生物工程学报  2022, Vol. 38 Issue (4): 1295-1306
http://dx.doi.org/10.13345/j.cjb.210505
中国科学院微生物研究所、中国微生物学会主办
0

文章信息

汤晓玲, 张慧敏, 柳志强, 郑裕国
TANG Xiaoling, ZHANG Huimin, LIU Zhiqiang, ZHENG Yuguo
非天然氨基酸细胞工厂的构建与应用
Construction and application of microbial cell factories for unnatural amino acids
生物工程学报, 2022, 38(4): 1295-1306
Chinese Journal of Biotechnology, 2022, 38(4): 1295-1306
10.13345/j.cjb.210505

文章历史

Received: July 5, 2021
Accepted: September 2, 2021
非天然氨基酸细胞工厂的构建与应用
汤晓玲 , 张慧敏 , 柳志强 , 郑裕国     
浙江工业大学 生物工程学院,浙江 杭州 310014
摘要:非天然氨基酸在医药、农药、材料等领域得到广泛应用,其绿色、高效合成越来越受到关注。近年来,随着合成生物学的快速发展,微生物细胞工厂为非天然氨基酸的制造提供了重要手段。文中从合成途径的重构、关键酶的设计改造及与前体的协同调控、竞争性旁路途径的敲除、辅因子循环系统的构建等方面介绍了一系列非天然氨基酸细胞工厂构建与应用的研究进展,并从基于计算机深度学习的非天然氨基酸微生物细胞工厂设计新原则、与细胞和环境相适配的生物合成新途径,以及基于细胞适应性进化和智能发酵调控的生物制造新体系等方面对非天然氨基酸细胞工厂的进一步构建和应用进行了展望,提出了非天然氨基酸绿色、高效工业化生产的重要前景。
关键词合成生物学    微生物细胞工厂    非天然氨基酸    生物制造    
Construction and application of microbial cell factories for unnatural amino acids
TANG Xiaoling , ZHANG Huimin , LIU Zhiqiang , ZHENG Yuguo     
College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
Abstract: Unnatural amino acids are widely used in medicine, pesticide, material, and other industries and the green and efficient synthesis has attracted a lot of attention. In recent years, with the rapid development of synthetic biology, microbial cell factories have become a promising means for biosynthesis of unnatural amino acids. This study reviewed the construction and application of microbial cell factories for unnatural amino acid, including the synthetic pathway reconstruction, design/modification of key enzymes and their coordinated regulation with precursors, blocking of competitive alternative pathways, and construction of cofactor circulation systems. Meanwhile, on the basis of the new principles for designing the microbial cell factories, new biosynthetic pathways adapted to cells and the production environment, as well as new biomanufacturing system established based on cell adaptive evolution and intelligent fermentation regulation, we looked forward to the further construction and application of microbial cell factories for industrial bio-production.
Keywords: synthetic biology    microbial cell factories    unnatural amino acids    bio-production    

氨基酸是一类含有氨基和羧基的有机化合物,是生物功能大分子蛋白质的基本组成单位,具有重要的生理学功能,但种类不多,主要应用于食品、饲料、保健品等领域[1-2]。非天然氨基酸是指不由现有遗传密码编码、自然界不存在的人工合成氨基酸,人为赋予其多样性功能基团,作为重要的手性化合物,在医药、农药等领域用途广泛。如L-2-氨基丁酸可以合成L-2-氨基丁酰胺盐酸盐,是重磅级抗癫痫药物左乙拉西坦、布瓦西坦和抗结核乙胺丁醇等的关键中间体[3-5]; 5-氨基乙酰丙酸是血红素、卟啉、叶绿素、维生素B12的重要前体,具有生物可降解和无毒无残留的优点[6-7]; L-2, 3-二氨基丙酸是合成神经毒素β-N-oxalyl-l-α的直接前体,也是多种抗生素合成的关键物质[8-9]; β-丙氨酸可用于合成泛酸及泛酸钙,也可合成丙烯酰胺、丙烯腈等化工产品,以及巴萨拉嗪和帕米磷酸二钠等医药化学品,是最具开发潜力的三碳化合物之一[10-13]; L-高丝氨酸是合成L-蛋氨酸的前体,也是合成重要C4化工产品的平台化合物[14-16],其开发和应用受到广泛关注。

已发现的非天然氨基酸大约有几百种,应用较为广泛的主要包括苯丙氨酸衍生物、酪氨酸衍生物、谷氨酰胺衍生物、丙氨酸衍生物、半胱氨酸衍生物、丝氨酸衍生物和赖氨酸衍生物等。目前,非天然氨基酸传统合成方法主要为化学法,但因反应条件苛刻、过程中使用或释放高挥发有毒物质、环境污染严重、原料成本高等问题,逐渐受到限制。另一方面,非天然氨基酸合成研究因发展较晚,在化学催化剂的筛选制备、工艺路线的构建以及催化过程的调控等方面关键核心技术被国外巨头垄断,具有较高的技术壁垒和资金壁垒,因此,开发其绿色、高效合成方法具有重要意义[17-18]。随着合成生物学的快速发展,微生物细胞工厂为非天然氨基酸生产提供了重要策略。微生物细胞工厂采用工程化的设计理念,对细胞进行定向设计、改造,重塑自然生产线,以生物质为原料,实现目标化学品的高效、定向合成[19-20]。作为化学品颠覆性的生产新模式,已被列为各国科技竞争和产业发展的战略重点。

基于合成生物学的关键技术,通过对非天然氨基酸合成途径的设计重构、生物元件的创制和引入、关键酶的调控、竞争性旁路途径的敲除以及途径和能量模块的组合优化,将化学品生产加工的性能,通过人为的方式赋予自然细胞,构建了β-丙氨酸、L-高丝氨酸及其衍生物、L-2-氨基丁酸、5-氨基乙酰丙酸等非天然氨基酸微生物细胞工厂,进一步通过细胞的适应性进化和发酵调控等策略,成功实现了目标产物转化率、合成速度和产物浓度的突破和提升(图 1)。

图 1 非天然氨基酸细胞工厂的构建与调控 Fig. 1 Construction and regulation of microbial cell factories for non-natural amino acids.
1 非天然氨基酸细胞工厂构建与应用 1.1 非天然氨基酸代谢途径的重构

与天然氨基酸不同,非天然氨基酸一般在微生物代谢过程中不能自主合成,或合成效率非常低,因此,要实现非天然氨基酸的微生物发酵生产,往往需进行目标产物合成路径的重构[21]。近年来,研究者通过对非天然氨基酸结构和合成方向的解析,成功在大肠杆菌(Escherichia coli)、谷氨酸棒杆菌(Corynebacterium glutamicum) 等底盘生物中构建了系列非天然氨基酸的合成途径[22-23]

2-酮丁酸是大肠杆菌代谢网络中合成异亮氨酸的重要前体,参与异亮氨酸的代谢合成,也可以通过脱氢酶或转氨酶作用,生产L-2-氨基丁酸[24-25]。Dong等在构建大肠杆菌L-2-氨基丁酸细胞工厂时,通过敲除乙酰羟酸合酶编码基因ilvIH,阻断异亮氨酸的合成[26],同时引入来源嗜热放线菌(Thermoactinomyces intermedius) 的亮氨酸脱氢酶LeuD,将积累的2-酮丁酸引向L-2-氨基丁酸的生成,实现了大肠杆菌自主合成L-2-氨基丁酸的能力[27]; L-天冬氨酸是L-天冬氨酸家族氨基酸及其衍生物的重要前体[28-29],在微生物细胞中,L-天冬氨酸可以以草酰乙酸或延胡索酸为前体直接合成[30]。作为最重要的L-天冬氨酸衍生氨基酸之一,β-丙氨酸可由L-天冬氨酸脱羧生成[28-31]。Piao等在大肠杆菌L-天冬氨酸积累的情况下,通过引入来源于枯草芽孢杆菌(Bacillus subtilis) 的L-天冬氨酸-α-脱羧酶PanD,实现了β-丙氨酸从无到有的突破[32]; 在大肠杆菌或谷氨酸棒杆菌中,虽然存在5-氨基乙酰丙酸的多酶合成路线,但产量极低,不具有应用潜力[33-34]。而5-氨基乙酰丙酸可以由甘氨酸和琥珀酰辅酶A在5-氨基乙酰丙酸合成酶(AlaS) 的作用下生成[35]。因此,Chen等通过评估不同来源的5-氨基乙酰丙酸合成酶,在谷氨酸棒杆菌中引入所筛选获得的最适酶,成功构建了具有5-氨基乙酰丙酸生成能力的基础菌株,用于进一步的代谢调控和产量优化[36] (图 2)。

图 2 非天然氨基酸合成途径的设计重构 Fig. 2 Design and construction of the biosynthetic pathways of non-natural amino acids. 从柠檬酸循环中间体草酰乙酸到β-丙氨酸的合成途径(途径1);从草酰乙酸到高丝氨酸再到O-乙酰-高丝氨酸的合成途径(途径2);从草酰乙酸到高丝氨酸再到L-2-氨基丁酸的合成途径(途径3);从琥珀酰辅酶A到5-氨基丙酸的合成途径(途径4) Biosynthetic pathway of β-alanine (pathway 1); biosynthetic pathway of O-acetyl-homoserine (pathway 2); biosynthetic pathway of L-2-aminobutyric acid (pathway 3); biosynthetic pathway of 5-mainolevulinic acid (pathway 4).
1.2 非天然氨基酸合成途径关键酶与前体的协同调控

酶是构建微生物化学品工厂的物质基础,其设计合成和匹配组装是实现最优物质流、能量流分配的前提[37]。微生物细胞工厂化学品的合成速度,很大程度上取决于关键酶的性能,以及酶与途径、细胞的互作匹配程度[38-39]。但是,由于对酶元件的匹配原理研究不透彻,使其往往不能按预期模式与代谢途径相吻合,导致代谢前体供给不足或失衡,目标产物合成效率低下[40-41]。因此,对合成途径关键酶与前体进行协同调控是实现非天然氨基酸高效合成的重要手段。L-苏氨酸是大肠杆菌L-2-氨基丁酸合成的重要前体,它通过苏氨酸脱氨酶IlvA催化生成2-酮丁酸,进一步在亮氨酸脱氢酶LeuD的作用下生成L-2-氨基丁酸[42]。前体的充足供应是提高目标产物合成的基础。通过解除L-苏氨酸合成途径中关键酶的反馈抑制,提高L-苏氨酸合成,并抑制L-苏氨酸的外排,使其产量达到12.45 g/L。但是,研究表明由于苏氨酸脱氨酶活力不足以及受产物的反馈抑制,无法将胞内积累的L-苏氨酸高效转化成2-丁酮酸[43],基于苏氨酸脱氨酶的结构分析,通过定点饱和突变策略,对其进行分子改造,成功获得突变体F352A/R363F[43],通过引入该突变体,同时通过敲除关键基因ilvH阻断2-丁酮酸向L-异亮氨酸的转化途径,2-丁酮酸产量提高了83.9%,达到8.1 g/L。进一步地,基于启动子替换策略对苏氨酸脱氨酶和亮氨酸脱氢酶进行表达的协同调控,大幅提高了L-2-氨基丁酸的合成能力,其摇瓶产量达到4.86 g/L[27] (图 3)。

图 3 L-2-氨基丁酸代谢通路改造及关键酶的调控 Fig. 3 Metabolic pathway modification and key enzyme regulation of L-2-aminobutyric acid. thrA基因敲除解除苏氨酸对合成途径中关键酶的反馈抑制; rhtA基因敲除阻断苏氨酸的外排; 苏氨酸脱氨酶(ilvA编码) 通过改造提高其催化效率; 苏氨酸脱氨酶和亮氨酸脱氢酶(leuDH编码) 的协同表达调控提高L-2-氨基丁酸产量 Knockout of thrA to relieve the feedback inhibition of threonine on the key enzymes in the biosynthetic pathway; deletion of rhtA to block the efflux of threonine; modification of threonine deaminase (encoded by ilvA) to improve its catalytic efficiency; expression of both threonine deaminase and leucine dehydrogenase (encoded by leuDH) to increase the yield of L-2-aminobutyric acid.

在构建合成O-乙酰-高丝氨酸细胞工厂过程中,高丝氨酸乙酰转移酶是目标产物合成的关键限制性酶,因天然酶活力低且受目标产物的反馈抑制,形成了O-乙酰-高丝氨酸的限制性节点[44-46]。为了提高该酶的催化性能,Wei等对该酶进行了保守序列分析,对24个可能影响酶构效关系的关键氨基酸残基进行突变,构建了突变文库,并进行筛选,获得突变体F147L-M182I-M240A,与野生型相比,酶活提高了12倍[47]。同时,对关键酶以及前体进行协同调控,以平衡关键酶酶活和前体的供给。基于草酰乙酸的供给是合成L-天冬氨酸家族氨基酸的限制性因素,通过强启动子替换以及Cas9-介导的基因组编辑技术的协同应用,有效增强了草酰乙酸的合成途径,提高了草酰乙酸的供给和利用[48]。另一方面,高丝氨酸是O-乙酰-高丝氨酸合成的直接前体,而天冬氨酸激酶是将碳流引向天冬氨酸支路的关键酶[49]。通过表达来源于谷氨酸棒杆菌的对反馈抑制不敏感的天冬氨酸激酶和高丝氨酸脱氢酶,成功实现了高丝氨酸的积累,提高了O-乙酰-高丝氨酸的合成,其产量达到6.78 g/L,糖酸转化率达0.21 g/g葡萄糖[47] (图 4)。

图 4 O-乙酰-高丝氨酸代谢通路改造 Fig. 4 Metabolic pathway modification of O-acetyl-homoserine. lysA基因的敲除阻断赖氨酸(LYS) 旁路途径; metAmetB基因的敲除阻断蛋氨酸(MET) 旁路途径; thrB基因的敲除阻断苏氨酸(THR) 旁路途径; 高丝氨酸乙酰转移酶(metXlm编码) 的改造提高酶催化活性; NADP+/NADPH再生系统的构建共同提高O-乙酰-高丝氨酸生产效率 Deletion of lysA to block the alternative pathway of lysine (LYS); deletion of metA and metB to block the alternative pathway of methionine (MET); deletion of thrB to block the alternative pathway of threonine (THR); modification of homoserine acetyltransferase (encoded by metXlm) to enhance its activity; construction of the NADP+/NADPH regeneration system to increase the productivity of O-acetyl-homoserine.

草酰乙酸直接合成L-天冬氨酸是生产L-天冬氨酸最短的路线,可以避免复杂的调控,同样,草酰乙酸的供给直接关系到L-天冬氨酸及其衍生物的合成能力[50]。为了提高草酰乙酸的利用率,Piao等将来源于谷氨酸棒杆菌的磷酸烯醇式丙酮酸羧化酶进行过表达,同时,敲除天冬氨酸氨裂解酶AspA和苹果酸脱氢酶Mdh,以减少草酰乙酸向TCA循环途径以及丙酮酸回补途径的流向,从而增加草酰乙酸的底物池浓度,获得β-丙氨酸前体天冬氨酸的大幅度积累[32],但是,天冬氨酸到β-丙氨酸的进一步转化受到限制,因此需进行不同层次的再调控。

在5-氨基乙酰丙酸合成途径的重构过程中,5-氨基乙酰丙酸合成酶(AlaS) 被认为是限制目标产物产量的关键酶,基于RBS序列替换以调控AlaS的翻译水平和活力,实现了该酶酶活2倍的提高,5-氨基乙酰丙酸产率达到4.4 g/L,比出发菌株提高15.8%,但是,AlaS活力的提高同样会消耗太多5-氨基乙酰丙酸前体琥珀酰辅酶A,阻碍柠檬酸循环的进行,对细胞生长产生较大的代谢负担[51],因此,目标产物合成能力的进一步提升依旧有限。Feng等基于启动子工程协同AlaS的表达以及回补反应的强度,一定程度上提高了5-氨基乙酰丙酸的产量[52]。Chen等基于多层次分析和比对,平衡了AlaS和磷酸烯醇丙酮酸羧化酶Ppc之间的表达,5-氨基乙酰丙酸产量提高到5.5 g/L[36] (图 5)。

图 5 5-氨基乙酰丙酸合成途径关键酶的调控 Fig. 5 Regulation of key enzymes in the biosynthetic pathway of 5-mainolevulinic acid. Ppc: 磷酸烯醇丙酮酸羧化酶; AlaS: 5-氨基乙酰丙酸合成酶 Ppc: phosphoenolpyruvate carboxylase; AlaS: 5-aminolevulinic acid synthase.
1.3 辅因子供给途径的调控

非天然氨基酸合成过程中,往往需要辅因子的参与,辅因子循环体系的顺畅与否极大程度上影响了非天然氨基酸的合成能力[53]。在L-天冬氨酸及其衍生物合成过程中,天冬氨酸转氨酶AspC直接催化草酰乙酸和L-谷氨酸之间的转氨基反应合成L-天冬氨酸,但是由于TCA循环不能产生足够大的L-谷氨酸/α-酮戊二酸底物池,使该酶介导的反应催化效率不高[54-55]。而天冬氨酸脱氢酶AspDH能以氨为直接供体,催化草酰乙酸脱氢反应生成L-天冬氨酸,该过程需要耦联辅酶NAD(P)H[56]。基于AspDH对NADH的更加依赖性,通过设计辅因子自足系统实现了L-天冬氨酸和β-丙氨酸合成中NADH的供应充足[32]。具体地,引入了来自B. subtilis的NADH依赖性谷氨酸脱氢酶RocG,以介导NAD+和谷氨酸的同时再生,实现了NADH和NAD+的自我循环,辅因子自足系统使天冬氨酸达到了0.021 mol/L,通过与L-天冬氨酸-α-脱羧酶PanD的共表达,β-丙氨酸产量达到0.032 mol/L (图 6)。

图 6 β-丙氨酸代谢通路改造与调控 Fig. 6 Metabolic pathway modification and regulation of β-alanine. poxBidhApflB基因的敲除阻断丙酮酸(PYR) 的分流; mdhaspA基因的敲除阻断副产物的形成; L-天冬氨酸-脱羧酶的过表达; NAD+/NADH辅酶循环系统的构建 Deletion of poxB, idhA and pflB to block the metabolic flux dispersion of pyruvate; deletion of mdh and aspA to avoid the formation of byproducts; overexpression of L-aspartate-decarboxylase for high catalytic efficiency; construction of the NAD+/NADH circulation system.

O-乙酰-高丝氨酸生物合成途径中,需要2 mol NADPH才能形成1 mol目标产物。NADPH的有效再生是O-乙酰-高丝氨酸生物合成的限制因素之一[57-58]。增强NADPH供应的大多数代谢工程策略主要集中在加强戊糖磷酸途径(PPP) 和转氢酶系统[59]。但是,PPP和转氢酶系统通量增加的结果会导致碳流和能源的必然损失。因此,通过引入NADP+依赖性脂酰胺脱氢酶突变体,胞内NADPH含量从0.49 μmol/g CDW提高到0.71 μmol/g CDW,NADPH/ NADP+从0.72增加到至1.28,相应地,O-乙酰-高丝氨酸产量提高了10.6%[47] (图 4)。

1.4 副产物形成途径的阻断

自然进化的细胞具有生长代谢的经济性,物质流和能量流分散到细胞生长需要的各个组分,同时合成网络高度复杂,各途径彼此交叉,导致目标产品的合成效率低[60-61]。因此,对非天然氨基酸竞争性旁路进行调控,减少代谢流的分配,有利于目标产品合成能力的进一步提升[62]

天冬氨酸半醛是合成赖氨酸和高丝氨酸的共同前体,在构建高丝氨酸细胞工厂时,赖氨酸合成途径的存在将与高丝氨酸合成竞争碳代谢流,导致高丝氨酸及其衍生物合成效率低下[63]。通过敲除编码庚二酸脱羧酶基因lysA,有效阻断赖氨酸途径,加强了高丝氨酸合成中碳的利用率[64]。另一方面,高丝氨酸是进一步生成苏氨酸和蛋氨酸的前体,因此,通过敲除苏氨酸/蛋氨酸合成途径中的关键酶,针对性减弱或阻断下游途径,增强了高丝氨酸和O-乙酰-高丝氨酸的积累[65]

对β-丙氨酸细胞工厂代谢产物分析发现,乳酸、乙酸、甲酸以及琥珀酸是积累的主要副产物,它们主要都以丙酮酸为前体[3],对其合成途径的阻断被认为是提高β-丙氨酸产量的有效策略。通过敲除葡萄糖磷酸转移酶编码基因和半乳糖抑制因子编码基因[66-67],同时加强葡萄糖激酶的表达,提高了碳源向β-丙氨酸的流向,从而减少了副产物乳酸、乙酸和甲酸的形成,β-丙氨酸产量提高到0.065 mol/L。另一方面,通过敲除关键酶,直接阻断副产物形成途径,具体地,敲除延胡索酸氢化酶基因簇以减少琥珀酸的合成,使β-丙氨酸产量进一步提高到0.071 mol/L[32] (图 6)。

1.5 非天然氨基酸细胞工厂的发酵调控

微生物细胞工厂的发酵及调控是实现目标产物生产的必经之路。通过对发酵条件的优化和发酵过程的控制,以适应细胞生长和生产的平衡,对提高目标产物的糖酸转化率、合成速度和产物浓度具有重要作用[68]。对β-丙氨酸工程菌进行不同规模阶段的发酵测试。首先在实验室小试体系对细胞浓度、葡萄糖初始添加浓度以及间歇添加过程进行优化,2 h后糖酸转化率达到1.52 mol/mol葡萄糖,发酵15 h后,β-丙氨酸浓度达到0.368 mol/L。进一步在5 L发酵罐中进行测试,在细胞生长到一定程度时,激活β-丙氨酸合成途径,在厌氧和微氧条件下考察目标产物的生产能力。结果显示,在厌氧条件下,通过葡萄糖补料策略,β-丙氨酸浓度达到0.070 mol/L,而乳酸是主要积累的副产物,浓度达到0.160 mol/L; 在微氧条件下,β-丙氨酸浓度达到0.098 mol/L,主要副产物是乙酸,积累到0.169 mol/L。通过系统分析,推测发酵后期草酰乙酸形成步骤受到阻碍,因此限制了β-丙氨酸的合成能力。进一步对β-丙氨酸细胞工厂进行改进,包括引入磷酸烯醇式丙酮酸羧激酶,加强二氧化碳/碳酸氢盐吸收系统[69],过表达吡哆醛依赖性L-天冬氨酸-α-脱羧酶以维持发酵后期酶的稳定性[70]等,获得适应性菌株,通过发酵条件优化以及分批补料策略,最终β-丙氨酸产量达到0.424 mol/L,糖酸转化率达到0.43 g/g葡萄糖,而乙酸积累量也相应下降到0.050 mol/L以下[32]

对构建完成的L-2-氨基丁酸细胞工厂进行分批补料发酵研究,在5 L发酵罐发酵过程中,控制葡萄糖补加浓度,发酵36 h前,L-2-氨基丁酸的产生呈细胞生长依赖性,当细胞进入稳定期后,目标产物不断积累,最终浓度达到9.33 g/L,主要副产物L-苏氨酸未积累[27]。乙酰-高丝氨酸生产菌构建完成后,在7.5 L发酵罐中同样使用分批补料策略进行发酵,结果显示,细胞持续生长,最大OD600值达到82.8,O-乙酰-高丝氨酸在发酵12 h后开始积累,在58 h后其浓度达到62.7 g/L,糖酸转化率达到0.45 g/g葡萄糖,且副产物乳酸和乙酸的积累明显下降[47]。但是,高丝氨酸仍旧有所积累,推测原因是高丝氨酸乙酰转移酶受产物反馈抑制作用依旧未完全解除,随着后期产物的积累,抑制作用变得明显,阻碍了O-乙酰-高丝氨酸的进一步积累,也为动态发酵过程中该酶的进一步调控指明了方向。对5-氨基乙酰丙酸在5 L发酵罐中进行一步发酵,以经过酶水解的木薯蔗渣为原料,替代葡萄糖从而极大程度降低了发酵成本,基于分批补料策略,目标产品产率达18.5 g/L (表 1)。

表 1 非天然氨基酸细胞工厂的生产效率 Table 1 Production efficiency of microbial cell factories for unnatural amino acids
Unnatural amino acid Yield (g/L) Sugar-acid conversion rate (g/g) Fermentation scale (L) Space-time yield (g/(L·h))
D-alanine 37.7 0.43 5.0
O-acetyl-homoserine 62.7 0.45 7.5 1.08
L-2-aminobutyric acid 9.3 5.0 0.19
5-mainolevulinic acid 18.5 5.0
2 总结与展望

微生物细胞工厂为化学品的绿色、高效生产提供了重要手段。近年来,构建非天然氨基酸高效细胞工厂成为了国内外研究的热点。通过合成途径的重构、关键酶的设计改造以及和前体的协同调控、竞争性旁路途径的敲除、辅因子循环系统的构建、发酵过程的智能调控等策略,系列非天然氨基酸细胞工厂的构建与应用取得了重要进展,为非天然氨基酸的生物制造奠定了基础。但是,与国外先进技术相比,目前我国在高效代谢网络模型构建与应用、计算机深度学习,以及基于途径、细胞和环境适配机制的全局调控等方面技术水平依旧欠缺,对高效细胞工厂构建的指导意义不强。因此,在今后的发展中,需改变以计量学为主的传统设计模式,融入热力学、动力学信息数据库,综合利用生物反应、基因组学、工业过程组学信息数据库,实现非天然氨基酸合成途径的精准设计。另一方面,需突破以试错性为主的化学品生物合成途径传统构建方式,基于高准确预测率的计算设计,进行元件精准设计和组装,实现元件与途径、细胞和环境的适配性,获得原子经济性接近或超过理论值、能量冗余、还原力平衡的非天然氨基酸生物合成新途径。通过合成生物学与计算生物学、化学生物学、蛋白质科学等多学科的深度交叉融合,有望实现非天然氨基酸细胞工厂的工业化应用和示范,替代传统化学路线,降低生产成本,减少三废排放,形成更有竞争力的产业体系。

参考文献
[1]
Ager DJ, Fotheringham IG. Methods for the synthesis of unnatural amino acids. Curr Opin Drug Discov Devel, 2001, 4(6): 800-807.
[2]
Jang YS, Kim B, Shin JH, et al. Bio-based production of C2–C6 platform chemicals. Biotechnol Bioeng, 2012, 109(10): 2437-2459. DOI:10.1002/bit.24599
[3]
Shin JS, Kim BG. Transaminase-catalyzed asymmetric synthesis of L-2-aminobutyric acid from achiral reactants. Biotechnol Lett, 2009, 31(10): 1595-1599. DOI:10.1007/s10529-009-0057-7
[4]
Taylor PP, Pantaleone DP, Senkpeil RF, et al. Novel biosynthetic approaches to the production of unnatural amino acids using transaminases. Trends Biotechnol, 1998, 16(10): 412-418. DOI:10.1016/S0167-7799(98)01240-2
[5]
Zhu L, Tao RS, Wang Y, et al. Removal of l-alanine from the production of L-2-aminobutyric acid by introduction of alanine racemase and D-amino acid oxidase. Appl Microbiol Biotechnol, 2011, 90(3): 903-910. DOI:10.1007/s00253-011-3127-4
[6]
Sasaki K, Watanabe M, Tanaka T, et al. Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl Microbiol Biotechnol, 2002, 58(1): 23-29. DOI:10.1007/s00253-001-0858-7
[7]
Kang Z, Zhang J, Zhou J, et al. Recent advances in microbial production of δ-aminolevulinic acid and vitamin B12. Biotechnol Adv, 2012, 30(6): 1533-1542. DOI:10.1016/j.biotechadv.2012.04.003
[8]
Felnagle EA, Rondon MR, Berti AD, et al. Identification of the biosynthetic gene cluster and an additional gene for resistance to the antituberculosis drug capreomycin. Appl Environ Microbiol, 2007, 73(13): 4162-4170. DOI:10.1128/AEM.00485-07
[9]
Ikegami F, Yamamoto A, Kuo YH, et al. Enzymatic formation of 2, 3-diaminopropionic acid, the direct precursor of the neurotoxin beta-ODAP, in Lathyrus sativus. Biol Pharm Bull, 1999, 22(7): 770-771. DOI:10.1248/bpb.22.770
[10]
Lee JW, Na D, Park JM, et al. Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat Chem Biol, 2012, 8(6): 536-546. DOI:10.1038/nchembio.970
[11]
Pei W, Zhang J, Deng S, et al. Molecular engineering of L-aspartate-α-decarboxylase for improved activity and catalytic stability. Appl Microbiol Biotechnol, 2017, 101(15): 6015-6021. DOI:10.1007/s00253-017-8337-y
[12]
Song CW, Lee J, Ko YS, et al. Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid. Metab Eng, 2015, 30: 121-129. DOI:10.1016/j.ymben.2015.05.005
[13]
Steunenberg P, Könst PM, Scott EL, et al. Polymerisation of β-alanine through catalytic ester- amide exchange. Eur Polym J, 2013, 49(7): 1773-1781. DOI:10.1016/j.eurpolymj.2013.03.032
[14]
Kotre AM, Sullivan SJ, Savageau MA. Metabolic regulation by homoserine in Escherichia coli B-R. J Bacteriol, 1973, 116(2): 663-672. DOI:10.1128/jb.116.2.663-672.1973
[15]
Park JH, Lee SY. Metabolic pathways and fermentative production of L-aspartate family amino acids. Biotechnol J, 2010, 5(6): 560-577. DOI:10.1002/biot.201000032
[16]
Hong KK, Kim JH, Yoon JH, et al. O-succinyl-L-homoserine-based C4-chemical production: succinic acid, homoserine lactone, γ-butyrolactone, γ-butyrolactone derivatives, and 1, 4-butanediol. J Ind Microbiol Biotechnol, 2014, 41(10): 1517-1524. DOI:10.1007/s10295-014-1499-z
[17]
Diesveld R, Tietze N, Fürst O, et al. Activity of exporters of Escherichia coli in Corynebacterium glutamicum, and their use to increase L-threonine production. J Mol Microbiol Biotechnol, 2009, 16(3/4): 198-207.
[18]
Bornscheuer UT, Huisman GW, Kazlauskas RJ, et al. Engineering the third wave of biocatalysis. Nature, 2012, 485(7397): 185-194. DOI:10.1038/nature11117
[19]
Nielsen J, Keasling JD. Engineering cellular metabolism. Cell, 2016, 164(6): 1185-1197. DOI:10.1016/j.cell.2016.02.004
[20]
Choi S, Song CW, Shin JH, et al. Biorefineries for the production of top building block chemicals and their derivatives. Metab Eng, 2015, 28: 223-239. DOI:10.1016/j.ymben.2014.12.007
[21]
Tran LD, Daugulis O. Nonnatural amino acid synthesis by using carbon-hydrogen bond functionalization methodology. Angew Chem Int Ed Engl, 2012, 51(21): 5188-5191. DOI:10.1002/anie.201200731
[22]
Ning Y, Wu X, Zhang C, et al. Pathway construction and metabolic engineering for fermentative production of ectoine in Escherichia coli. Metab Eng, 2016, 36: 10-18. DOI:10.1016/j.ymben.2016.02.013
[23]
Park JH, Lee KH, Kim TY, et al. Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. PNAS, 2007, 104(19): 7797-7802. DOI:10.1073/pnas.0702609104
[24]
Zhang K, Li H, Cho KM, et al. Expanding metabolism for total biosynthesis of the nonnatural amino acid L-homoalanine. PNAS, 2010, 107(14): 6234-6239. DOI:10.1073/pnas.0912903107
[25]
Xu JM, Cheng F, Fu FT, et al. Semi-rational engineering of leucine dehydrogenase for L-2-aminobutyric acid production. Appl Biochem Biotechnol, 2017, 182(3): 898-909. DOI:10.1007/s12010-016-2369-0
[26]
Dong X, Zhao Y, Hu J, et al. Attenuating L-lysine production by deletion of ddh and lysE and their effect on L-threonine and L-isoleucine production in Corynebacterium glutamicum. Enzyme Microb Technol, 2016, 93/94: 70-78. DOI:10.1016/j.enzmictec.2016.07.013
[27]
Xu JM, Li JQ, Zhang B, et al. Fermentative production of the unnatural amino acid L-2-aminobutyric acid based on metabolic engineering. Microb Cell Fact, 2019, 18(1): 43. DOI:10.1186/s12934-019-1095-z
[28]
Li Y, Kawakami N, Ogola HJ, et al. A novel L-aspartate dehydrogenase from the mesophilic bacterium Pseudomonas aeruginosa PAO1: molecular characterization and application for L-aspartate production. Appl Microbiol Biotechnol, 2011, 90(6): 1953-1962. DOI:10.1007/s00253-011-3208-4
[29]
Chen X, Gao C, Guo L, et al. DCEO biotechnology: tools to design, construct, evaluate, and optimize the metabolic pathway for biosynthesis of chemicals. Chem Rev, 2018, 118(1): 4-72. DOI:10.1021/acs.chemrev.6b00804
[30]
Dugar D, Stephanopoulos G. Relative potential of biosynthetic pathways for biofuels and bio-based products. Nat Biotechnol, 2011, 29(12): 1074-1078.
[31]
Li Y, Ishida M, Ashida H, et al. A non-NadB type L-aspartate dehydrogenase from Ralstonia eutropha strain JMP134: molecular characterization and physiological functions. Biosci Biotechnol Biochem, 2011, 75(8): 1524-1532. DOI:10.1271/bbb.110216
[32]
Piao XY, Wang L, Lin BX, et al. Metabolic engineering of Escherichia coli for production of L-aspartate and its derivative β-alanine with high stoichiometric yield. Metab Eng, 2019, 54: 244-254. DOI:10.1016/j.ymben.2019.04.012
[33]
Nishikawa S, Watanabe K, Tanaka T, et al. Rhodobacter sphaeroides mutants which accumulate 5-aminolevulinic acid under aerobic and dark conditions. J Biosci Bioeng, 1999, 87(6): 798-804. DOI:10.1016/S1389-1723(99)80156-X
[34]
Layer G, Reichelt J, Jahn D, et al. Structure and function of enzymes in heme biosynthesis. Protein Sci, 2010, 19(6): 1137-1161. DOI:10.1002/pro.405
[35]
Zhang L, Chen J, Chen N, et al. Cloning of two 5-aminolevulinic acid synthase isozymes HemA and HemO from Rhodopseudomonas palustris with favorable characteristics for 5-aminolevulinic acid production. Biotechnol Lett, 2013, 35(5): 763-768. DOI:10.1007/s10529-013-1143-4
[36]
Chen J, Wang Y, Guo X, et al. Efficient bioproduction of 5-aminolevulinic acid, a promising biostimulant and nutrient, from renewable bioresources by engineered Corynebacterium glutamicum. Biotechnol Biofuels, 2020, 13: 41. DOI:10.1186/s13068-020-01685-0
[37]
Zhang Y, Meng Q, Ma H, et al. Determination of key enzymes for threonine synthesis through in vitro metabolic pathway analysis. Microb Cell Fact, 2015, 14: 86. DOI:10.1186/s12934-015-0275-8
[38]
Liu SP, Liu RX, Xiao MR, et al. A systems level engineered E. coli capable of efficiently producing L-phenylalanine. Process Biochem, 2014, 49(5): 751-757. DOI:10.1016/j.procbio.2014.01.001
[39]
Chang Z, Liu D, Yang Z, et al. Efficient xylitol production from cornstalk hydrolysate using engineered Escherichia coli whole cells. J Agric Food Chem, 2018, 66(50): 13209-13216. DOI:10.1021/acs.jafc.8b04666
[40]
Peng LF, Shimizu K. Effect of fadR gene knockout on the metabolism of Escherichia coli based on analyses of protein expressions, enzyme activities and intracellular metabolite concentrations. Enzym Microb Technol, 2006, 38(3/4): 512-520.
[41]
Patel AT, Akhani RC, Patel MJ, et al. Bioproduction of L-aspartic acid and cinnamic acid by L-aspartate ammonia lyase from Pseudomonas aeruginosa PAO1. Appl Biochem Biotechnol, 2017, 182(2): 792-803. DOI:10.1007/s12010-016-2362-7
[42]
Lee KH, Park JH, Kim TY, et al. Systems metabolic engineering of Escherichia coli for L-threonine production. Mol Syst Biol, 2007, 3: 149. DOI:10.1038/msb4100196
[43]
Chen L, Chen Z, Zheng P, et al. Study and reengineering of the binding sites and allosteric regulation of biosynthetic threonine deaminase by isoleucine and valine in Escherichia coli. Appl Microbiol Biotechnol, 2013, 97(7): 2939-2949. DOI:10.1007/s00253-012-4176-z
[44]
Tang XL, Chen LJ, Du XY, et al. Regulation of homoserine O-succinyltransferase for efficient production of L-methionine in engineered Escherichia coli. J Biotechnol, 2020, 309: 53-58. DOI:10.1016/j.jbiotec.2019.12.018
[45]
Shim J, Shin Y, Lee I, et al. L-Methionine Production. Amino Acid Fermentation. Tokyo: Springer Japan, 2016: 153-177.
[46]
Maier THP. Semisynthetic production of unnatural L-alpha-amino acids by metabolic engineering of the cysteine-biosynthetic pathway. Nat Biotechnol, 2003, 21(4): 422-427. DOI:10.1038/nbt807
[47]
Wei L, Wang Q, Xu N, et al. Combining protein and metabolic engineering strategies for high-level production of O-acetylhomoserine in Escherichia coli. ACS Synth Biol, 2019, 8(5): 1153-1167. DOI:10.1021/acssynbio.9b00042
[48]
Li Y, Lin Z, Huang C, et al. Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing. Metab Eng, 2015, 31: 13-21. DOI:10.1016/j.ymben.2015.06.006
[49]
Dong X, Quinn PJ, Wang X. Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for the production of L-threonine. Biotechnol Adv, 2011, 29(1): 11-23. DOI:10.1016/j.biotechadv.2010.07.009
[50]
Cardenas-Fernandez M, Lopez C, Alvaro G, et al. Immobilized L-aspartate ammonia-lyase from Bacillus sp. YM55-1 as biocatalyst for highly concentrated L-aspartate synthesis. Bioprocess Biosyst Eng, 2012, 35(8): 1437-1444. DOI:10.1007/s00449-012-0732-2
[51]
Kind S, Becker J, Wittmann C. Increased lysine production by flux coupling of the tricarboxylic acid cycle and the lysine biosynthetic pathway—metabolic engineering of the availability of succinyl-CoA in Corynebacterium glutamicum. Metab Eng, 2013, 15: 184-195. DOI:10.1016/j.ymben.2012.07.005
[52]
Feng L, Zhang Y, Fu J, et al. Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid. Biotechnol Bioeng, 2016, 113(6): 1284-1293. DOI:10.1002/bit.25886
[53]
Li Y, Ogola HJ, Sawa Y. L-aspartate dehydrogenase: features and applications. Appl Microbiol Biotechnol, 2012, 93(2): 503-516. DOI:10.1007/s00253-011-3730-4
[54]
Li H, Zhu T, Miao L, et al. Discovery of novel highly active and stable aspartate dehydrogenases. Sci Rep, 2017, 7(1): 7881. DOI:10.1038/s41598-017-05522-7
[55]
Underwood SA, Buszko ML, Shanmugam KT, et al. Flux through citrate synthase limits the growth of ethanologenic Escherichia coli KO11 during xylose fermentation. Appl Environ Microbiol, 2002, 68(3): 1071-1081. DOI:10.1128/AEM.68.3.1071-1081.2002
[56]
Chemler JA, Fowler ZL, McHugh KP, et al. Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering. Metab Eng, 2010, 12(2): 96-104. DOI:10.1016/j.ymben.2009.07.003
[57]
Krömer JO, Wittmann C, Schröder H, et al. Metabolic pathway analysis for rational design of L-methionine production by Escherichia coli and Corynebacterium glutamicum. Metab Eng, 2006, 8(4): 353-369. DOI:10.1016/j.ymben.2006.02.001
[58]
Shimizu H, Yamagata S, Masui R, et al. Cloning and overexpression of the oah1 gene encoding O-acetyl-L-homoserine sulfhydrylase of Thermus thermophilus HB8 and characterization of the gene product. Biochim Biophys Acta, 2001, 1549(1): 61-72. DOI:10.1016/S0167-4838(01)00245-X
[59]
Bommareddy RR, Chen Z, Rappert S, et al. A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase. Metab Eng, 2014, 25: 30-37. DOI:10.1016/j.ymben.2014.06.005
[60]
Becker J, Wittmann C. Systems and synthetic metabolic engineering for amino acid production-the heartbeat of industrial strain development. Curr Opin Biotechnol, 2012, 23(5): 718-726. DOI:10.1016/j.copbio.2011.12.025
[61]
Tang XL, Du XY, Chen LJ, et al. Enhanced production of L-methionine in engineered Escherichia coli with efficient supply of one carbon unit. Biotechnol Lett, 2020, 42(3): 429-436. DOI:10.1007/s10529-019-02786-z
[62]
Park SD, Lee JY, Sim SY, et al. Characteristics of methionine production by an engineered Corynebacterium glutamicum strain. Metab Eng, 2007, 9(4): 327-336. DOI:10.1016/j.ymben.2007.05.001
[63]
Bryant KI, Dilger RN, Parsons CM, et al. Dietary L-homoserine spares threonine in chicks. J Nutr, 2009, 139(7): 1298-1302. DOI:10.3945/jn.109.104372
[64]
Oogai Y, Yamaguchi M, Kawada-Matsuo M, et al. Lysine and threonine biosynthesis from aspartate contributes to Staphylococcus aureus growth in calf serum. Appl Environ Microbiol, 2016, 82(20): 6150-6157. DOI:10.1128/AEM.01399-16
[65]
Li H, Wang BS, Zhu LH, et al. Metabolic engineering of Escherichia coli W3110 for L-homoserine production. Process Biochem, 2016, 51(12): 1973-1983. DOI:10.1016/j.procbio.2016.09.024
[66]
Gabor E, Göhler AK, Kosfeld A, et al. The phosphoenolpyruvate-dependent glucose-phosphotransferase system from Escherichia coli K-12 as the center of a network regulating carbohydrate flux in the cell. Eur J Cell Biol, 2011, 90(9): 711-720. DOI:10.1016/j.ejcb.2011.04.002
[67]
Semsey S, Krishna S, Sneppen K, et al. Signal integration in the galactose network of Escherichia coli. Mol Microbiol, 2007, 65(2): 465-476. DOI:10.1111/j.1365-2958.2007.05798.x
[68]
Plachy J, Ulbert S, Pelechova J, et al. Fermentation production of L-homoserine by Corynehacterium sp. and its possible use in the preparation of threonine and lysine. Folia Microbiol, 1985, 30(6): 485-492. DOI:10.1007/BF02927611
[69]
Liu B, Xiang SM, Zhao G, et al. Efficient production of 3-hydroxypropionate from fatty acids feedstock in Escherichia coli. Metab Eng, 2019, 51: 121-130. DOI:10.1016/j.ymben.2018.10.003
[70]
Arakane Y, Lomakin J, Beeman RW, et al. Molecular and functional analyses of amino acid decarboxylases involved in cuticle tanning in Tribolium castaneum. J Biol Chem, 2009, 284(24): 16584-16594. DOI:10.1074/jbc.M901629200