[1] |
Kimura E. Metabolic engineering of glutamate production. Adv Biochem Eng Biotechnol, 2003, 79: 37-57.
|
|
[2] |
Mika M, Hiroshi I, Eiji O, et al. L-glutamic acid-producing bacterium and method for producing L-glutamic acid: EP, 955368B1, 2009-12-09.
|
|
[3] |
Yoshihiko H, Hiroshi I. An L-glutamic acid producing bacterium and a method for producing L-glutamic acid: EP, 2054500B1, 2016-11-23.
|
|
[4] |
Hirasawa T, Kim J, Shirai T, et al. Molecular mechanisms and metabolic engineering of glutamate overproduction in Corynebacterium glutamicum. Subcell Biochem, 2012, 64: 261-281.
|
|
[5] |
Hirasawa T, Wachi M. Glutamate fermentation-2: mechanism of L-glutamate overproduction in Corynebacterium glutamicum. Adv Biochem Eng Biotechnol, 2017, 159: 57-72.
|
|
[6] |
Nampoothiri KM, Hoischen C, Bathe B, et al. Expression of genes of lipid synthesis and altered lipid composition modulates L-glutamate efflux of Corynebacterium glutamicum. Appl Microbiol Biotechnol, 2002, 58(1): 89-96. DOI:10.1007/s00253-001-0861-z
|
|
[7] |
Kimura E, Yagoshi C, Kawahara Y, et al. Glutamate overproduction in Corynebacterium glutamicum triggered by a decrease in the level of a complex comprising DtsR and a biotin-containing subunit. Biosci Biotechnol Biochem, 1999, 63(7): 1274-1278. DOI:10.1271/bbb.63.1274
|
|
[8] |
Shi T, Fan XG, Wu YS, et al. Mutation of genes for cell membrane synthesis in Corynebacterium glutamicum causes temperature-sensitive trait and promotes L-glutamate excretion. Biotechnol Biotechnol Equip, 2020, 34(1): 38-47. DOI:10.1080/13102818.2019.1711186
|
|
[9] |
Shi T, Ma Q, Liu XQ, et al. Double deletion of murA and murB induced temperature sensitivity in Corynebacterium glutamicum. Bioengineered, 2019, 10(1): 561-573. DOI:10.1080/21655979.2019.1685058
|
|
[10] |
Levefaudes M, Patin D, De Sousa-d'Auria C, et al. Diaminopimelic acid amidation in Corynebacteriales: new insights into the role of LtsA in peptidoglycan modification. J Biol Chem, 2015, 290(21): 13079-13094. DOI:10.1074/jbc.M115.642843
|
|
[11] |
Hirasawa T, Wachi M, Nagai K. A mutation in the Corynebacterium glutamicum ltsA gene causes susceptibility to lysozyme, temperature-sensitive growth, and L-glutamate production. J Bacteriol, 2000, 182(10): 2696-2701. DOI:10.1128/JB.182.10.2696-2701.2000
|
|
[12] |
陈宁, 赵丽丽, 张克旭. L-谷氨酸温度敏感突变株的选育. 生物技术通讯, 2002, 13(2): 152-154. Chen N, Zhao LL, Zhang KX. Breeding of L-glutamic acid temperature-sensitive mutant. Lett Biotechnol, 2002, 13(2): 152-154 (in Chinese). DOI:10.3969/j.issn.1009-0002.2002.02.015
|
|
[13] |
Nakayama Y. Corynebacterium glutamicum mechanosensing: from osmoregulation to L-glutamate secretion for the avian microbiota-gut-brain axis. Microorganisms, 2021, 9(1): 201. DOI:10.3390/microorganisms9010201
|
|
[14] |
Nakamura J, Hirano S, Ito H, et al. Mutations of the Corynebacterium glutamicum NCgl1221 gene, encoding a mechanosensitive channel homolog, induce L-glutamic acid production. Appl Environ Microbiol, 2007, 73(14): 4491-4498. DOI:10.1128/AEM.02446-06
|
|
[15] |
Becker M, Krämer R. MscCG from Corynebacterium glutamicum: functional significance of the C-terminal domain. Eur Biophys J, 2015, 44(7): 577-588. DOI:10.1007/s00249-015-1041-x
|
|
[16] |
Wang Y, Cao GQ, Xu DY, et al. A novel Corynebacterium glutamicum L-glutamate exporter. Appl Environ Microbiol, 2018, 84(6): e02691-17.
|
|
[17] |
Asakura Y, Kimura E, Usuda Y, et al. Altered metabolic flux due to deletion of odhA causes L-glutamate overproduction in Corynebacterium glutamicum. Appl Environ Microbiol, 2007, 73(4): 1308-1319. DOI:10.1128/AEM.01867-06
|
|
[18] |
Shimizu H, Tanaka H, Nakato A, et al. Effects of the changes in enzyme activities on metabolic flux redistribution around the 2-oxoglutarate branch in glutamate production by Corynebacterium glutamicum. Bioprocess Biosyst Eng, 2003, 25(5): 291-298. DOI:10.1007/s00449-002-0307-8
|
|
[19] |
Kawahara Y, Takahashi-Fuke K, Shimizu E, et al. Relationship between the glutamate production and the activity of 2-oxoglutarate dehydrogenase in Brevibacterium lactofermentum. Biosci Biotechnol Biochem, 1997, 61(7): 1109-1112. DOI:10.1271/bbb.61.1109
|
|
[20] |
Kim J, Hirasawa T, Saito M, et al. Investigation of phosphorylation status of OdhI protein during penicillin- and Tween 40-triggered glutamate overproduction by Corynebacterium glutamicum. Appl Microbiol Biotechnol, 2011, 91(1): 143-151. DOI:10.1007/s00253-011-3275-6
|
|
[21] |
Boulahya KA, Guedon E, Delaunay S, et al. OdhI dephosphorylation kinetics during different glutamate production processes involving Corynebacterium glutamicum. Appl Microbiol Biotechnol, 2010, 87(5): 1867-1874. DOI:10.1007/s00253-010-2599-y
|
|
[22] |
Sato H, Orishimo K, Shirai T, et al. Distinct roles of two anaplerotic pathways in glutamate production induced by biotin limitation in Corynebacterium glutamicum. J Biosci Bioeng, 2008, 106(1): 51-58. DOI:10.1263/jbb.106.51
|
|
[23] |
Shirai T, Fujimura K, Furusawa C, et al. Study on roles of anaplerotic pathways in glutamate overproduction of Corynebacterium glutamicum by metabolic flux analysis. Microb Cell Fact, 2007, 6: 19. DOI:10.1186/1475-2859-6-19
|
|
[24] |
Li XF, Bao T, Osire T, et al. MarR-type transcription factor RosR regulates glutamate metabolism network and promotes accumulation of L-glutamate in Corynebacterium glutamicum G01. Bioresour Technol, 2021, 342: 125945. DOI:10.1016/j.biortech.2021.125945
|
|
[25] |
Wen JB, Bao J. Engineering Corynebacterium glutamicum triggers glutamic acid accumulation in biotin-rich corn stover hydrolysate. Biotechnol Biofuels, 2019, 12: 86. DOI:10.1186/s13068-019-1428-5
|
|
[26] | |
|
[27] |
Li MY, Chen JZ, Wang Y, et al. Efficient multiplex gene repression by CRISPR-dCpf1 in Corynebacterium glutamicum. Front Bioeng Biotechnol, 2020, 8: 357. DOI:10.3389/fbioe.2020.00357
|
|
[28] |
Zhang K, Zhang ZH, Kang JN, et al. CRISPR/ Cas13d-mediated microbial RNA knockdown. Front Bioeng Biotechnol, 2020, 8: 856. DOI:10.3389/fbioe.2020.00856
|
|
[29] |
Wang Y, Cheng HJ, Liu Y, et al. In-situ generation of large numbers of genetic combinations for metabolic reprogramming via CRISPR-guided base editing. Nat Commun, 2021, 12(1): 678. DOI:10.1038/s41467-021-21003-y
|
|
[30] |
Liu J, Liu MS, Shi T, et al. CRISPR-assisted rational flux-tuning and arrayed CRISPRi screening of an L-proline exporter for L-proline hyperproduction. Nat Commun, 2022, 13(1): 891. DOI:10.1038/s41467-022-28501-7
|
|
[31] |
Wang Y, Liu Y, Li JW, et al. Expanding targeting scope, editing window, and base transition capability of base editing in Corynebacterium glutamicum. Biotechnol Bioeng, 2019, 116(11): 3016-3029. DOI:10.1002/bit.27121
|
|
[32] |
Wang Y, Liu Y, Liu J, et al. MACBETH: multiplex automated Corynebacterium glutamicum base editing method. Metab Eng, 2018, 47: 200-210. DOI:10.1016/j.ymben.2018.02.016
|
|
[33] |
Liu J, Wang Y, Zheng P, et al. CRISPR/Cas9-mediated ssDNA recombineering in Corynebacterium glutamicum. Bio-protocol, 2018, 8(19): e3038.
|
|
[34] |
Liu J, Wang Y, Lu YJ, et al. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum. Microb Cell Fact, 2017, 16(1): 205. DOI:10.1186/s12934-017-0815-5
|
|
[35] |
Sun DH, Chen JZ, Wang Y, et al. Metabolic engineering of Corynebacterium glutamicum by synthetic small regulatory RNAs. J Ind Microbiol Biotechnol, 2019, 46(2): 203-208. DOI:10.1007/s10295-018-02128-4
|
|
[36] | |
|
[37] |
户红通, 徐达, 徐庆阳, 等. 谷氨酸清洁发酵工艺研究. 中国酿造, 2018, 37(10): 51-56. Hu HT, Xu D, Xu QY, et al. Study on clean fermentation process of glutamic acid. China Brew, 2018, 37(10): 51-56 (in Chinese).
|
|
[38] |
户红通, 徐达, 徐庆阳, 等. 谷氨酸发酵过程膜偶联间歇透析发酵工艺研究. 食品与发酵科技, 2018, 54(1): 9-13, 23. Hu HT, Xu D, Xu QY, et al. Study on membrane coupled intermittent dialysis fermentation process for glutamic acid fermentation. Food Ferment Sci Technol, 2018, 54(1): 9-13, 23 (in Chinese).
|
|
[39] |
Wu Y, Li PP, Zheng P, et al. Complete genome sequence of Corynebacterium glutamicum B253, a Chinese lysine-producing strain. J Biotechnol, 2015, 207: 10-11.
|
|
[40] |
Zhang QQ, Zheng XM, Wang Y, et al. Comprehensive optimization of the metabolomic methodology for metabolite profiling of Corynebacterium glutamicum. Appl Microbiol Biotechnol, 2018, 102(16): 7113-7121.
|
|
[41] |
Sun X, Li QG, Wang Y, et al. Isoleucyl-tRNA synthetase mutant based whole-cell biosensor for high-throughput selection of isoleucine overproducers. Biosens Bioelectron, 2021, 172: 112783.
|
|