[1] |
Al-Ghanayem AA, Joseph B. Current prospective in using cold-active enzymes as eco-friendly detergent additive. Appl Microbiol Biot, 2020, 104(7): 2871-2882. DOI:10.1007/s00253-020-10429-x
|
|
[2] |
赵琳, 宋瑞瑞, 吴希, 等. 工业酶制剂的发展与应用研究. 应用化工, 2021, 50(5): 1403-1408, 1413. Zhao L, Song RR, Wu X, et al. Study on development and application of industrial enzyme preparation. Appl Chem Ind, 2021, 50(5): 1403-1408, 1413 (in Chinese). DOI:10.3969/j.issn.1671-3206.2021.05.050
|
|
[3] | |
|
[4] |
Choi JM, Han SS, Kim HS. Industrial applications of enzyme biocatalysis: current status and future aspects. Biotechnol Adv, 2015, 33(7): 1443-1454. DOI:10.1016/j.biotechadv.2015.02.014
|
|
[5] |
Victorino Da Silva Amatto I, Gonsales Da Rosa-Garzon N, Antônio De Oliveira Simões F, et al. Enzyme engineering and its industrial applications. Biotechnol Appl Biochem, 2022, 69(2): 389-409. DOI:10.1002/bab.2117
|
|
[6] |
Deckers M, Vanneste K, Winand R, et al. Screening strategy targeting the presence of food enzyme-producing fungi in food enzyme preparations. Food Control, 2020, 117: 107295. DOI:10.1016/j.foodcont.2020.107295
|
|
[7] |
Ton Nu MA, Blaabjerg K, Poulsen HD. Effects of high moisture airtight storage of barley with exogenous enzymes on phosphorus digestibility of barley fed to pigs alone or in combination with soybean meal. Anim Feed Sci Tech, 2020, 266: 114530. DOI:10.1016/j.anifeedsci.2020.114530
|
|
[8] | |
|
[9] |
Biškauskaitė R, Valeikienė V, Valeika V. Enzymes for leather processing: effect on pickling and chroming. Materials (Basel), 2021, 14(6): 1480. DOI:10.3390/ma14061480
|
|
[10] |
Rahman M, Hack-Polay D, Billah MM, et al. Bio-based textile processing through the application of enzymes for environmental sustainability. Int J Technol Manag Sustain Dev, 2020, 19(1): 87-106. DOI:10.1386/tmsd_00017_1
|
|
[11] |
Singh G, Arya SK. Utility of laccase in pulp and paper industry: a progressive step towards the green technology. Int J Biol Macromol, 2019, 134: 1070-1084. DOI:10.1016/j.ijbiomac.2019.05.168
|
|
[12] | |
|
[13] | |
|
[14] |
Mor B, Garhwal S, Kumar A. A systematic review of hidden Markov models and their applications. Arch Comput Method E, 2021, 28(3): 1429-1448. DOI:10.1007/s11831-020-09422-4
|
|
[15] |
Raichstein E, Lavi O, Azulai O. Computerized method for automatic cloning of python conda environment into docker image and for deployment of docker image, involves starting conda container from docker image and conda container is configured to function same as python conda environment: US, 2021208862-A1, US, 11157257-B2.
|
|
[16] |
Bowman EK, Alper HS. Microdroplet-assisted screening of biomolecule production for metabolic engineering applications. Trends Biotechnol, 2020, 38(7): 701-714. DOI:10.1016/j.tibtech.2019.11.002
|
|
[17] |
Sarnaik A, Liu A, Nielsen D, et al. High-throughput screening for efficient microbial biotechnology. Curr Opin Biotechnol, 2020, 64: 141-150. DOI:10.1016/j.copbio.2020.02.019
|
|
[18] | |
|
[19] |
Packer MS, Liu DR. Methods for the directed evolution of proteins. Nat Rev Genet, 2015, 16(7): 379-394. DOI:10.1038/nrg3927
|
|
[20] |
Zeng WZ, Guo LK, Xu S, et al. High-throughput screening technology in industrial biotechnology. Trends Biotechnol, 2020, 38(8): 888-906. DOI:10.1016/j.tibtech.2020.01.001
|
|
[21] |
Yang JH, Tu R, Yuan HL, et al. Recent advances in droplet microfluidics for enzyme and cell factory engineering. Crit Rev Biotechnol, 2021, 41(7): 1023-1045. DOI:10.1080/07388551.2021.1898326
|
|
[22] | |
|
[23] |
涂然, 李世新, 李昊霓, 等. 液滴微流控技术在微生物工程菌株选育中的应用进展. 合成生物学, 2022, 3: 1-21. Tu R, Li SX, Li HN, et al. Advances and applications of droplet-based microfluidics in evolution and screening of engineered microbial strains. Synth Biol J, 2022, 3: 1-21 (in Chinese).
|
|
[24] |
Tu R, Li LP, Yuan HL, et al. Biosensor-enabled droplet microfluidic system for the rapid screening of 3-dehydroshikimic acid produced in Escherichia coli. J Ind Microbiol Biot, 2020, 47(12): 1155-1160. DOI:10.1007/s10295-020-02316-1
|
|
[25] |
Yuan HL, Tu R, Tong XW, et al. Ultrahigh-throughput screening of industrial enzyme-producing strains by droplet-based microfluidic system. J Ind Microbiol Biot, 2022, 49(3): kuac007. DOI:10.1093/jimb/kuac007
|
|
[26] |
吕彤, 涂然, 袁会领, 等. 毕赤酵母液滴微流控高通量筛选方法的建立与应用. 生物工程学报, 2019, 35(7): 1317-1325. Lv T, Tu R, Yuan HL, et al. Development and application of a droplet-based microfluidic high-throughput screening of Pichia pastoris. Chin J Biotech, 2019, 35(7): 1317-1325 (in Chinese). DOI:10.13345/j.cjb.190058
|
|
[27] |
Tu R, Zhang Y, Hua EB, et al. Droplet-based microfluidic platform for high-throughput screening of Streptomyces. Commun Biol, 2021, 4(1): 647. DOI:10.1038/s42003-021-02186-y
|
|
[28] |
He RL, Ding RH, Heyman JA, et al. Ultra-high- throughput picoliter-droplet microfluidics screening of the industrial cellulase-producing filamentous fungus Trichoderma reesei. J Ind Microbiol Biot, 2019, 46(11): 1603-1610. DOI:10.1007/s10295-019-02221-2
|
|
[29] |
Yuan HL, Zhou Y, Lin YP, et al. Microfluidic screening and genomic mutation identification for enhancing cellulase production in Pichia pastoris. Biotechnol Biofuels Bioprod, 2022, 15(1): 50. DOI:10.1186/s13068-022-02150-w
|
|
[30] |
Qiao YX, Zhao XY, Zhu J, et al. Fluorescence- activated droplet sorting of lipolytic microorganisms using a compact optical system. Lab Chip, 2018, 18(1): 190-196. DOI:10.1039/C7LC00993C
|
|
[31] |
Hua EB, Zhang Y, Yun KY, et al. Whole-cell biosensor and producer co-cultivation-based microfludic platform for screening Saccharopolyspora erythraea with hyper erythromycin production. ACS Synth Biol, 2022, 11(8): 2697-2708. DOI:10.1021/acssynbio.2c00102
|
|
[32] |
Ding RH, Hung KC, Mitra A, et al. Rapid isolation of antigen-specific B-cells using droplet microfluidics. RSC Adv, 2020, 10(45): 27006-27013. DOI:10.1039/D0RA04328A
|
|
[33] |
Li LP, Tu R, Song GT, et al. Development of a synthetic 3-dehydroshikimate biosensor in Escherichia coli for metabolite monitoring and genetic screening. ACS Synth Biol, 2019, 8(2): 297-306. DOI:10.1021/acssynbio.8b00317
|
|
[34] |
Mei ZL, Zhang K, Qu G, et al. High-throughput fluorescence assay for ketone detection and its applications in enzyme mining and protein engineering. ACS Omega, 2020, 5(23): 13588-13594. DOI:10.1021/acsomega.0c00245
|
|
[35] |
Han X, Liu W, Huang JW, et al. Structural insight into catalytic mechanism of PET hydrolase. Nat Commun, 2017, 8: 2106. DOI:10.1038/s41467-017-02255-z
|
|
[36] |
陈纯琪, 韩旭, 刘卫东, 等. 基于结构改造来源于大阪伊德氏杆菌201-F6的PET水解酶. 生物工程学报, 2021, 37(9): 3268-3275. Chen CQ, Han X, Liu WD, et al. Structure-based engineering of PET hydrolase from Ideonella sakaiensis. Chin J Biotech, 2021, 37(9): 3268-3275 (in Chinese). DOI:10.13345/j.cjb.200632
|
|
[37] |
Chen CC, Han X, Li X, et al. General features to enhance enzymatic activity of poly(ethylene terephthalate) hydrolysis. Nat Catal, 2021, 4(5): 425-430. DOI:10.1038/s41929-021-00616-y
|
|
[38] |
Cui YL, Chen YC, Liu XY, et al. Computational redesign of a PETase for plastic biodegradation under ambient condition by the GRAPE strategy. ACS Catal, 2021, 11(3): 1340-1350. DOI:10.1021/acscatal.0c05126
|
|
[39] |
Lu HY, Diaz DJ, Czarnecki NJ, et al. Machine learning-aided engineering of hydrolases for PET depolymerization. Nature, 2022, 604(7907): 662-667. DOI:10.1038/s41586-022-04599-z
|
|
[40] |
Zeng W, Li XQ, Yang YY, et al. Substrate-binding mode of a thermophilic PET hydrolase and engineering the enzyme to enhance the hydrolytic efficacy. ACS Catal, 2022, 12(5): 3033-3040. DOI:10.1021/acscatal.1c05800
|
|
[41] |
Zheng YY, Liu WT, Chen CC, et al. Crystal structure of a mycoestrogen-detoxifying lactonase from Rhinocladiella mackenziei: molecular insight into ZHD substrate selectivity. ACS Catal, 2018, 8: 4294-4298. DOI:10.1021/acscatal.8b00464
|
|
[42] |
Xu JY, Ren FF, Huang CH, et al. Functional and structural studies of pullulanase from Anoxybacillus sp. LM18-11. Proteins Struct Funct Bioinform, 2014, 82(9): 1685-1693. DOI:10.1002/prot.24498
|
|
[43] |
甄杰, 胡政, 李树芳, 等. 一个新型耐热普鲁兰酶的结构与功能. 生物工程学报, 2014, 30(1): 119-128. Zhen J, Hu Z, Li SF, et al. Structure and function of a novel thermostable pullulanase. Chin J Biotech, 2014, 30(1): 119-128 (in Chinese). DOI:10.13345/j.cjb.130389
|
|
[44] |
Zeng Y, Zheng HC, Shen YY, et al. Identification and analysis of binding residues in the CBM68 of pullulanase PulA from Anoxybacillus sp. LM18-11. J Biosci Bioeng, 2019, 127(1): 8-15. DOI:10.1016/j.jbiosc.2018.06.007
|
|
[45] |
曾艳, 郑宏臣, 付晓平, 等. 普鲁兰酶N端结构域CBM68对酶学性质的影响. 南开大学学报(自然科学版), 2018, 51(4): 93-99. Zeng Y, Zheng HC, Fu XP, et al. Effect of the N-terminal domain CBM68 on the enzymatic properties of pullulanase. Acta Sci Nat Univ Nankaiensis, 2018, 51(4): 93-99 (in Chinese).
|
|
[46] |
申莹莹, 郑宏臣, 李树芳, 等. 耐热普鲁兰酶CBM68结构域中关键位点对其酶学性质的影响. 食品与发酵工业, 2016, 42(3): 12-17. Shen YY, Zheng HC, Li SF, et al. Key amino acid sites in the CBM68 structure of thermostable pullulanase and their effects on the enzymatic properties. Food Ferment Ind, 2016, 42(3): 12-17 (in Chinese). DOI:10.13995/j.cnki.11-1802/ts.201603003
|
|
[47] |
Zeng Y, Xu JY, Fu XP, et al. Effects of different carbohydrate-binding modules on the enzymatic properties of pullulanase. Int J Biol Macromol, 2019, 137: 973-981. DOI:10.1016/j.ijbiomac.2019.07.054
|
|
[48] |
Li SF, Xu JY, Bao YJ, et al. Structure and sequence analysis-based engineering of pullulanase from Anoxybacillus sp. LM18-11 for improved thermostability. J Biotechnol, 2015, 210: 8-14. DOI:10.1016/j.jbiotec.2015.06.406
|
|
[49] | |
|
[50] | |
|
[51] |
Cheng F, Yang JH, Bocola M, et al. Loop engineering reveals the importance of active-site-decorating loops and gating residue in substrate affinity modulation of arginine deiminase (an anti-tumor enzyme). Biochem Biophys Res Commun, 2018, 499(2): 233-238. DOI:10.1016/j.bbrc.2018.03.134
|
|
[52] |
Cheng F, Yang JH, Schwaneberg U, et al. Rational surface engineering of an arginine deiminase (an antitumor enzyme) for increased PEGylation efficiency. Biotechnol Bioeng, 2019, 116(9): 2156-2166. DOI:10.1002/bit.27011
|
|
[53] |
Frauenkron-Machedjou VJ, Fulton A, Zhao J, et al. Exploring the full natural diversity of single amino acid exchange reveals that 40‒60% of BSLA positions improve organic solvents resistance. Bioresour Bioprocess, 2018, 5(1): 1-12. DOI:10.1186/s40643-017-0187-z
|
|
[54] |
Markel U, Zhu LL, Frauenkron-Machedjou V, et al. Are directed evolution approaches efficient in exploring nature's potential to stabilize a lipase in organic cosolvents?. Catalysts, 2017, 7(5): 142. DOI:10.3390/catal7050142
|
|
[55] |
Nie ZH, Liu P, Wang Y, et al. Directed evolution and rational design of mechanosensitive channel MscCG2 for improved glutamate excretion efficiency. J Agr Food Chem, 2021, 69(51): 15660-15669. DOI:10.1021/acs.jafc.1c07086
|
|
[56] |
Cheng C, Haider J, Liu P, et al. Engineered LPMO significantly boosting cellulase-catalyzed depolymerization of cellulose. J Agr Food Chem, 2020, 68(51): 15257-15266. DOI:10.1021/acs.jafc.0c05979
|
|
[57] |
Shu WJ, Zheng HC, Fu XP, et al. Enhanced heterologous production of glycosyltransferase UGT76G1 by co-expression of endogenous prpD and malK in Escherichia coli and its transglycosylation application in production of rebaudioside. Int J Mol Sci, 2020, 21(16): 5752. DOI:10.3390/ijms21165752
|
|
[58] |
Yu ZX, Zheng HC, Zhao XY, et al. High level extracellular production of a recombinant alkaline catalase in E. coli BL21 under ethanol stress and its application in hydrogen peroxide removal after cotton fabrics bleaching. Bioresource Technol, 2016, 214: 303-310. DOI:10.1016/j.biortech.2016.04.110
|
|
[59] |
Zheng HC, Yu ZX, Shu WJ, et al. Ethanol effects on the overexpression of heterologous catalase in Escherichia coli BL21(DE3). Appl Microbiol Biot, 2019, 103(3): 1441-1453. DOI:10.1007/s00253-018-9509-0
|
|
[60] |
Zheng HC, Shu WJ, Fu XP, et al. A pyruvate-centered metabolic regulation mechanism for the enhanced expression of exogenous genes in Escherichia coli. Int J Biol Macromol, 2022, 203: 58-66. DOI:10.1016/j.ijbiomac.2022.01.141
|
|
[61] |
付晓平, 郑宏臣, 宋诙, 等. 一种生物鲁棒性提高的大肠杆菌底盘细胞及其构建方法与应用: 中国专利, 202010661070.7, 2020-07-10. Fu XP, Zheng HC, Song H, et al. An Escherichia coli chassis cell with improved biological robustness and its construction method and application: China patent, 202010661070.7, 2020-07-10 (in Chinese).
|
|
[62] |
Zheng HC, Yu ZX, Fu XP, et al. High level extracellular production of a truncated alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5 in Escherichia coli by the optimization of induction condition and fed-batch fermentation. J Ind Microbiol Biot, 2016, 43(7): 977-987. DOI:10.1007/s10295-016-1773-3
|
|
[63] |
Zhen J, Tan M, Fu XP, et al. High-level extracellular production of an alkaline pectate lyase in E. coli BL21(DE3) and its application in bioscouring of cotton fabric. 3 Biotech, 2020, 10(2): 49. DOI:10.1007/s13205-019-2022-z
|
|
[64] |
Shi LX, Liu HF, Gao SF, et al. Enhanced extracellular production of IsPETase in Escherichia coli via engineering of the pelB signal peptide. J Agr Food Chem, 2021, 69(7): 2245-2252. DOI:10.1021/acs.jafc.0c07469
|
|
[65] |
Phan TTP, Tran LT, Schumann W, et al. Development of Pgrac100-based expression vectors allowing high protein production levels in Bacillus subtilis and relatively low basal expression in Escherichia coli. Microb Cell Fact, 2015, 14: 72. DOI:10.1186/s12934-015-0255-z
|
|
[66] |
Bongers RS, Veening JW, van Wieringen M, et al. Development and characterization of a subtilin-regulated expression system in Bacillus subtilis: strict control of gene expression by addition of subtilin. Appl Environ Microbiol, 2005, 71(12): 8818-8824. DOI:10.1128/AEM.71.12.8818-8824.2005
|
|
[67] |
Chen JQ, Zhu YM, Fu G, et al. High-level intra- and extra-cellular production of D-psicose 3-epimerase via a modified xylose-inducible expression system in Bacillus subtilis. J Ind Microbiol Biot, 2016, 43(11): 1577-1591. DOI:10.1007/s10295-016-1819-6
|
|
[68] |
Wenzel M, Müller A, Siemann-Herzberg M, et al. Self-inducible Bacillus subtilis expression system for reliable and inexpensive protein production by high-cell-density fermentation. Appl Environ Microbiol, 2011, 77(18): 6419-6425. DOI:10.1128/AEM.05219-11
|
|
[69] |
Guan CR, Cui WJ, Cheng JT, et al. Construction and development of an auto-regulatory gene expression system in Bacillus subtilis. Microb Cell Fact, 2015, 14(1): 150. DOI:10.1186/s12934-015-0341-2
|
|
[70] |
Toymentseva AA, Schrecke K, Sharipova MR, et al. The LIKE system, a novel protein expression toolbox for Bacillus subtilis based on the liaI promoter. Microb Cell Fact, 2012, 11: 143. DOI:10.1186/1475-2859-11-143
|
|
[71] |
Thuy le AT, Schumann W. A novel cold-inducible expression system for Bacillus subtilis. Protein Expr Purif, 2007, 53(2): 264-269. DOI:10.1016/j.pep.2006.12.023
|
|
[72] |
Welsch N, Homuth G, Schweder T. Stepwise optimization of a low-temperature Bacillus subtilis expression system for "difficult to express" proteins. Appl Microbiol Biot, 2015, 99(15): 6363-6376. DOI:10.1007/s00253-015-6552-y
|
|
[73] |
Castillo-Hair SM, Fujita M, Igoshin OA, et al. An engineered B. subtilis inducible promoter system with over 10 000-fold dynamic range. ACS Synth Biol, 2019, 8(7): 1673-1678. DOI:10.1021/acssynbio.8b00469
|
|
[74] |
Fu G, Yue J, Li DD, et al. An operator-based expression toolkit for Bacillus subtilis enables fine-tuning of gene expression and biosynthetic pathway regulation. PNAS, 2022, 119(11): e2119980119. DOI:10.1073/pnas.2119980119
|
|
[75] |
Nicolas P, Mäder U, Dervyn E, et al. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science, 2012, 335(6072): 1103-1106. DOI:10.1126/science.1206848
|
|
[76] |
Song YF, Nikoloff JM, Fu G, et al. Promoter screening from Bacillus subtilis in various conditions hunting for synthetic biology and industrial applications. PLoS One, 2016, 11(7): e0158447. DOI:10.1371/journal.pone.0158447
|
|
[77] |
Li DD, Fu G, Tu R, et al. High-efficiency expression and secretion of human FGF21 in Bacillus subtilis by intercalation of a mini-cistron cassette and combinatorial optimization of cell regulatory components. Microb Cell Fact, 2019, 18(1): 17. DOI:10.1186/s12934-019-1066-4
|
|
[78] |
Chen JQ, Fu G, Gai YM, et al. Combinatorial Sec pathway analysis for improved heterologous protein secretion in Bacillus subtilis: identification of bottlenecks by systematic gene overexpression. Microb Cell Fact, 2015, 14: 92. DOI:10.1186/s12934-015-0282-9
|
|
[79] |
Ye J, Li YJ, Bai YQ, et al. A facile and robust T7-promoter-based high-expression of heterologous proteins in Bacillus subtilis. Bioresour Bioprocess, 2022, 9(1): 1-12. DOI:10.1186/s40643-021-00489-w
|
|
[80] |
Fu G, Liu JL, Li JS, et al. Systematic screening of optimal signal peptides for secretory production of heterologous proteins in Bacillus subtilis. J Agr Food Chem, 2018, 66(50): 13141-13151. DOI:10.1021/acs.jafc.8b04183
|
|
[81] |
Chen JQ, Zhao LQ, Fu G, et al. A novel strategy for protein production using non-classical secretion pathway in Bacillus subtilis. Microb Cell Fact, 2016, 15: 69. DOI:10.1186/s12934-016-0469-8
|
|
[82] |
Zhao L, Chen J, Sun J, et al. Multimer recognition and secretion by the non-classical secretion pathway in Bacillus subtilis. Sci Reports, 2017, 7: 44023.
|
|
[83] |
Zhen J, Zheng HC, Zhao XY, et al. Regulate the hydrophobic motif to enhance the non-classical secretory expression of pullulanase PulA in Bacillus subtilis. Int J Biol Macromol, 2021, 193(Pt A): 238-246.
|
|
[84] |
付晓平, 郑宏臣, 宋诙, 等. 碳水化合物结合结构域CBM68及其应用: 中国专利, 202110923682.3, 2021-08-12. Fu XP, Zheng HC, Song H, et al. Carbohydrate binding domain CBM68 and application thereof: China patent, 202110923682.3, 2021-08-12 (in Chinese).
|
|
[85] |
Zhao XY, Xu JY, Tan M, et al. Construction of a plasmid interspecific transfer system in Bacillus species with the counter-selectable marker mazF. J Ind Microbiol Biot, 2018, 45(6): 417-428. DOI:10.1007/s10295-018-2038-0
|
|
[86] |
Zhao XY, Xu JY, Tan M, et al. High copy number and highly stable Escherichia coli- Bacillus subtilis shuttle plasmids based on pWB980. Microb Cell Fact, 2020, 19(1): 25. DOI:10.1186/s12934-020-1296-5
|
|
[87] |
Zhao XY, Zheng HC, Zhen J, et al. Multiplex genetic engineering improves endogenous expression of mesophilic α-amylase gene in a wild strain Bacillus amyloliquefaciens 205. Int J Biol Macromol, 2020, 165(Pt A): 609-618.
|
|
[88] |
Heistinger L, Gasser B, Mattanovich D. Microbe profile: Komagataella phaffii: a methanol devouring biotech yeast formerly known as Pichia pastoris. Microbiology (Reading), 2020, 166(7): 614-616. DOI:10.1099/mic.0.000958
|
|
[89] |
Burgard J, Grünwald-Gruber C, Altmann F, et al. The secretome of Pichia pastoris in fed-batch cultivations is largely independent of the carbon source but changes quantitatively over cultivation time. Microb Biotechnol, 2020, 13(2): 479-494. DOI:10.1111/1751-7915.13499
|
|
[90] |
Raschmanová H, Weninger A, Knejzlík Z, et al. Engineering of the unfolded protein response pathway in Pichia pastoris: enhancing production of secreted recombinant proteins. Appl Microbiol Biot, 2021, 105(11): 4397-4414. DOI:10.1007/s00253-021-11336-5
|
|
[91] |
Wang YY, Li JW, Zhao FG, et al. Methanol oxidase from Hansenula polymorpha shows activity in peroxisome-deficient Pichia pastoris. Biochem Eng J, 2022, 180: 108369. DOI:10.1016/j.bej.2022.108369
|
|
[92] |
Carly F, Niu H, Delvigne F, et al. Influence of methanol/sorbitol co-feeding rate on pAOX1 induction in a Pichia pastoris Mut + strain in bioreactor with limited oxygen transfer rate. J Ind Microbiol Biot, 2016, 43(4): 517-523. DOI:10.1007/s10295-015-1722-6
|
|
[93] |
Niu HX, Jost L, Pirlot N, et al. A quantitative study of methanol/sorbitol co-feeding process of a Pichia pastoris Mut +/pAOX1-lacZ strain. Microb Cell Fact, 2013, 12: 33. DOI:10.1186/1475-2859-12-33
|
|
[94] |
Liu WC, Xiang HB, Zhang T, et al. Development of a new high-cell density fermentation strategy for enhanced production of a fungus β-glucosidase in Pichia pastoris. Front Microbiol, 2020, 11: 1988. DOI:10.3389/fmicb.2020.01988
|
|
[95] |
Bankefa OE, Wang MY, Zhu TC, et al. Hac1p homologues from higher eukaryotes can improve the secretion of heterologous proteins in the yeast Pichia pastoris. Biotechnol Lett, 2018, 40(7): 1149-1156. DOI:10.1007/s10529-018-2571-y
|
|
[96] |
Guerfal M, Ryckaert S, Jacobs PP, et al. The HAC1 gene from Pichia pastoris: characterization and effect of its overexpression on the production of secreted, surface displayed and membrane proteins. Microb Cell Fact, 2010, 9: 49. DOI:10.1186/1475-2859-9-49
|
|
[97] |
Sun J, Jiang J, Zhai XY, et al. Coexpression of Kex2 endoproteinase and Hac1 transcription factor to improve the secretory expression of bovine lactoferrin in Pichia pastoris. Biotechnol Bioprocess Eng, 2019, 24(6): 934-941. DOI:10.1007/s12257-019-0176-5
|
|
[98] |
De Waele S, Vandenberghe I, Laukens B, et al. Optimized expression of the Starmerella bombicola lactone esterase in Pichia pastoris through temperature adaptation, codon-optimization and co-expression with HAC1. Protein Expr Purif, 2018, 143: 62-70. DOI:10.1016/j.pep.2017.10.016
|
|
[99] |
Han MH, Wang WX, Zhou JL, et al. Activation of the unfolded protein response via co-expression of the HAC1i gene enhances expression of recombinant elastase in Pichia pastoris. Biotechnol Bioprocess Eng, 2020, 25(2): 302-307. DOI:10.1007/s12257-019-0381-2
|
|
[100] |
Yu SJ, Miao LT, Huang H, et al. High-level production of glucose oxidase in Pichia pastoris: effects of Hac1p overexpression on cell physiology and enzyme expression. Enzyme Microb Tech, 2020, 141: 109671. DOI:10.1016/j.enzmictec.2020.109671
|
|
[101] |
Huang MM, Gao YY, Zhou XS, et al. Regulating unfolded protein response activator HAC1p for production of thermostable raw-starch hydrolyzing α-amylase in Pichia pastoris. Bioproc Biosyst Eng, 2017, 40(3): 341-350. DOI:10.1007/s00449-016-1701-y
|
|
[102] |
Karaoğlan M, Erden-Karaoğlan F. Effect of codon optimization and promoter choice on recombinant endo-polygalacturonase production in Pichia pastoris. Enzyme Microb Tech, 2020, 139: 109589. DOI:10.1016/j.enzmictec.2020.109589
|
|
[103] |
彭梦, 谭明, 曾艳, 等. 毕赤酵母中tRNA CCGPro基因的表达及其作用效果. 生物工程学报, 2019, 35(1): 70-80. Peng M, Tan M, Zeng Y, et al. Expression of Pichia pastoris tRNA CCGPro and its function. Chin J Biotech, 2019, 35(1): 70-80 (in Chinese).
|
|
[104] |
Yu Y, Liu ZM, Chen M, et al. Enhancing the expression of recombinant κ-carrageenase in Pichia pastoris using dual promoters, co-expressing chaperones and transcription factors. Biocatal Biotransfor, 2020, 38(2): 104-113. DOI:10.1080/10242422.2019.1655001
|
|
[105] |
Sallada ND, Harkins LE, Berger BW. Effect of gene copy number and chaperone coexpression on recombinant hydrophobin HFBI biosurfactant production in Pichia pastoris. Biotechnol Bioeng, 2019, 116(8): 2029-2040. DOI:10.1002/bit.26982
|
|
[106] |
马红丽, 付晓平, 郑雯, 等. 费希尔曲霉脂肪酶在毕赤酵母中的优化表达及高密度发酵. 微生物学通报, 2020, 47(7): 2140-2150. Ma HL, Fu XP, Zheng W, et al. Optimized expression and high-density fermentation of Aspergillus fischeri lipase in Pichia pastoris. Microbiol China, 2020, 47(7): 2140-2150 (in Chinese). DOI:10.13344/j.microbiol.china.200176
|
|
[107] |
Li FY, Liu Q, Li XL, et al. Construction of a new thermophilic fungus Myceliophthora thermophila platform for enzyme production using a versatile 2A peptide strategy combined with efficient CRISPR-Cas9 system. Biotechnol Lett, 2020, 42(7): 1181-1191. DOI:10.1007/s10529-020-02882-5
|
|
[108] |
田朝光, 刘倩, 李芳雅, 等. 一种毁丝霉糖化酶MhglaA及其编码基因和在葡萄糖生产中的应用: 中国专利, CN111378674B, 2021-07-21. Tian CG, Liu Q, Li FY, et al. A Trichoderma glycosylase MhglaA, its encoding gene and application thereof in glucose production: China patent, CN111378674B, 2021-07-21 (in Chinese).
|
|
[109] |
Liu Q, Gao RR, Li JG, et al. Development of a genome-editing CRISPR/Cas9 system in thermophilic fungal Myceliophthora species and its application to hyper-cellulase production strain engineering. Biotechnol Biofuels, 2017, 10: 1. DOI:10.1186/s13068-016-0693-9
|
|
[110] |
Xu GB, Li JG, Liu Q, et al. Transcriptional analysis of Myceliophthora thermophila on soluble starch and role of regulator AmyR on polysaccharide degradation. Bioresource Technol, 2018, 265: 558-562. DOI:10.1016/j.biortech.2018.05.086
|
|
[111] |
Yang YJ, Liu Y, Liu DD, et al. Development of a flow cytometry-based plating-free system for strain engineering in industrial fungi. Appl Microbiol Biot, 2022, 106(2): 713-727. DOI:10.1007/s00253-021-11733-w
|
|
[112] |
Guo WZ, Yang JH, Huang TC, et al. Synergistic effects of multiple enzymes from industrial Aspergillus niger strain O1 on starch saccharification. Biotechnol Biofuels, 2021, 14(1): 225. DOI:10.1186/s13068-021-02074-x
|
|
[113] |
田朝光, 李金根, 顾淑莹, 等. 一种调控sgRNA转录的启动子、表达载体, 及其基因组编辑系统和应用: CN110331146A, 2019-10-15. Tian CG, Li JG, Gu SY, et al. Promoter and expression vector for adjusting and controlling sgRNA transcription, genome editing system and application: CN110331146A, 2019-10-15 (in Chinese).
|
|
[114] |
田朝光, 王兴吉, 刘倩, 等. 一种基于流式细胞术的免平板操作的菌株工程改造的方法及应用: 中国专利, 202111352181.0, 2021-11-16. Tian CG, Wang XJ, Liu Q, et al. A method and application of strain engineering without plate manipulation based on flow cytometry: China patent, 202111352181.0, 2021-11-16 (in Chinese).
|
|
[115] |
马延和, 王兴吉, 田朝光, 等. 一种提高丝状真菌蛋白分泌水平的方法: CN114686509A, 2022-07-01. Ma YH, Wang XJ, Tian CG, et al. A method for increasing the secretion level of filamentous fungal proteins: CN114686509A, 2022-07-01 (in Chinese).
|
|
[116] |
马延和, 田朝光, 王兴吉, 等. 一种提升丝状真菌蛋白分泌能力的方法: 中国专利, 202111602844. X, 2021-12-25. Ma YH, Tian CG, Wang XJ, et al. A method for promoting the secretion level of filamentous fungal proteins: China patent, 202111602844. X, 2021-12-25 (in Chinese).
|
|
[117] |
Zhang YHP, Sun JB, Ma YH. Biomanufacturing: history and perspective. J Ind Microbiol Biot, 2017, 44(4/5): 773-784.
|
|
[118] |
You C, Shi T, Li YJ, et al. An in vitro synthetic biology platform for the industrial biomanufacturing of myo-inositol from starch. Biotechnol Bioeng, 2017, 114(8): 1855-1864. DOI:10.1002/bit.26314
|
|
[119] |
Fujisawa T, Fujinaga S, Atomi H. An in vitro enzyme system for the production of myo-inositol from starch. Appl Environ Microbiol, 2017, 83(16): e00550-17.
|
|
[120] |
Lu YP, Wang L, Teng F, et al. Production of myoinositol from glucose by a novel trienzymatic cascade of polyphosphate glucokinase, inositol 1-phosphate synthase and inositol monophosphatase. Enzyme Microb Tech, 2018, 112: 1-5. DOI:10.1016/j.enzmictec.2018.01.006
|
|
[121] |
Singh RS, Saini GK, Kennedy JF. Downstream processing and characterization of pullulan from a novel colour variant strain of Aureobasidium pullulans FB-1. Carbohyd Polym, 2009, 78(1): 89-94. DOI:10.1016/j.carbpol.2009.03.040
|
|
[122] |
Prajapati VD, Jani GK, Khanda SM. Pullulan: an exopolysaccharide and its various applications. Carbohyd Polym, 2013, 95(1): 540-549. DOI:10.1016/j.carbpol.2013.02.082
|
|
[123] |
An JM, Shahriar SMS, Hasan MN, et al. Carboxymethyl cellulose, pluronic, and pullulan-based compositions efficiently enhance antiadhesion and tissue regeneration properties without using any drug molecules. ACS Appl Mater Interfaces, 2021, 13(14): 15992-16006. DOI:10.1021/acsami.0c21938
|
|
[124] |
马延和, 柏文琴, 陈淑宇, 等. 一株高产高分子量普鲁兰多糖的出芽短梗霉及其应用: 中国专利, 202210480946.7, 2022-05-05. Ma YH, Bai WQ, Chen SY, et al. A production strain of pullulan with high molecular weight and high yield and application thereof: China patent, 202210480946.7, 2022-05-05.
|
|
[125] |
Feng ZX, Chen SY, Ahmad A, et al. Ultra-high molecular weight pullulan-based material with high deformability and shape-memory properties. Carbohydr Polym, 2022, 295: 119836. DOI:10.1016/j.carbpol.2022.119836
|
|
[126] |
Catley BJ, McDowell W. Lipid-linked saccharides formed during pullulan biosynthesis in Aureobasidium pullulans. Carbohydr Res, 1982, 103(1): 65-75. DOI:10.1016/S0008-6215(82)80008-6
|
|
[127] |
Chen TJ, Liu GL, Wei X, et al. A multidomain α-glucan synthetase 2 (AmAgs2) is the key enzyme for pullulan biosynthesis in Aureobasidium melanogenum P16. Int J Biol Macromol, 2020, 150: 1037-1045. DOI:10.1016/j.ijbiomac.2019.10.108
|
|
[128] |
Chen X, Wang QQ, Liu NN, et al. A glycosyltransferase gene responsible for pullulan biosynthesis in Aureobasidium melanogenum P16. Int J Biol Macromol, 2017, 95: 539-549. DOI:10.1016/j.ijbiomac.2016.11.081
|
|
[129] |
Yang SB, Zheng HC, Xu JY, et al. New biotransformation mode of zearalenone identified in Bacillus subtilis Y816 revealing a novel ZEN conjugate. J Agr Food Chem, 2021, 69(26): 7409-7419. DOI:10.1021/acs.jafc.1c01817
|
|
[130] |
郑宏臣, 谭明, 宋诙, 等. 一种纺织用生物复合酶制剂及其制备方法和应用: CN105970633B, 2018-07-03. Zheng HC, Tan M, Song H, et al. The invention relates to a biocomplex enzyme preparation for textile use, preparation method and application thereof: CN105970633B, 2018-07-03 (in Chinese).
|
|
[131] |
宋富佳. 生物酶前处理工艺助力印染行业绿色发展——天津工生所生物纺织酶技术成果发布会在河北宁纺集团召开. 纺织导报, 2016(8): 24. Song FJ. Biological enzyme pretreatment technology helps the green development of textile industry—technical achievements conference was held in Hebei Ningfang group company for enzymatic textile technology developed by Tianjin institute of industrial biotechnology, CAS. China Textile Leader, 2016(8): 24 (in Chinese). DOI:10.3969/j.issn.1003-3025.2016.08.007
|
|
[132] |
宋诙, 谭明, 郑宏臣, 等. 一种纺织品生物酶前处理方法: CN105970632B, 2018-09-07. Song H, Tan M, Zheng HC, et al. The invention relates to a textile bio-enzymatic pretreatment method: CN105970632B, 2018-09-07 (in Chinese).
|
|
[133] |
韩旭. 储运油泥水油渣界面作用特性与分离机理研究[D]. 杭州: 浙江大学, 2016. Han X. Study on interfacial property on oil recovery from petroleum sludge[D]. Hangzhou: Zhejiang University, 2016 (in Chinese).
|
|
[134] |
薛广海, 李强, 刘庆, 等. 典型油泥物化性质分析及其处理工艺研究. 矿冶, 2020, 29(1): 94-100. Xue GH, Li Q, Liu Q, et al. Physicochemical properties analysis and treatment process study of typical oil contaminated soil. Min Metall, 2020, 29(1): 94-100 (in Chinese). DOI:10.3969/j.issn.1005-7854.2020.01.18
|
|
[135] |
张玮, 卜涛, 贠军贤, 等. 一种碱性分离剂及在污油泥处理中的应用: CN201910571556.9, 2021-08-27. Zhang W, Bu T, Yun, JX, et al. The invention relates to an alkaline separating agent and its application in the treatment of oily sludge: CN201910571556.9, 2021-08-27 (in Chinese).
|
|
[136] |
刘关平, 王鹏, 杜郭君. 一种微生物处理油泥工艺: CN 20121080830, 2014-12-07. Liu GP, Wang P, Du GJ. The invention relates to a microbial sludge treatment process: CN 20121080830, 2014-12-07 (in Chinese).
|
|
[137] | |
|
[138] | |
|
[139] |
黄志勇, 王兴彪, 徐爽, 等. 高浓度油泥处理及资源回收生物绿色新工艺[EB/OL]. [2022-07-01]. 天津市科技成果: 中国科学院天津工业生物技术研究所. Huang ZY, Wang XB, Xu S, et al. New bio-green technology for high concentration sludge treatment and resource recovery[EB/OL]. [2022-07-01]. Scientific and technological achievements of Tianjin: Tianjin institute of industrial biotechnology, CAS (in Chinese).
|
|