28] |
Lausted C, Dahl T, Warren C, et al. POSaM: a fast, flexible, open-source, inkjet oligonucleotide synthesizer and microarrayer. Genome Biol, 2004, 5(8): R58. DOI:10.1186/gb-2004-5-8-r58
|
|
[29] |
Egeland RD, Southern EM. Electrochemically directed synthesis of oligonucleotides for DNA microarray fabrication. Nucleic Acids Res, 2005, 33(14): e125. DOI:10.1093/nar/gni117
|
|
[30] |
Srivannavit O, Gulari M, Hua ZS, et al. Microfluidic reactor array device for massively parallel in situ synthesis of oligonucleotides. Sens Actuators B Chem, 2009, 140(2): 473-481. DOI:10.1016/j.snb.2009.04.071
|
|
[31] |
Hua ZS, Xia YM, Srivannavit O, et al. A versatile microreactor platform featuring a chemical-resistant microvalve array for addressable multiplex syntheses and assays. J Micromech Microeng, 2006, 16(8): 1433-1443. DOI:10.1088/0960-1317/16/8/001
|
|
[32] |
Crosby SR, Jennison M, Brennan J. Thermally-cleavable protecting and linker groups: US, 16604329. 2018-04-12.
|
|
[33] | |
|
[34] |
Tang N, Ma SY, Tian JD. New tools for cost-effective DNA synthesis. Synthetic Biology. Amsterdam: Elsevier, 2013: 3-21.
|
|
[35] |
闫汉, 肖鹏峰, 刘全俊, 陆祖宏. DNA微阵列原位化学合成. 合成生物学, 2021, 2(03): 354-370. Yan H, Xiao PF, Liu QJ, et al. In situ chemical synthesis of DNA microarrays. Synthetic Biology Journal, 2021, 2(03): 354-370 (in Chinese).
|
|
[36] |
Tian JD, Ma KS, Saaem I. Advancing high-throughput gene synthesis technology. Mol BioSyst, 2009, 5(7): 714-722. DOI:10.1039/b822268c
|
|
[37] |
Kosuri S, Church GM. Large-scale de novo DNA synthesis: technologies and applications. Nat Methods, 2014, 11(5): 499-507. DOI:10.1038/nmeth.2918
|
|
[38] | |
|
[39] |
Kim H, Han H, Ahn J, et al. 'Shotgun DNA synthesis' for the high-throughput construction of large DNA molecules. Nucleic Acids Res, 2012, 40(18): e140. DOI:10.1093/nar/gks546
|
|
[40] |
Wan W, Lu M, Wang D, et al. High-fidelity de novo synthesis of pathways using microchip-synthesized oligonucleotides and general molecular biology equipment. Sci Reports, 2017, 7: 6119-6130.
|
|
[41] |
Quan J, Saaem I, Tang N, et al. Parallel on-chip gene synthesis and application to optimization of protein expression. Nat Biotechnol, 2011, 29(5): 449-452. DOI:10.1038/nbt.1847
|
|
[42] |
Banyai W, Peck BJ, Fernandez A, et al. De novo synthesized gene libraries: US, 15233835. 2016-08-10.
|
|
[43] |
Plesa C, Sidore AM, Lubock NB, et al. Multiplexed gene synthesis in emulsions for exploring protein functional landscapes. Science, 2018, 359(6373): 343-347. DOI:10.1126/science.aao5167
|
|
[44] |
Sidore AM, Plesa C, Samson JA, et al. DropSynth 2.0: high-fidelity multiplexed gene synthesis in emulsions. Nucleic Acids Res, 2020, 48(16): e95. DOI:10.1093/nar/gkaa600
|
|
[45] |
Kuiper BP, Prins RC, Billerbeck S. Oligo pools as an affordable source of synthetic DNA for cost-effective library construction in protein- and metabolic pathway engineering. ChemBiochem, 2022, 23(7): e202100507.
|
|
[46] |
Sinyakov AN, Ryabinin VA, Kostina EV. Application of array-based oligonucleotides for synthesis of genetic designs. Mol Biol (Mosk), 2021, 55(4): 562-577.
|
|
[47] |
Li AT, Sun ZT, Reetz MT. Solid-phase gene synthesis for mutant library construction: the future of directed evolution?. ChemBioChem, 2018, 19(19): 2023-2032. DOI:10.1002/cbic.201800339
|
|
[48] |
Li AT, Acevedo-Rocha CG, Sun ZT, et al. Beating bias in the directed evolution of proteins: combining high-fidelity on-chip solid-phase gene synthesis with efficient gene assembly for combinatorial library construction. ChemBioChem, 2018, 19(3): 221-228. DOI:10.1002/cbic.201700540
|
|
[49] |
Tian JD, Gong H, Sheng NJ, et al. Accurate multiplex gene synthesis from programmable DNA microchips. Nature, 2004, 432(7020): 1050-1054. DOI:10.1038/nature03151
|
|
[50] |
Kim H, Han H, Shin D, et al. A fluorescence selection method for accurate large-gene synthesis. ChemBioChem, 2010, 11(17): 2448-2452. DOI:10.1002/cbic.201000368
|
|
[51] |
Choi H, Choi Y, Choi J, et al. Purification of multiplex oligonucleotide libraries by synthesis and selection. Nat Biotechnol, 2022, 40(1): 47-53. DOI:10.1038/s41587-021-00988-3
|
|
[52] |
Matzas M, Stähler PF, Kefer N, et al. High-fidelity gene synthesis by retrieval of sequence-verified DNA identified using high-throughput pyrosequencing. Nat Biotechnol, 2010, 28(12): 1291-1294. DOI:10.1038/nbt.1710
|
|
[53] |
Zhang J, Wang YF, Chai BH, et al. Efficient and low-cost error removal in DNA synthesis by a high-durability MutS. ACS Synth Biol, 2020, 9(4): 940-952. DOI:10.1021/acssynbio.0c00079
|
|
[54] |
Wan W, Li LL, Xu QQ, et al. Error removal in microchip-synthesized DNA using immobilized MutS. Nucleic Acids Res, 2014, 42(12): e102. DOI:10.1093/nar/gku405
|
|
[55] |
Wan W, Wang DM, Gao XL, et al. Immobilized MutS-mediated error removal of microchip-synthesized DNA. Methods Mol Biol, 2017, 1472: 217-235.
|
|
[56] |
Sequeira AF, Guerreiro CIPD, Vincentelli R, et al. T7 endonuclease I mediates error correction in artificial gene synthesis. Mol Biotechnol, 2016, 58(8/9): 573-584.
|
|
[57] |
Lubock NB, Zhang D, Sidore AM, et al. A systematic comparison of error correction enzymes by next-generation sequencing. Nucleic Acids Res, 2017, 45(15): 9206-9217. DOI:10.1093/nar/gkx691
|
|
[58] |
Wu Y, Li BZ, Zhao M, et al. Bug mapping and fitness testing of chemically synthesized chromosome X. Science, 2017, 355(6329): eaaf4706. DOI:10.1126/science.aaf4706
|
|
[59] |
Zan XZ, Yao XY, Xu P, et al. A hierarchical error correction strategy for text DNA storage. Interdiscip Sci, 2022, 14(1): 141-150. DOI:10.1007/s12539-021-00476-x
|
|
[60] |
Antkowiak PL, Lietard J, Darestani MZ, et al. Low cost DNA data storage using photolithographic synthesis and advanced information reconstruction and error correction. Nat Commun, 2020, 11(1): 5345. DOI:10.1038/s41467-020-19148-3
|
|
[61] |
Lee H, Wiegand DJ, Griswold K, et al. Photon-directed multiplexed enzymatic DNA synthesis for molecular digital data storage. Nat Commun, 2020, 11(1): 5246. DOI:10.1038/s41467-020-18681-5
|
|
[62] |
Jensen MA, Davis RW. Template-independent enzymatic oligonucleotide synthesis (TiEOS): its history, prospects, and challenges. Biochemistry, 2018, 57(12): 1821-1832. DOI:10.1021/acs.biochem.7b00937
|
|
[63] |
Mackey JK, Gilham PT. New approach to the synthesis of polyribonucleotides of defined sequence. Nature, 1971, 233(5321): 551-553. DOI:10.1038/233551a0
|
|
[64] |
Gillam S, Waterman K, Smith M. Enzymatic synthesis of oligonucleotides of defined sequence. Addition of short blocks of nucleotide residues to oligonucleotide primers. Nucleic Acids Res, 1975, 2(5): 613-624. DOI:10.1093/nar/2.5.613
|
|
[65] |
Kaufmann G, Fridkin M, Zutra A, et al. Monofunctional substrates of polynucleotide phosphorylase. The monoaddition of 2' (3')-O-isovaleryl-nucleoside diphosphate to an initiator oligonucleotide. Eur J Biochem, 1971, 24(1): 4-11. DOI:10.1111/j.1432-1033.1971.tb19649.x
|
|
[66] |
Gillam S, Waterman K, Doel M, et al. Enzymatic synthesis of deoxyribo-oligonucleotides of defined sequence. Deoxyribo-oligonucleotide synthesis. Nucleic Acids Res, 1974, 1(12): 1649-1664. DOI:10.1093/nar/1.12.1649
|
|
[67] |
Gillam S, Smith M. Enzymatic synthesis of deoxyribo-oligonucleotides of defined sequence. Properties of the enzyme. Nucleic Acids Res, 1974, 1(12): 1631-1647. DOI:10.1093/nar/1.12.1631
|
|
[68] |
Gilham S, Smith M. Enzymatic synthesis of deoxyribo-oligonucleotides of defined sequence. Nat New Biol, 1972, 238(86): 233-234. DOI:10.1038/newbio238233a0
|
|
[69] |
Gillam S, Rottman F, Jahnke P, et al. Enzymatic synthesis of oligonucleotides of defined sequence: synthesis of a segment of yeast iso-1-cytochrome c gene. PNAS, 1977, 74(1): 96-100. DOI:10.1073/pnas.74.1.96
|
|
[70] |
Cardenas PP, Carzaniga T, Zangrossi S, et al. Polynucleotide phosphorylase exonuclease and polymerase activities on single-stranded DNA ends are modulated by RecN, SsbA and RecA proteins. Nucleic Acids Res, 2011, 39(21): 9250-9261. DOI:10.1093/nar/gkr635
|
|
[71] |
Hinton DM, Baez JA, Gumport RI. T4 RNA ligase joins 2'-deoxyribonucleoside 3', 5'-bisphosphates to oligodeoxyribonucleotides. Biochemistry, 1978, 17(24): 5091-5097. DOI:10.1021/bi00617a004
|
|
[72] |
Hinton DM, Gumport RI. The synthesis of oligodeoxyribonucleotides using RNA ligase. Nucleic Acids Res, 1979, 7(2): 453-464. DOI:10.1093/nar/7.2.453
|
|
[73] |
Hinton DM, Brennan CA, Gumport RI. The preparative synthesis of oligodeoxyribonucleotides using RNA ligase. Nucleic Acids Res, 1982, 10(6): 1877-1894. DOI:10.1093/nar/10.6.1877
|
|
[74] |
Schmitz C, Reetz MT. Solid-phase enzymatic synthesis of oligonucleotides. Org Lett, 1999, 1(11): 1729-1731. DOI:10.1021/ol990240n
|
|
[75] |
Nick McElhinny SA, Havener JM, Garcia-Diaz M, et al. A gradient of template dependence defines distinct biological roles for family X polymerases in nonhomologous end joining. Mol Cell, 2005, 19(3): 357-366. DOI:10.1016/j.molcel.2005.06.012
|
|
[76] |
Chen YN, Podlevsky JD, Logeswaran D, et al. A single nucleotide incorporation step limits human telomerase repeat addition activity. EMBO J, 2018, 37(6): e97953.
|
|
[77] |
Chen W, Guidotti G. Soluble apyrases release ADP during ATP hydrolysis. Biochem Biophys Res Commun, 2001, 282(1): 90-95. DOI:10.1006/bbrc.2001.4555
|
|
[78] |
J.W. Efcavitch JES. Modified template-independent enzymes for polydeoxynucleotide synthesis: US, 11390858B2. 2020-06-13.
|
|
[79] |
Mathews AS, Yang HK, Montemagno C. Photo-cleavable nucleotides for primer free enzyme mediated DNA synthesis. Org Biomol Chem, 2016, 14(35): 8278-8288. DOI:10.1039/C6OB01371F
|
|
[80] |
Palluk S, Arlow DH, De Rond T, et al. De novo DNA synthesis using polymerase-nucleotide conjugates. Nat Biotechnol, 2018, 36(7): 645-650. DOI:10.1038/nbt.4173
|
|
[81] |
Gardner AF, Wang JC, Wu WD, et al. Rapid incorporation kinetics and improved fidelity of a novel class of 3'-OH unblocked reversible terminators. Nucleic Acids Res, 2012, 40(15): 7404-7415. DOI:10.1093/nar/gks330
|
|
[82] |
Efcavitch JW SJ. Modified template-independent enzymes for polydeoxynucleotide synthesis: US, 14918212. 2015-10-20.
|
|
[83] |
Thomas Y MD. Variants of a DNA polymerase of the polx family: FR, 16055475. 2016-06-14.
|
|
[84] |
Efcavitch JW SS. Methods and apparatus for synthesizing nucleic acids: US, 14056687.2013-10-17.
|
|
[85] |
Chen MC, Lazar RA, Huang JH, et al. A process for the preparation of nucleic acid by means of 3'-O-azidomethyl nucleotide triphosphate: US, 15555232. 2016-03-03.
|
|
[86] |
Lu XY, Li JL, Li CY, et al. Enzymatic DNA synthesis by engineering terminal deoxynucleotidyl transferase. ACS Catalysis, 2022, 12(5): 2988-2997. DOI:10.1021/acscatal.1c04879
|
|
[87] |
Cello J, Paul AV, Wimmer E. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science, 2002, 297(5583): 1016-1018. DOI:10.1126/science.1072266
|
|
[88] |
Tumpey TM, Basler CF, Aguilar PV, et al. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science, 2005, 310(5745): 77-80. DOI:10.1126/science.1119392
|
|
[89] |
Screening framework guidance for providers of synthetic double-stranded DNA. Biotechnol Law Report, 2011, 30(2): 243-257.
|
|
[90] | |
|
[91] | |
|
[92] |
何蕊, 曹芹, 陈洁君, 等. 涉及基因操作的前沿生物技术风险及其法律法规应对. 生物安全学报, 2021, 30(1): 3-10. He R, Cao Q, Chen JJ, et al. Risks of gene manipulation in frontier biotechnology and response of laws and regulations. J Biosaf, 2021, 30(1): 3-10 (in Chinese). DOI:10.3969/j.issn.2095-1787.2021.01.002
|
|
[93] | |
|
[94] | |
|
[95] | |
|