[1] |
刘东. 黄瓜霜霉病及棒孢叶斑病双抗性分子机制的研究[D]. 哈尔滨: 东北农业大学, 2017. Liu D. Study on molecular mechanism of double diseases resistance to cucumber downy mildew and target spot[D]. Harbin: Northeast Agricultural University, 2017 (in Chinese).
|
|
[2] |
熊艳, 王鹤冰, 向华丰, 等. 黄瓜霜霉病研究进展. 中国农学通报, 2016, 32(1): 130-135. Xiong Y, Wang HB, Xiang HF, et al. Research progress of cucumber powery mildew. Chin Agric Sci Bull, 2016, 32(1): 130-135 (in Chinese).
|
|
[3] |
Göker M, Voglmayr H, Riethmüller A, et al. How do obligate parasites evolve.A multi-gene phylogenetic analysis of downy mildews. Fungal Genet Biol, 2007, 44(2): 105-122. DOI:10.1016/j.fgb.2006.07.005
|
|
[4] |
Savory EA, Granke LL, Quesada-Ocampo LM, et al. The cucurbit downy mildew pathogen Pseudoperonospora cubensis. Mol Plant Pathol, 2011, 12(3): 217-226. DOI:10.1111/j.1364-3703.2010.00670.x
|
|
[5] |
石延霞, 李宝聚, 刘学敏. 黄瓜霜霉病研究进展. 东北农业大学学报, 2002, 33(4): 391-395. Shi YX, Li BJ, Liu XM. The study of cucumber downy mildew. J Northeast Agric Univ, 2002, 33(4): 391-395 (in Chinese). DOI:10.3969/j.issn.1005-9369.2002.04.015
|
|
[6] |
Lebeda A, Widrlechner MP. A set of Cucurbitaceae taxa for differentiation of Pseudoperonospora cubensis pathotypes. Z Pflanzenk Pflanzen, 2003, 110(4): 337-349.
|
|
[7] | |
|
[8] | |
|
[9] |
Holmes G, Thomas C. 2009. The history and re-emergence of cucurbit downy mildew. Phytopathology, 99(6): S171-S171.
|
|
[10] |
Holmes GJ, Main CE, Keever ZT. Cucurbit downy mildew: a unique pathosystem for disease forecasting//Spencer-Phillips P, Jeger P. ADVANCES in DOWNY MILDEW RESEARCH. Volume 2. Dordrecht: Springer, 2004: 69-80.
|
|
[11] |
Lebeda A, Cohen Y. Cucurbit downy mildew ( Pseudoperonospora cubensis)—biology, ecology, epidemiology, host-pathogen interaction and control. Eur J Plant Pathol, 2011, 129(2): 157-192. DOI:10.1007/s10658-010-9658-1
|
|
[12] |
石延霞, 李宝聚, 刘学敏. 黄瓜霜霉病菌致病作用与两种细胞壁降解酶关系初探. 园艺学报, 2003, 30(4): 465-466. Shi YX, Li BJ, Liu XM. The relation of pathogenesis action by Pseudoperonospora cubensis and two sort of zymin in cucumber. Acta Hortic Sin, 2003, 30(4): 465-466 (in Chinese). DOI:10.3321/j.issn:0513-353X.2003.04.023
|
|
[13] |
Oerke EC, Steiner U, Dehne HW, et al. Thermal imaging of cucumber leaves affected by downy mildew and environmental conditions. J Exp Bot, 2006, 57(9): 2121-2132. DOI:10.1093/jxb/erj170
|
|
[14] |
曹清河. 黄瓜抗霜霉病异源易位系选育、相关基础研究及育种应用[D]. 南京: 南京农业大学, 2006. Cao QH. Reasearch on cucumber alien translocation line possessing resistance to downy mildew and its application in cucumber breeding[D]. Nanjing: Nanjing Agricultural University, 2006 (in Chinese).
|
|
[15] |
Yin Z, Hennig J, Szwacka M, et al. Tobacco PR-2d promoter is induced in transgenic cucumber in response to biotic and abiotic stimuli. J Plant Physiol, 2004, 161(5): 621-629. DOI:10.1078/0176-1617-00737
|
|
[16] |
王岩, 冯明鸣, 刘鹏飞, 等. 黄瓜霜霉病菌对烯肟菌酯敏感性及其抗药性突变体生物学性状研究. 植物病理学报, 2005, 35(S1): 111-112. Wang Y, Feng MM, Liu PF, et al. Detection on sensitivity of Pseudoperonospora cubensis to enostrobilurin and characterization of its laboratory resistant mutants. Acta Phytopathol Sin, 2005, 35(S1): 111-112 (in Chinese).
|
|
[17] |
Zheng L, Gu C, Cao J, et al. Selecting bacterial antagonists for cucurbit downy mildew and developing an effective application method. Plant Dis, 2018, 102(3): 628-639. DOI:10.1094/PDIS-01-17-0058-RE
|
|
[18] |
叶乃玮, 王承芳, 干华磊, 等. 多黏类芽胞杆菌 Paenibacillus polymyxa菌株P1防治黄瓜霜霉病的研究. 植物保护, 2021, 47(2): 271-275. Ye NW, Wang CF, Gan HL, et al. Control effect of Paenibacillus polymyxa strain P1 against cucumber downy mildew. Plant Prot, 2021, 47(2): 271-275 (in Chinese).
|
|
[19] |
Atallah OO, Osman A, Ali MA, et al. Soybean β-conglycinin and catfish cutaneous mucous p22 glycoproteins deteriorate sporangial cell walls of Pseudoperonospora cubensis and suppress cucumber downy mildew. Pest Manag Sci, 2021, 77(7): 3313-3324. DOI:10.1002/ps.6375
|
|
[20] |
Yin L, Wang P, Li M, et al. Exogenous melatonin improves Malus resistance to Marssonina apple blotch. J Pineal Res, 2013, 54(4): 426-434. DOI:10.1111/jpi.12038
|
|
[21] |
Keinath AP. Integrated management of downy mildew on slicing cucumber with fungicides and host resistance but not trellising. Plant Dis, 2019, 103(10): 2592-2598. DOI:10.1094/PDIS-02-19-0323-RE
|
|
[22] |
Guan AY, Wang MG, Yang JL, et al. Discovery of a new fungicide candidate through lead optimization of pyrimidinamine derivatives and its activity against cucumber downy mildew. J Agric Food Chem, 2017, 65(49): 10829-10835. DOI:10.1021/acs.jafc.7b03898
|
|
[23] |
Mochizuki S, Fukumoto T, Ohara T, et al. The rare sugar D-tagatose protects plants from downy mildews and is a safe fungicidal agrochemical. Commun Biol, 2020, 3(1): 423. DOI:10.1038/s42003-020-01133-7
|
|
[24] |
Li YT, Lin J, Yao WQ, et al. Discovery of a new fungicide by screening triazole sulfonylhydrazone derivatives and its downy mildew inhibition in cucumber. J Heterocyclic Chem, 2020, 57(5): 2128-2138. DOI:10.1002/jhet.3932
|
|
[25] |
Salas SE, Shepherd CP, Ngugi HK, et al. Disease control attributes of oxathiapiprolin fungicides for management of cucurbit downy mildew. Plant Dis, 2019, 103(11): 2812-2820. DOI:10.1094/PDIS-02-19-0396-RE
|
|
[26] |
Jian W, He D, Xi P, et al. Synthesis and biological evaluation of novel fluorine-containing stilbene derivatives as fungicidal agents against phytopathogenic fungi. J Agric Food Chem, 2015, 63(45): 9963-9. DOI:10.1021/acs.jafc.5b04367
|
|
[27] |
Bandamaravuri KB, Nayak AK, Bandamaravuri AS, et al. Simultaneous detection of downy mildew and powdery mildew pathogens on Cucumis sativus and other cucurbits using duplex-qPCR and HRM analysis. AMB Express, 2020, 10(1): 135. DOI:10.1186/s13568-020-01071-x
|
|
[28] |
Thines M, Telle S, Ploch S, et al. Identity of the downy mildew pathogens of basil, Coleus, and sage with implications for quarantine measures. Mycol Res, 2009, 113(5): 532-540. DOI:10.1016/j.mycres.2008.12.005
|
|
[29] |
Derevnina L, Chin-Wo-Reyes S, Martin F, et al. Genome sequence and architecture of the tobacco downy mildew pathogen Peronospora tabacina. Mol Plant Microbe Interact, 2015, 28(11): 1198-1215. DOI:10.1094/MPMI-05-15-0112-R
|
|
[30] |
Sharma R, Xia X, Cano LM, et al. Genome analyses of the sunflower pathogen Plasmopara halstedii provide insights into effector evolution in downy mildews and Phytophthora. BMC Genomics, 2015, 16: 741. DOI:10.1186/s12864-015-1904-7
|
|
[31] |
Nezhad AS. Future of portable devices for plant pathogen diagnosis. Lab Chip, 2014, 14(16): 2887-2904. DOI:10.1039/C4LC00487F
|
|
[32] |
Ray M, Ray A, Dash S, et al. Fungal disease detection in plants: traditional assays, novel diagnostic techniques and biosensors. Biosens Bioelectron, 2017, 87: 708-723. DOI:10.1016/j.bios.2016.09.032
|
|
[33] |
Mahaffee WF. Use of airborne inoculum detection for disease management decisions. Detection and Diagnostics of Plant Pathogens. Dordrecht: Springer Netherlands, 2014: 39-54.
|
|
[34] |
Neufeld KN, Keinath AP, Gugino BK, et al. Predicting the risk of cucurbit downy mildew in the eastern United States using an integrated aerobiological model. Int J Biometeorol, 2018, 62(4): 655-668. DOI:10.1007/s00484-017-1474-2
|
|
[35] |
VandenLangenberg KM, Wehner TC. Downy mildew disease progress in resistant and susceptible cucumbers tested in the field at different growth stages. HortScience, 2016, 51(8): 984-988. DOI:10.21273/HORTSCI.51.8.984
|
|
[36] |
Cohen Y, Rotem J. Field and growth chamber approach to epidemiology of Pseudoperonospora cubensis on cucumbers. Phytopathology, 1971, 61(6): 736. DOI:10.1094/Phyto-61-736
|
|
[37] |
Salehi F, Lacroix R, Wade KM. Effects of learning parameters and data presentation on the performance of backpropagation networks for milk yield prediction. Trans ASAE, 1998, 41(1): 253-259. DOI:10.13031/2013.17144
|
|
[38] |
Cohen Y, Rubin AE. Daytime solar heating controls downy mildew Peronospora belbahrii in sweet basil. PLoS One, 2015, 10(5): e0126103. DOI:10.1371/journal.pone.0126103
|
|
[39] |
Sato T, Kubo M. Reducing the need for chemical spraying of summer greenhouse cucumber: heat-shock controls disease and insect damage. Acta Hortic, 2002(588): 165-170.
|
|
[40] |
Ding X, Jiang Y, Hao T, et al. Effects of heat shock on photosynthetic properties, antioxidant enzyme activity, and downy mildew of cucumber ( Cucumis sativus L.). PLoS One, 2016, 11(4): e0152429. DOI:10.1371/journal.pone.0152429
|
|
[41] |
Zhao XX, Huang LK, Zhang XQ, et al. Effects of heat acclimation on photosynthesis, antioxidant enzyme activities, and gene expression in orchardgrass under heat stress. Molecules, 2014, 19(9): 13564-13576. DOI:10.3390/molecules190913564
|
|
[42] |
Meng JF, Xu TF, Wang ZZ, et al. The ameliorative effects of exogenous melatonin on grape cuttings under water-deficient stress: antioxidant metabolites, leaf anatomy, and chloroplast morphology. J Pineal Res, 2014, 57(2): 200-212. DOI:10.1111/jpi.12159
|
|
[43] |
Galano A, Tan DX, Reiter RJ. Melatonin as a natural ally against oxidative stress: a physicochemical examination. J Pineal Res, 2011, 51(1): 1-16. DOI:10.1111/j.1600-079X.2011.00916.x
|
|
[44] |
Zhang N, Zhao B, Zhang HJ, et al. Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber ( Cucumis sativus L.). J Pineal Res, 2013, 54(1): 15-23. DOI:10.1111/j.1600-079X.2012.01015.x
|
|
[45] |
Sun YK, Liu ZY, Lan GP, et al. Effect of exogenous melatonin on resistance of cucumber to downy mildew. Sci Hortic, 2019, 255: 231-241. DOI:10.1016/j.scienta.2019.04.057
|
|
[46] |
Beckers GJ, Conrath U. Priming for stress resistance: from the lab to the field. Curr Opin Plant Biol, 2007, 10(4): 425-431. DOI:10.1016/j.pbi.2007.06.002
|
|
[47] | |
|
[48] | |
|
[49] | |
|
[50] |
Pazarlar S, Cetinkaya N, Bor M, et al. N-acyl homoserine lactone-mediated modulation of plant growth and defense against Pseudoperonospora cubensis in cucumber. J Exp Bot, 2020, 71(20): 6638-6654. DOI:10.1093/jxb/eraa384
|
|
[51] |
Schikora A, Schenk ST, Stein E, et al. N-acyl-homoserine lactone confers resistance toward biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6. Plant Physiol, 2011, 157(3): 1407-1418. DOI:10.1104/pp.111.180604
|
|
[52] |
Schenk ST, Stein E, Kogel KH, et al. Arabidopsis growth and defense are modulated by bacterial quorum sensing molecules. Plant Signal Behav, 2012, 7(2): 178-181. DOI:10.4161/psb.18789
|
|
[53] |
West J, Kimber R. Innovations in air sampling to detect plant pathogens. Ann Appl Biol, 2015, 166(1): 4-17. DOI:10.1111/aab.12191
|
|
[54] |
Schenk ST, Schikora A. AHL-priming functions via oxylipin and salicylic acid. Front Plant Sci, 2014, 5: 784.
|
|
[55] |
Horejsi T, Staub JE, Thomas C. Linkage of random amplified polymorphic DNA markers to downy mildew resistance in cucumber ( Cucumis sativus L.). Euphytica, 2000, 115(2): 105-113. DOI:10.1023/A:1003942228323
|
|
[56] |
Wan H, Zhao Z, Malik AA, et al. Identification and characterization of potential NBS-encoding resistance genes and induction kinetics of a putative candidate gene associated with downy mildew resistance in Cucumis. BMC Plant Biol, 2010, 10: 186. DOI:10.1186/1471-2229-10-186
|
|
[57] |
Yan SS, Ning K, Wang ZY, et al. CsIVP functions in vasculature development and downy mildew resistance in cucumber. PLoS Biol, 2020, 18(3): e3000671. DOI:10.1371/journal.pbio.3000671
|
|
[58] | |
|
[59] |
Wang Y, Tan J, Wu Z, et al. STAYGREEN, STAY HEALTHY: a loss-of-susceptibility mutation in the STAYGREEN gene provides durable, broad-spectrum disease resistances for over 50 years of US cucumber production. New Phytol, 2019, 221(1): 415-430. DOI:10.1111/nph.15353
|
|
[60] |
Shimoda Y, Ito H, Tanaka A. Arabidopsis STAY-GREEN, mendel's green cotyledon gene, encodes magnesium-dechelatase. Plant Cell, 2016, 28(9): 2147-2160. DOI:10.1105/tpc.16.00428
|
|
[61] |
Kuai BK, Chen JY, Hörtensteiner S. The biochemistry and molecular biology of chlorophyll breakdown. J Exp Bot, 2018, 69(4): 751-767. DOI:10.1093/jxb/erx322
|
|
[62] |
Thomma BP, Eggermont K, Penninckx IA, et al. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. PNAS, 1998, 95(25): 15107-15111. DOI:10.1073/pnas.95.25.15107
|
|
[63] | |
|
[64] |
Spoel SH, Johnson JS, Dong X. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. PNAS, 2007, 104(47): 18842-18847. DOI:10.1073/pnas.0708139104
|
|
[65] | |
|
[66] |
Mach JM, Castillo AR, Hoogstraten R, et al. The Arabidopsis-accelerated cell death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms. PNAS, 2001, 98(2): 771-776. DOI:10.1073/pnas.98.2.771
|
|
[67] |
Hirashima M, Tanaka R, Tanaka A. Light-independent cell death induced by accumulation of pheophorbide a in Arabidopsis thaliana. Plant Cell Physiol, 2009, 50(4): 719-729. DOI:10.1093/pcp/pcp035
|
|
[68] |
Mur LA, Aubry S, Mondhe M, et al. Accumulation of chlorophyll catabolites photosensitizes the hypersensitive response elicited by Pseudomonas syringae in Arabidopsis. New Phytol, 2010, 188(1): 161-174. DOI:10.1111/j.1469-8137.2010.03377.x
|
|
[69] |
Ishiga Y, Uppalapati SR, Gill US, et al. Transcriptomic and metabolomic analyses identify a role for chlorophyll catabolism and phytoalexin during Medicago nonhost resistance against Asian soybean rust. Sci Rep, 2015, 5: 13061. DOI:10.1038/srep13061
|
|
[70] |
Serrano I, Audran C, Rivas S. Chloroplasts at work during plant innate immunity. J Exp Bot, 2016, 67(13): 3845-3854. DOI:10.1093/jxb/erw088
|
|
[71] | |
|
[72] |
Pang Z, Srivastava V, Liu X, et al. Quantitative proteomics links metabolic pathways to specific developmental stages of the plant-pathogenic oomycete Phytophthora capsici. Mol Plant Pathol, 2017, 18(3): 378-390. DOI:10.1111/mpp.12406
|
|
[73] |
Gong B, Nie W, Yan Y, et al. Unravelling cadmium toxicity and nitric oxide induced tolerance in Cucumis sativus: insight into regulatory mechanisms using proteomics. J Hazard Mater, 2017, 336: 202-213. DOI:10.1016/j.jhazmat.2017.04.058
|
|
[74] |
Nostar O, Ozdemir F, Bor M, et al. Combined effects of salt stress and cucurbit downy mildew ( Pseudoperospora cubensis Berk. and Curt. Rostov.) infection on growth, physiological traits and antioxidant activity in cucumber ( Cucumis sativus L.) seedlings. Physiol Mol Plant Pathol, 2013, 83: 84-92. DOI:10.1016/j.pmpp.2013.05.004
|
|
[75] |
Kim MD, Kim YH, Kwon SY, et al. Overexpression of 2-cysteine peroxiredoxin enhances tolerance to methyl viologen-mediated oxidative stress and high temperature in potato plants. Plant Physiol Biochem, 2011, 49(8): 891-897. DOI:10.1016/j.plaphy.2011.04.001
|
|
[76] |
Zhang P, Zhu YQ, Shen CJ, et al. Proteome analysis of cucumber responses to Pseudoperonospora cubensis infection. J Plant Pathol, 2019, 101(4): 917-925. DOI:10.1007/s42161-019-00290-x
|
|
[77] |
Zhang P, Zhu YQ, Luo XJ, et al. Comparative proteomic analysis provides insights into the complex responses to Pseudoperonospora cubensis infection of cucumber ( Cucumis sativus L.). Sci Rep, 2019, 9: 9433. DOI:10.1038/s41598-019-45111-4
|
|
[78] |
Li JW, Liu J, Zhang H, et al. Identification and transcriptional profiling of differentially expressed genes associated with resistance to Pseudoperonospora cubensis in cucumber. Plant Cell Rep, 2011, 30(3): 345-357. DOI:10.1007/s00299-010-0959-9
|
|
[79] |
Chen C, Chen X, Han J, et al. Genome-wide analysis of the WRKY gene family in the cucumber genome and transcriptome-wide identification of WRKY transcription factors that respond to biotic and abiotic stresses. BMC Plant Biol, 2020, 20(1): 443. DOI:10.1186/s12870-020-02625-8
|
|
[80] |
Adhikari BN, Savory EA, Vaillancourt B, et al. Expression profiling of Cucumis sativus in response to infection by Pseudoperonospora cubensis. PLoS One, 2012, 7(4): e34954. DOI:10.1371/journal.pone.0034954
|
|
[81] |
Luan Q, Chen C, Liu M, et al. CsWRKY50 mediates defense responses to Pseudoperonospora cubensis infection in Cucumis sativus. Plant Sci, 2019, 279: 59-69. DOI:10.1016/j.plantsci.2018.11.002
|
|
[82] |
Lai W, Zhu C, Hu Z, et al. Identification and transcriptional analysis of zinc finger-homeodomain (ZF-HD) family genes in cucumber. Biochem Genet, 2021, 59(4): 884-901. DOI:10.1007/s10528-021-10036-z
|
|
[83] |
Perruc E, Charpenteau M, Ramirez BC, et al. A novel calmodulin-binding protein functions as a negative regulator of osmotic stress tolerance in Arabidopsis thaliana seedlings. Plant J, 2004, 38(3): 410-420. DOI:10.1111/j.1365-313X.2004.02062.x
|
|
[84] |
Jing Y, Lin R. The VQ motif-containing protein family of plant-specific transcriptional regulators. Plant Physiol, 2015, 169(1): 371-378. DOI:10.1104/pp.15.00788
|
|
[85] |
Petersen K, Qiu JL, Lütje J, et al. Arabidopsis MKS1 is involved in basal immunity and requires an intact N-terminal domain for proper function. PLoS One, 2010, 5(12): e14364. DOI:10.1371/journal.pone.0014364
|
|
[86] |
Xie YD, Li W, Guo D, et al. The Arabidopsis gene SIGMA Factor-binding protein 1 plays a role in the salicylate-and jasmonate-mediated defence responses. Plant Cell Environ, 2010, 33(5): 828-839.
|
|
[87] |
Fiil BK, Petersen M. Constitutive expression of MKS1 confers susceptibility to Botrytis cinerea infection independent of PAD3 expression. Plant Signal Behav, 2011, 6(10): 1425-1427. DOI:10.4161/psb.6.10.16759
|
|
[88] |
Lai Z, Li Y, Wang F, et al. Arabidopsis Sigma factor binding proteins are activators of the WRKY33 transcription factor in plant defense. Plant Cell, 2011, 23(10): 3824-3841. DOI:10.1105/tpc.111.090571
|
|
[89] |
Wang Y, VandenLangenberg K, Wehner TC, et al. QTL mapping for downy mildew resistance in cucumber inbred line WI7120 (PI 330628). Theor Appl Genet, 2016, 129(8): 1493-1505. DOI:10.1007/s00122-016-2719-x
|
|
[90] |
Yoshioka Y, Sakata Y, Sugiyama M, et al. Identification of quantitative trait loci for downy mildew resistance in cucumber ( Cucumis sativus L.). Euphytica, 2014, 198(2): 265-276. DOI:10.1007/s10681-014-1102-8
|
|
[91] |
Vandenlangenberg KM. Studies on downy mildew resistance in cucumber (Cucumis sativus L. )[D]. Raleigh: North Carolina State University, 2015.
|
|
[92] |
Li L, He H, Zou Z, et al. QTL analysis for downy mildew resistance in cucumber inbred line PI 197088. Plant Dis, 2018, 102(7): 1240-1245. DOI:10.1094/PDIS-04-17-0491-RE
|
|
[93] |
Szczechura W, Staniaszek M, Klosinska U, et al. Molecular analysis of new sources of resistance to Pseudoperonospora cubensis (berk.et curt.) rostovzev in cucumber. Russ J Genet, 2015, 51(10): 1134-1140.
|
|
[94] |
Win KT, Vegas J, Zhang C, et al. QTL mapping for downy mildew resistance in cucumber via bulked segregant analysis using next-generation sequencing and conventional methods. Theor Appl Genet, 2017, 130(1): 199-211. DOI:10.1007/s00122-016-2806-z
|
|
[95] |
Wang Y, VandenLangenberg K, Wen C, et al. QTL mapping of downy and powdery mildew resistances in PI 197088 cucumber with genotyping-by- sequencing in RIL population. Theor Appl Genet, 2018, 131(3): 597-611. DOI:10.1007/s00122-017-3022-1
|
|
[96] |
Zhang K, Wang X, Zhu W, et al. Complete resistance to powdery mildew and partial resistance to downy mildew in a Cucumis hystrix introgression line of cucumber were controlled by a co-localized locus. Theor Appl Genet, 2018, 131(10): 2229-2243. DOI:10.1007/s00122-018-3150-2
|
|
[97] |
Liu XP, Lu HW, Liu PN, et al. Identification of novel loci and candidate genes for cucumber downy mildew resistance using GWAS. Plants- Basel, 2020, 9(12): 1659. DOI:10.3390/plants9121659
|
|
[98] |
Holdsworth WL, Summers CF, Glos M, et al. Development of downy mildew-resistant cucumbers for late-season production in the northeastern United States. HortScience, 2014, 49(1): 10-17. DOI:10.21273/HORTSCI.49.1.10
|
|
[99] | |
|
[100] |
张艳菊, 张宏宇, 秦智伟, 等. 黄瓜霜霉菌毒性及分子多态性分析. 东北农业大学学报, 2010, 41(2): 25-30. Zhang YJ, Zhang HY, Qin ZW, et al. Analysis of virulence and molecular polymorphism of Pseudoperonospora cubensis. J Northeast Agric Univ, 2010, 41(2): 25-30 (in Chinese). DOI:10.3969/j.issn.1005-9369.2010.02.006
|
|
[101] |
杨柳燕, 徐永阳, 徐志红, 等. 甜瓜霜霉病抗性遗传及SRAP分子标记. 江苏农业学报, 2012, 28(5): 1200-1202. Yang LY, Xu YY, Xu ZH, et al. Inheritance of downy mildew resistance in melon and SRAP marker linked to resistant genes. Jiangsu J Agric Sci, 2012, 28(5): 1200-1202 (in Chinese).
|
|
[102] | |
|
[103] |
Nie JT, Wang H, Zhang WL, et al. Characterization of lncRNAs and mRNAs involved in powdery mildew resistance in cucumber. Phytopathology, 2021, 111(9): 1613-1624. DOI:10.1094/PHYTO-11-20-0521-R
|
|
[104] |
黄金存, 叶冰莹, 许玉芬, 等. 转录因子WRKY和NPR1在系统获得抗性信号转导中的相互作用机制. 生物技术通讯, 2007, 18(6): 992-994. Huang JC, Ye BY, Xu YF, et al. The interaction mechanism between transcription factor WRKY and NPR1 in systemic acquired resistance signal transduction. Lett Biotechnol, 2007, 18(6): 992-994 (in Chinese). DOI:10.3969/j.issn.1009-0002.2007.06.031
|
|