生物工程学报  2022, Vol. 38 Issue (5): 1965-1980
http://dx.doi.org/10.13345/j.cjb.210811
中国科学院微生物研究所、中国微生物学会主办
0

文章信息

宋亚楠, 罗涛, 赵春超, 季春丽, 张春辉, 马瑞燕, 崔红利, 李润植
SONG Yanan, LUO Tao, ZHAO Chunchao, JI Chunli, ZHANG Chunhui, MA Ruiyan, CUI Hongli, LI Runzhi
真核藻类WRKY基因家族的鉴定及表达分析
Identification and expression analysis of WRKY gene family in eukaryotic algae
生物工程学报, 2022, 38(5): 1965-1980
Chinese Journal of Biotechnology, 2022, 38(5): 1965-1980
10.13345/j.cjb.210811

文章历史

Received: November 1, 2021
Accepted: January 12, 2022
Published: January 14, 2022
真核藻类WRKY基因家族的鉴定及表达分析
宋亚楠1,2 , 罗涛1 , 赵春超1 , 季春丽1 , 张春辉1 , 马瑞燕2 , 崔红利1 , 李润植1     
1. 山西农业大学 农学院 分子农业与生物能源研究所, 山西 太谷 030801;
2. 山西农业大学 植物保护学院, 山西 太谷 030801
摘要:WRKY是植物特有的一个转录因子超家族,参与植物生长发育、物质代谢以及生物和非生物胁迫响应等多种生物学过程的调控。尽管WRKY转录因子基因已在高等植物广泛表征,然而有关真核藻类WRKY却知之甚少。采用多序列比对、系统进化和保守域分析等技术对30种真核藻类WRKY进行全基因组鉴定,共获得24个WRKY成员,均来自绿藻门(Chlorophyta) 藻类。红藻门(Rhodophyta)、灰藻门(Glaucophyta) 和硅藻门(Bacillariophyta) 等藻类未检测到WRKY。24个WRKY成员均具有保守结构域七肽序列WRKYGQ (E/A/H/N) K和锌指基序C-X4-5-C-X22-23-H-X-H,分别归类于Ⅰ、Ⅱa、Ⅱb和R组。高含虾青素的雨生红球藻(Haematococcus pluvialis) 含有2个Ⅰ类WRKY成员(HaeWRKY-1和HaeWRKY-2)。进一步克隆HaeWRKY-1HaeWRKY-2基因编码序列,构建原核表达载体在大肠杆菌BL21(DE3) 中诱导表达,并通过Ni-NTA亲和层析获得纯化的HaeWRKY融合蛋白。雨生红球藻在正常培养条件下,HaeWRKY-1表达量显著高于HaeWRKY-2。高光逆境胁迫显著上调HaeWRKY-1表达和下调HaeWRKY-2表达。HaeWRKY基因启动子含有多个光、乙烯、脱落酸(abscisic acid, ABA) 以及逆境响应顺式元件。特别在HaeWRKY-2启动子区未检测到W-box顺式元件,但HaeWRKY-1和控制虾青素生物合成关键酶基因HaeBKTHaePSY基因启动子含有W-box元件。基于本研究及前人的发现,我们推测高光胁迫下HaeWRKY-2低表达可能导致HaeWRKY-1的上调表达,HaeWRKY-1进而上调虾青素合成关键基因(HaeBKTHaePSY等) 表达,促进虾青素合成积累。这为深入解析雨生红球藻高光胁迫响应及虾青素合成的调控机制提供了新思路。
关键词WRKY转录因子    真核微藻    雨生红球藻    原核表达    高光胁迫    虾青素    
Identification and expression analysis of WRKY gene family in eukaryotic algae
SONG Yanan1,2 , LUO Tao1 , ZHAO Chunchao1 , JI Chunli1 , ZHANG Chunhui1 , MA Ruiyan2 , CUI Hongli1 , LI Runzhi1     
1. Institute of Molecular Agriculture and Bioenergy, College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi, China;
2. College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi, China
Abstract: WRKY is a superfamily of plant-specific transcription factors, playing a critical regulatory role in multiple biological processes such as plant growth and development, metabolism, and responses to biotic and abiotic stresses. Although WRKY genes have been characterized in a variety of higher plants, little is known about them in eukaryotic algae, which are close to higher plants in evolution. To fully characterize algal WRKY family members, we carried out multiple sequence alignment, phylogenetic analysis, and conserved domain prediction to identify the WRKY genes in the genomes of 30 algal species. A total of 24 WRKY members were identified in Chlorophyta, whereas no WRKY member was detected in Rhodophyta, Glaucophyta, or Bacillariophyta. The 24 WRKY members were classified into Ⅰ, Ⅱa, Ⅱb and R groups, with a conserved heptapeptide domain WRKYGQ(E/A/H/N)K and a zinc finger motif C-X4-5-C-X22-23-H-X-H. Haematococcus pluvialis, a high producer of natural astaxanthin, contained two WRKY members (HaeWRKY-1 and HaeWRKY-2). Furthermore, the coding sequences of HaeWRKY-1 and HaeWRKY-2 genes were cloned and then inserted into prokaryotic expression vector. The recombinant vectors were induced to express in Escherichia coli BL21(DE3) cells and the fusion proteins were purified by Ni-NTA affinity chromatography. HaeWRKY-1 had significantly higher expression level than HaeWRKY-2 in H. pluvialis cultured under normal conditions. High light stress significantly up-regulated the expression of HaeWRKY-1 while down-regulated that of HaeWRKY-2. The promoters of HaeWRKY genes contained multiple cis-elements responsive to light, ethylene, ABA, and stresses. Particularly, the promoter of HaeWRKY-2 contained no W-box specific for WRKY binding. However, the W-box was detected in the promoters of HaeWRKY-1 and the key enzyme genes HaeBKT (β-carotene ketolase) and HaePSY (phytoene synthase) responsible for astaxanthin biosynthesis. Considering these findings and the research progress in the related fields, we hypothesized that the low expression of HaeWRKY-2 under high light stress may lead to the up-regulation of HaeWRKY-1 expression. HaeWRKY-1 may then up-regulate the expression of the key genes (HaeBKT, HaePSY, etc.) for astaxanthin biosynthesis, consequently promoting astaxanthin enrichment in algal cells. The findings provide new insights into further analysis of the regulatory mechanism of astaxanthin biosynthesis and high light stress response of H. pluvialis.
Keywords: WRKY transcription factor    eukaryotic algae    Haematococcus pluvialis    prokaryotic expression    high light stress    astaxanthin    

转录因子(transcription factor, TF) 是生物体内广泛存在的一类调节蛋白,通过与靶基因启动子区顺式元件相互作用,调控RNA转录和表达[1]。WRKY蛋白是最大、最重要的一类植物特异性TF家族,具有多种生物学功能。自从在甘薯(Ipomoea batatas) 中研究发现第一个WRKY基因(SPF1) 后[2],已从多种植物中检测到WRKY基因家族的成员。例如,菠萝(Ananas comosus)[3]、拟南芥(Arabidopsis thaliana)[4]、菜豆(Phaseolus vulgaris)[5]、奇异果(Actinidia)[6]、香蕉(Pratylenchus coffeae)[7]、亚麻荠(Camelina sativa)[8]和油菜(Brassica napus)[9]分别有54、74、88、97、153、224和287个WRKY TFs成员。与高等植物相比,在真核藻类中仅在莱茵衣藻(Chlamydomonas reintmrdtii) 中鉴定到一个WRKY基因[10],而其他藻类WRKY还未见报道。

WRKY蛋白在调控植物某些程序性代谢过程和途径方面发挥着重要而独特的作用,特别是参与调控植物对生物和非生物胁迫的应答[11-13]。例如,陆地棉GhWRKY15基因在烟草中的过表达可影响植物的生长发育,尤其是茎伸长,且转基因植株比野生型烟草对病毒和真菌感染表现出更高的抗性[14]。番茄SlWRKY23基因表达可改变根对乙烯、生长素和茉莉酸的敏感性,并影响转基因拟南芥植株地上部分的生长,转基因植株叶片增多,花期缩短[15]。大豆GmWRKY45在拟南芥中过表达可使植株对磷和盐胁迫的响应更积极,也会导致生育能力的变化[16]。大豆GmWRKY12参与干旱、盐碱、脱落酸(abscisic acid, ABA) 和水杨酸胁迫响应,该基因过表达增强了转基因大豆幼苗对干旱和盐胁迫的耐受性[17]。上述研究表明, 来自不同植物的WRKY成员数量不同且功能多样。目前,关于WRKY基因在藻类中的生物学功能还未解析。

雨生红球藻(Haematococcus pluvialis) 是一种单细胞淡水绿藻,它能在不利条件下迅速形成囊状(被厚膜包围) 适应极端生存条件[18]。雨生红球藻也是自然界中已知天然虾青素含量最高的生物[19]。虾青素是一种介导藻细胞非生物胁迫应答的次生类胡萝卜素(酮式类胡萝卜素),其抗氧化活性超强,是维生素E的500倍。虾青素已广泛应用于食品、医药和美容等领域[20]。逆境胁迫条件(高光、高盐度和营养胁迫等) 能有效促进雨生红球藻高水平合成积累虾青素[21]。哪些转录因子参与调控雨生红球藻细胞胁迫应答?特别是哪些转录因子参与调控虾青素合成与积累?雨生红球藻是否有WRKY基因?回答这些问题有助于深入解析雨生红球藻胁迫应答和虾青素合成机制,以及建立优化的雨生红球藻培养体系高效生产虾青素。

为此,本文利用现已公布的30种真核藻类基因组数据库,对藻类WRKY TF家族成员进行全基因组鉴定和分类,系统解析WRKY成员在真核藻类中的分布、结构和进化特征等。为进一步探究WRKY转录因子是否参与雨生红球藻的生长代谢调控,我们分析了雨生红球藻HaeWRKY基因及其编码蛋白特征,克隆HaeWRKY基因并构建HaeWRKY基因的原核表达载体,在大肠杆菌(Escherichia coli) BL21(DE3) 中诱导表达并获取纯化蛋白。检测HaeWRKY基因启动子顺式作用元件,分析其可能参与的调控路径。着重研究HaeWRKY基因在高光胁迫下的转录表达谱。本研究为解析光合真核生物WRKY的起源和进化提供了重要的见解,有助于全面理解藻类WRKY家族成员的生物学功能,特别是参与调控藻细胞非生物胁迫应答的分子机制。

1 材料与方法 1.1 WRKY序列鉴定和分析

30种真核藻类(表 1) 全基因组蛋白序列从DOE Joint Genome Institute (Walnut Creek,CA,USA;http://genome.jgi.doe.gov/) 获得。红藻(Cyanidioschyzon merolae) 全基因组蛋白序列从Cyanidioschyzon merolae Genome Project (http://merolae.biol.s.u-tokyo.ac.jp) 获得。所有获得的序列使用makeblastdb程序创建数据库[22]。本研究应用了3种方法来鉴定WRKY同源序列。首先,我们使用JGI或C. merolae基因组注释来确定藻类WRKY蛋白序列。其次,使用已鉴定拟南芥WRKY蛋白为检索序列,应用BLASTP检索工具获得本地所有藻类WRKY蛋白序列[22],阈值设为1e–10,获得蛋白集。第三,基于HMMER程序,应用源自WRKY保守蛋白序列(WRKYGQK) 的HMM模型检索藻类WRKY蛋白序列[23]。最后,通过SMART和Pfam分析检查提取到的WRKY蛋白序列,将结果出现的假阳性序列删除[24-25]

表 1 本研究所用藻类物种及其分类 Table 1 Algal species used in this study
Species Taxon
Chlamydomonas reinhardtii Chlorophyta; Chlorophyceae
Volvox carteri Chlorophyta; Chlorophyceae
Haematococcus pluvialis Chlorophyta; Chlorophyceae
Dunaliella salina Chlorophyta; Chlorophyceae
Coccomyxa sp. C-169 Chlorophyta; Trebouxiophyceae
Chlorella vulgaris Chlorophyta; Trebouxiophyceae
Chlorella NC64A Chlorophyta; Trebouxiophyceae
Chlorella protothecoides Chlorophyta; Trebouxiophyceae
Micromonas pusilla Chlorophyta; Mamiellophyceae
Micromonas sp. RCC299 Chlorophyta; Mamiellophyceae
Ostreococcus tauri Chlorophyta; Mamiellophyceae
Ostreococcus lucimarinus Chlorophyta; Mamiellophyceae
Ostreococcus sp. RCC809 Chlorophyta; Mamiellophyceae
Cyanophora paradoxa Glaucophyta; Glaucophyceae
Cyanidioschyzon merolae Rhodophyta; Bangiophyceae
Galdieria sulphuraria Rhodophyta; Bangiophyceae
Guillardia theta Cryptophyta; Cryptophyceae
Emiliania huxleyi CCMP1516 Haptophyta; Haptophyceae
Thalassiosira pseudonana CCMP 1335 Bacillariophyta; Coscinodiscophyceae
Thalassiosira oceanica Bacillariophyta; Coscinodiscophyceae
Phaeodactylum tricornutum CAPP1055 Bacillariophyta; Bacillariophyceae
Fragilariopsis cylindrus Bacillariophyta; Bacillariophyceae
Pseudo-nitzschia multiseries CLN-47 Bacillariophyta; Pennatae
Nannochloropsis gaditana CCMP526 Stramenopiles; Eustigmatophyceae
Nannochloropsis oculata CCMP525 Stramenopiles; Eustigmatophyceae
Nannochloropsis granulata CCMP529 Stramenopiles; Eustigmatophyceae
Nannochloropsis oceanica CCMPP531 Stramenopiles; Eustigmatophyceae
Nannochloropsis salina CCMP537 Stramenopiles; Eustigmatophyceae
Nannochloropsis oceanica strain IMET1 Stramenopiles; Eustigmatophyceae
Aureococcus anophagefferens Stramenopiles; Pelagophyceae

使用ClustalW对所有WRKY序列进行多序列比对。通过MEGA 7.0构建同源进化树(邻接法),Bootstrap设定为1 000。使用ExPASy (https://www.expasy.org/) 在线网址预测蛋白质的分子量、等电点、信号肽和跨膜区等蛋白理化特性[26]。使用在线软件SOPMA (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html) 预测蛋白的二级结构。利用在线软件SWISS-MDEL (https://swissmodel.expasy.org/interactive) 预测蛋白的三级结构。从NCBI基因组数据库(https://www.ncbi.nlm.nih.gov/genome/?term=Haematococcus+Pluvialis) 中分别截取HaeWRKY-1HaeWRKY-2翻译起始密码ATG上游2 000 bp启动子序列,用PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) 数据库预测启动子顺式作用元件。

1.2 HaeWRKY基因在胁迫条件下的表达分析

试验所用雨生红球藻(Haematococcus pluvialis Flotow 1844) 购自英国CCAP藻种库(https://www.ccap.ac.uk/)。雨生红球藻使用BBM培养基(Bold’s Basal medium),在光强25 μmol/(m2·s) (LED白光)、温度(22±1) ℃、12 h/12 h的光/暗周期条件下静置培养,每8 h摇1次。

选取培养至对数期的雨生红球藻细胞于黑暗下处理24 h,离心(7 000×g,4 ℃,10 min) 收集后用新鲜培养基重悬藻细胞,分别于正常培养(LED白光,25 μmol/(m2·s))、高白光(390– 770 nm,500 μmol/(m2·s)) 和高蓝光(420–500 nm,500 μmol/(m2·s)) 条件下处理72 h。最后,离心(4 ℃ 7 000×g、10 min) 收集藻细胞,用PBS缓冲液冲洗2次,将样品于液氮速冻后存于–80 ℃。每组实验设置3个生物学重复,并进行转录组测序[27]。以Reads Per Kilobase per Million mapped reads (RPKM) 分析2个雨生红球藻HaeWRKY-1 (MN078149) 和HaeWRKY-2 (MN078150) 基因表达水平,使用Origin 8作图。数据在PTNR0.01时被认为有显著差异(单因素方差分析)。

1.3 原核表达载体构建

根据转录组数据序列信息,设计特异性引物HaeWRKY-1F和HaeWRKY-1R、HaeWRKY-2F和HaeWRKY-2R (表 2) 扩增编码蛋白质的基因序列。将目标片段纯化后,插入到克隆载体pMD18-T中保存。所有引物(表 2) 由生工生物工程(上海) 股份有限公司合成。使用引物HaeWRKY-1- 28a-F/R和HaeWRKY-2-28a-F/R (表 2) 从克隆载体pMD18-HaeWRKY-1和pMD18-HaeWRKY-2扩增HaeWRKY-1HaeWRKY-2基因。用内切酶(EcoRⅠ和XhoⅠ) 酶切扩增产物和pET-28a(+)质粒,构建重组表达载体pET28a(+)-HaeWRKY-1和pET28a(+)-HaeWRKY-2

表 2 文中所用引物信息 Table 2 Primers used in this study
Primer names Primer sequences (5ʹ→3ʹ)
HaeWRKY-1F ATGGAACTTGGGCAACGC
HaeWRKY-1R CATGTGTGTGCCACTGAGGA
HaeWRKY-2F ATGACGCCAATCAGCAGCC
HaeWRKY-2R CATCTGTGTTCCACCCAAGACC
HaeWRKY-1-28a-F GGAATTCATGGAACTTGGGCAACGC
HaeWRKY-1-28a-R CCTCGAGCATGTGTGTGCCACTGAGGA
HaeWRKY-2-28a-F GGAATTCATGACGCCAATCAGCAGCC
HaeWRKY-2-28a-R CCTCGAGCATCTGTGTTCCACCCAAGACC
T7 TAATACGACTCACTATAGGG
T7t GCTAGTTATTGCTCAGCGG
1.4 融合蛋白的原核表达和纯化

将重组原核表达载体pET28a(+)-HaeWRKY-1和pET28a(+)-HaeWRKY-2分别转入大肠杆菌E. coli BL21(DE3) 感受态细胞。挑取阳性菌落接入含50 mg/L卡那霉素的LB液体培养基中,于37 ℃培养到OD600达0.6–0.8。分别在18 ℃、120×g、0.1 mmol/L异丙基β-D-硫代半乳糖苷(IPTG)诱导条件下培养6、12、24和48 h,离心(6 000×g、4 ℃、10 min) 收集诱导后菌液,用20 mmol/L磷酸缓冲液(含5 mmol/L咪唑,0.2 g/L溶菌酶,20 g/L DNase和1 mmol/L MgCl2) 重悬后进行超声波法破碎,离心(13 100×g、4 ℃、15 min) 得到上清液(含融合蛋白)。将融合蛋白移入Ni Sepharose 6FF柱(GE Healthcare,Piscataway,NJ,USA) 进行纯化。用20 mmol/L磷酸钠缓冲液溶液(含50–300 mmol/L咪唑) 洗脱His标记的靶蛋白。使用7%十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE) 测定HaeWRKY-1和HaeWRKY-2融合蛋白的纯度和分子量。考马斯亮蓝R-250染色后用脱色液(5%乙醇(V/V),7%冰醋酸(V/V)) 脱色至可见蛋白条带。pET-28a(+) 质粒载体用相同的处理方法作为对照。

2 结果与分析 2.1 WRKY转录因子在真核微藻中的分布

在Rinerson等和Fernández等绘制的生命之树及WRKY分布示意图基础上[28-29],本研究重点对在绿藻门中鉴定到的WRKY成员进行分类(图 1)。由图可知,WRKY分布广泛,真菌(Fungi)、变形虫(Amoebozoa)、Fornicata、高等植物和低等植物藻类均检测到WRKY成员。在30种真核藻类中,红藻门(Rhodophyta)、灰藻门(Glaucophyta)和硅藻门(Bacillariophyta) 等藻类未检测到WRKY。在绿藻门(Chlorophyta) 3个纲(Trebouxiophyceae、Chlorophyceae和Mamiellophyceae) 的13种绿藻中鉴定到24个WRKY成员,且不同绿藻物种的WRKY成员数量不同。系统进化分析将鉴定到的藻类24个WRKY成员分为Ⅰ、Ⅱ和R 3个大组,Ⅱ组又分为2个亚组(Ⅱa和Ⅱb)。4种淡水绿藻(Trebouxiophyceae) 各含有1个Ⅰ类WRKY成员。5种海洋绿藻(Mamiellophyceae) 均含有2个Ⅱ类WRKY成员。值得注意的是,在淡水绿藻(Chlorophyceae)中,盐藻(Dunaliella salina) WRKY成员数量最多(5个),包括4个Ⅱ类和1个Ⅰ类WRKY成员;团藻(Volvox carteri) 含1个Ⅰ类WRKY成员和1个R类WRKY成员;雨生红球藻(H. pluvialis) 含2个Ⅰ类WRKY成员;莱茵衣藻(C. reinhardtii) 含有1个Ⅰ类WRKY成员。

图 1 生命之树及WRKY转录因子的分布 Fig. 1 Tree of life and distribution of WRKY transcription factors. The red circle indicates taxon containing WRKY members. The block diagram in the upper right shows the distribution of WRKY members in different species of Chlorophyta. The image has been taken and adapted from Fernandez et al. and Rinerson et al.[28-29], with addition of a phylogenetic tree of algal WRKYs characterized in this study.
2.2 藻类WRKY蛋白结构分析

为进一步解析这24个来自藻类的WRKY蛋白结构域,使用SMART在线工具对其进行结构域分析。由图 2可知,24个WRKY蛋白分别归类于Ⅰ、Ⅱa、Ⅱb和R组。其中,9个WRKY蛋白均含有2个WRKY结构域,属于Ⅰ组。14个WRKY蛋白均含有1个WRKY结构域,属于Ⅱ组。VcaWRKY-2蛋白划分到R组。所有已知的WRKY蛋白都包含至少一个高度保守的WRKY结构域(大约60个氨基酸残基)。WRKY结构域包含1个高度保守的氨基酸序列(WRKYGQK) 和1个锌指结构(C-X4- 5C-X22-23-H-X1-H或C-X7C-X23-H-X1-C)[30]。根据鉴定到的WRKY蛋白序列,使用Bioedit软件对24个藻类WRKY蛋白的结构域序列进行比对(图 3)。结果显示,归类于Ⅰ组的9个WRKY蛋白N端WRKY结构域含有WRKYGEK七肽片段以及序列为C-X4-C-X22- 23-H-X1-H的锌指结构,而C端WRKY结构域含有保守的WRKYGQK片段和序列为C-X4-C-X23-H-X1-H的锌指结构。其他14个WRKY蛋白均含有1个WRKY结构域。其中,属于Ⅱa组的9个WRKY蛋白中,有5个蛋白的七肽序列为保守的WRKYGQK,有4个WRKY蛋白的七肽序列发生1个氨基酸的突变。DsaWRKY-4和DsaWRKY-5的七肽序列均为WRKYGEK、MrcWRKY-2和MpuWRKY-2蛋白的七肽序列分别为WRKYGAK和WRKYGHK。属于Ⅱb组的5个WRKY蛋白中,DsaWRKY-2和DsaWRKY-3的七肽序列为WRKYGEK,OluWRKY-2的七肽序列为WRKYGQK,DsaWRKY-2和DsaWRKY-3的七肽序列都为WRKYGEK。三级结构预测发现藻类WRKY蛋白结构域均主要由β折叠结构组成,β折叠的存在有助于蛋白折叠成正确结构(图 4)。

图 2 WRKY蛋白的结构域 Fig. 2 The domains of WRKY proteins.
图 3 WRKY蛋白多序列比对 Fig. 3 The multiple sequence alignment of WRKY proteins.
图 4 WRKY蛋白三级结构预测 Fig. 4 The 3D structure prediction of WRKY protein. Red end: C terminal; blue end: N terminal; arrowhead structure: β-sheet.
2.3 真核藻类和拟南芥WRKY蛋白系统进化分析

为深入分析藻类和拟南芥WRKY蛋白成员的系统进化关系,使用MEGA 7.0构建藻类24个WRKY蛋白和拟南芥72个WRKY蛋白(AtWRKYs) 序列的同源进化树。与拟南芥相比,WRKY成员在低等植物绿藻中的数量均很少。在进化树(图 5) 中,一些真核藻类WRKY与拟南芥WRKY成员以不同类型WRKY亚家族聚类,例如,归类于Ⅰ组的CreWRKY、CvuWRKY、CocWRKY、CncWRKY、CprWRKY和VcaWRKY-1与拟南芥Ⅰ组WRKY聚在一起。另外18个归类于Ⅰ、Ⅱa、Ⅱb和R组的藻类WRKY成员均以物种特异性聚类出现在不同的分支。进化树分析表明,大部分藻类WRKY成员以物种特异性聚类,仅有6个藻类WRKY成员与相应的拟南芥组别聚在一起,这可能是进化引起藻类与拟南芥WRKY成员序列差异所致。

图 5 真核藻类和拟南芥WRKY蛋白系统进化分析 Fig. 5 Phylogenetic tree of WRKY proteins in eukaryotic algae and Arabidopsis thaliana. The identified green algae WRKYs (black solid circles) and AtWRKYs (black hollow circles) clustered in different groups in the phylogenetic tree. Different colors indicate different groups (or subgroups) of WRKY proteins.
2.4 雨生红球藻WRKY特征分析

我们选择可高水平积累虾青素的雨生红球藻,进一步解析HaeWRKY的结构和功能。雨生红球藻转录组数据分析显示,HaeWRKY-1编码721个氨基酸,HaeWRKY-2编码646个氨基酸。HaeWRKY-1和HaeWRKY-2蛋白分子式分别为C3 254H5 169N989O1 064S36和C2 943H4 717N885 O927S27。HaeWRKY-1和HaeWRKY-2蛋白分子量预测分别为76.32 kDa和68.19 kDa,等电点(pI) 分别为6.58和8.71。构成HaeWRKY-1和HaeWRKY-2蛋白的氨基酸均有20种,丙氨酸(Ala) 含量最高分别达13.5%和12.2%,丝氨酸(Ser) 含量次之,分别为11.0%和10.4%,色氨酸(Trp) 含量最低分别为0.7%和0.6%。HaeWRKY-1和HaeWRKY-2蛋白质不稳定系数分别为62.86和53.39,均为不稳定蛋白。另外,预测表明HaeWRKY-1和HaeWRKY-2蛋白为胞内蛋白,且没有信号肽序列和跨膜结构域,是可溶性蛋白。二级结构预测显示,HaeWRKY-1和HaeWRKY-2蛋白主要由无规卷曲(45.21%和47.83%) 和α螺旋(36.20%和29.41%) 组成,为混合型蛋白。三级结构预测结果表明,HaeWRKY-1和HaeWRKY-2蛋白结构域主要由β折叠组成(图 4)。

2.5 HaeWRKY融合蛋白的原核表达及纯化

提取构建的目的基因原核表达载体pET28a (+)-HaeWRKY-1和pET28a(+)-HaeWRKY-2质粒(图 6A26A3),并用相应引物进行PCR扩增,获得HaeWRKY-1HaeWRKY-2完整的CDS片段(图 6A56A6),说明HaeWRKY-1HaeWRKY-2的原核表达载体均构建成功。将重组质粒分别转化至E. coli BL21(DE3) 感受态细胞中并诱导原核表达。提取蛋白和SDS-PAGE分离结果表明(图 6B6C),与空载体pET-28a(+) 诱导蛋白的表达量相比,诱导时间分别为6、12、24、48 h时含pET28a(+)- HaeWRKY-1的大肠杆菌均被诱导表达融合蛋白,诱导时间为48 h时效果最佳。同样,含pET28a(+)-HaeWRKY-2的大肠杆菌均被诱导表达融合蛋白,且诱导时间6 h时效果最佳。由图 6B96C9可知,经Ni-NTA亲和层析柱纯化后的HaeWRKY-1融合蛋白和HaeWRKY-2融合蛋白均为一条清晰的条带,大小分别与上述预测相符(约为76 kDa和68 kDa),融合蛋白纯度均达85%以上,表明成功获得纯化的融合蛋白。

图 6 原核表达载体目的基因检测及SDS-PAGE分离表达的靶标融合蛋白 Fig. 6 Examination of the target gene cloned in prokaryotic expression vector and isolation of the expressed target fusion protein by SDS-PAGE. M: marker; A1: empty plasmid pET-28a(+); A2: plasmid pET-28a(+)-HaeWRKY-1; A3: plasmid pET-28a(+)- HaeWRKY-2; A4: PCR product obtained using universal primers and the empty vector DNA as the template; A5: PCR amplification of HeaWRKY-1 gene using pET-28a(+)-HaeWRKY-1 plasmid as the template; A6: PCR amplification of HeaWRKY-2 gene using plasmid pET-28a(+)-HaeWRKY-2 plasmid as the template; B1 to B4: the expressed proteins in E. coli containing empty pET-28a(+) at 48, 24, 12 and 6 h of IPTG induction, respectively; B5 to B8: the expressed proteins in E. coli containing HaeWRKY-1 fusion protein expression vector at 48, 24, 12 and 6 h of IPTG induction, respectively; C1 to C4: the expressed proteins in E. coli containing HaeWRKY-2 fusion protein expression vector at 48 h of IPTG induction, respective ely; C5 to C8: the induced expression proteins in E. coli containing pET-28a(+) at 48, 24, 12 and 6 h of IPTG induction, respectively; B-9: the purified WRKY-1 fusion protein; C-9: the purified WRKY-2 fusion protein.
2.6 HaeWRKY基因启动子顺式作用元件分析

HaeWRKY基因启动子顺式作用元件分析显示,HaeWRKY-1HaeWRKY-2基因的表达可能受多种因素调控。HaeWRKY-1HaeWRKY-2基因启动子区均含有光响应元件(G-Box、GT1-motif和Sp1)、MeJA (茉莉酸甲酯) 响应元件(CGTCA-motif和TGACG-motif)、ABA (脱落酸) 响应元件(ABRE)、乙烯响应元件(ARE)、逆境响应元件(MBS、MYB、MYC、STRE、WRE3和as-1) (表 3)。因此,HaeWRKY-1HaeWRKY-2可能参与藻细胞对光、激素以及逆境胁迫的响应。

表 3 HaeWRKYHaeBKTHaePSY基因启动子的顺式作用元件 Table 3 Cis-acting elements in the promoters of HaeWRKY, HaeBKT, and HaePSY
Cis-acting element Genes
HaeWRKY-1 HaeWRKY-2 HaeBKT HaePSY
ABRE 1 3 1 6
ARE 1 1 1
CAT-box 6 1
CGTCA-motif 1 5 1 2
G-Box 1 2 3 7
GT1-motif 1 1
MBS 1 5 1 1
MYB 3 7 1 3
MYC 4 5 3 14
STRE 3 6 2 3
Sp1 5 1 1
TATA-box 3 2 1 2
TCT-motif 1 1 2
Ⅰ-box 1
as-1 1 5 1 2
TGACG-motif 1 5 1 2
W-box 3 2 1
WRE3 5 4
box S 2
ACE 1
CARE 1
CCAAT-box 1
DRE core 3
LTR 2 1
P-box 1
RY-element 1
Y-box 1
2.7 高光胁迫下雨生红球藻WRKY基因的表达模式及虾青素积累

为研究HaeWRKY-1HaeWRKY-2基因是否在雨生红球藻胁迫响应过程中发挥功能,我们检测不同光照(高白光和高蓝光) 处理下雨生红球藻HaeWRKY-1HaeWRKY-2基因的表达模式。由图 7可知,HaeWRKY-1HaeWRKY-2在不同高光胁迫72 h后的表达模式不同。雨生红球藻在正常培养条件下,HaeWRKY-1HaeWRKY-2均表达,且HaeWRKY-1相对表达量显著高于HaeWRKY-2,是HaeWRKY-2的2.1倍。在高白光和高蓝光胁迫处理下,HaeWRKY-1的表达量均显著高于HaeWRKY-2,且分别是HaeWRKY-2的18.2倍和110.4倍。与正常培养相比,HaeWRKY-1在高光胁迫处理下的表达显著增加,而HaeWRKY-2在高光胁迫处理下的表达显著降低。与对照相比,高白光和高蓝光处理下雨生红球藻藻液均呈红褐色(图 8),这表明高白光和高蓝光处理可显著促进雨生红球藻合成积累高含量虾青素。这说明HaeWRKY-1HaeWRKY-2可能参与调控不同的生理生化通路,赋予雨生红球藻抵御逆境胁迫的能力。

图 7 不同光照处理下培养72 h雨生红球藻HaeWRKY-1HaeWRKY-2的表达量 Fig. 7 The relative expression levels of HaeWRKY-1 and HaeWRKY-2 in H. pluvialis cultivated for 72 h under different light treatments. 1: normal culture (LED white light, 25 μmol/(m2·s)); 2: high white light (390–770 nm, 500 μmol/(m2·s)); 3: high blue light (420–500 nm, 500 μmol/(m2·s)). Each value represents the mean±SD (n=3). Different lowercase letters on the bar graph indicate significant differences between the combinations (P < 0.01).
图 8 不同光照处理下培养72 h的雨生红球藻藻液颜色 Fig. 8 The colors of H. pluvialis cultures for 72 h under different light treatments.
3 讨论

WRKY TFs是一类DNA结合蛋白,主要存在于高等植物和低等植物中。根据WRKY域的数量和锌指基序的特征,WRKY TFs通常被分为三大类(Ⅰ、Ⅱ和Ⅲ)[28]。第Ⅰ组WRKY成员在C-和N-端均含WRKY结构域。第Ⅱ和Ⅲ组WRKY成员仅在C端或N端含WRKY结构域[31]。根据WRKY蛋白进化和保守基序的差异,第Ⅱ组WRKY成员进一步分为5个亚组(Ⅱa、Ⅱb、Ⅱc、Ⅱd和Ⅱe)[28]。本文从真核藻类鉴定到24个WRKY蛋白,分别属于Ⅰ、Ⅱa和Ⅱb组,它们的保守结构域氨基酸序列存在一些差异。除第Ⅰ组WRKY蛋白N端的WRKY结构域外,其他WRKY结构域均含有一个保守的内含子(PR或VQR) 结构。氨基酸PR结构存在于七肽序列和锌指结构之间(Ⅰ-CT、Ⅱc、Ⅱd、Ⅱe和Ⅲ组)。VQR结构位于Ⅱa和Ⅱb组中锌指结构内部(C-X4-5-C-X5-VQR-X18-19- H-X1-H)[28]。藻类WRKY蛋白中VQR结构突变为VER等不同的变异体。深入分析这两种保守结构有助于更准确地鉴定WRKY结构域。30种真核藻类全基因组WRKY鉴定结果显示,红藻(Rhodophyta)、灰藻(Glaucophyta) 和硅藻(Bacillariophyta) 等藻类未检测到WRKY成员。然而,WRKY成员广泛存在于绿藻门(Chlorophyta) 藻种,且不同绿藻物种的WRKY成员数量不同。例如,盐藻(D. salina) WRKY成员数量最多(5个),莱茵衣藻(C. reinhardtii) WRKY成员数量最少(1个)。已有研究鉴定到高等植物WRKY成员数量均较多,本文所鉴定到的藻类物种(绿藻) 中WRKY基因成员数量均较少。WRKY基因在植物进化过程中通过多次复制(包括基因组复制、串联复制和片段复制),形成一个大型植物WRKY蛋白基因家族[8, 10]。其中,第Ⅰ组WRKY成员是古老的成员,而第Ⅱ组(Ⅱa和Ⅱb) WRKY很可能是由具有单一WRKY域的藻类WRKY成员进化而来,相继从第Ⅰ组衍生的谱系分离[28, 32]WRKY基因在进化过程中发生的扩增现象及其重要进化机制还有待获得更多证据。

雨生红球藻是天然虾青素的理想来源,对雨生红球藻虾青素的生物合成、积累及其应用等方面已有很多研究[33]。在营养缺乏或高光照射条件下,雨生红球藻细胞通常会停止分裂,细胞体积增大,类胡萝卜素增加,主要是虾青素的积累[34-35]。与白光相比,蓝光在控制绿藻类胡萝卜素合成方面可能起着更重要的作用[36]。本文鉴定到雨生红球藻WRKY基因仅有2个。HaeWRKY-1基因表达在高光胁迫后大量上调,且高蓝光处理导致其上调表达更显著。然而,HaeWRKY-2基因在高光处理下呈现表达减低(图 7)。利用已公布的雨生红球藻基因组数据[37],获取HaeWRKY基因启动子序列并对顺式作用元件进行分析,结果显示HaeWRKY-1基因启动子区顺式作用元件包含3个W-box,然而HaeWRKY-2启动子区不含W-box元件(表 3)。WRKY蛋白氨基酸序列能特异性地与目标基因启动子中的W-box (TTGACT/C) 顺式调控元件直接结合[38-39],目标基因保守的TGAC核心是WRKY与之结合并起作用的必要的顺式元件[40]。这说明HaeWRKY-2蛋白或者HaeWRKY-1本身可能与HaeWRKY-1基因启动子结合并抑制HaeWRKY-1基因表达。我们推测高光胁迫条件下,HaeWRKY-2低表达,减少了与HaeWRKY-1启动子结合,这或许能导致HaeWRKY-1高表达并使HaeWRKY-1蛋白的合成增加。然后,HaeWRKY-1蛋白可能激活下游靶基因表达。在虾青素合成的过程中,β-胡萝卜素酮化酶基因(β-carotene ketolase, BKT) 和八氢番茄红素合成酶基因(phytoene synthase, PSY) 起非常重要的作用[41]。已有研究表明,HaeBKTHaePSY在高光(高白光和高蓝光) 诱导下高表达[27],与HaeWRKY-1基因上调表达相一致。顺式作用元件分析表明,HaeBKTHaePSY基因启动子区分别含2和1个W-box元件(表 3),这预示着HaeWRKY-1基因可能与这两个虾青素合成关键酶基因启动子结合并调控它们的表达。依据雨生红球藻高光下虾青素积累及其相关基因表达的研究进展,结合我们目前所获研究结果,绘制了HaeWRKY转录因子可能介导高光诱导藻细胞生长和虾青素合成的模式图(图 9)。具体的假说为,高光胁迫条件下,HaeWRKY-2低表达也许会导致HaeWRKY-1的高表达,HaeWRKY-1有可能上调虾青素合成关键基因(HaeBKTHaePSY等) 的转录表达,促进虾青素合成积累(图 9)。HaeWRKY详尽的作用机制有待进一步阐明。另外,HaeBKTHaePSY基因启动子均含有ABRE、G-Box和MBS等元件,同时分别含有某些不同的顺式作用元件。HaeBKT基因启动子有Y-box元件,HaePSY基因启动子含ARE、Ⅰ-box、Sp1和LTR元件。这表明HaeBKTHaePSY基因表达或会许还受到其他蛋白调控,进而影响雨生红球藻虾青素的合成积累。这些反应过程涉及的具体分子调控机制还需后续深入研究。

图 9 雨生红球藻WRKY基因可能介导高光诱导藻细胞生长和虾青素合成的模式图 Fig. 9 Schematic diagram showing that WRKY genes may mediate the cell growth and astaxanthin biosynthesis of H. pluvialis under high light stress.
参考文献
[1]
Waqas M, Azhar MT, Rana IA, et al. Genome-wide identification and expression analyses of WRKY transcription factor family members from chickpea (Cicer arietinum L.) reveal their role in abiotic stress-responses. Genes Genomics, 2019, 41(4): 467-481. DOI:10.1007/s13258-018-00780-9
[2]
Ishiguro S, Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5' upstream regions of genes coding for sporamin and beta-amylase from sweet potato. Mol Gen Genet, 1994, 244(6): 563-571. DOI:10.1007/BF00282746
[3]
Xie T, Chen C, Li C, et al. Genome-wide investigation of WRKY gene family in pineapple: evolution and expression profiles during development and stress. BMC Genomics, 2018, 19(1): 490. DOI:10.1186/s12864-018-4880-x
[4]
Dong J, Chen C, Chen Z. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol, 2003, 51(1): 21-37. DOI:10.1023/A:1020780022549
[5]
Wu J, Chen J, Wang L, et al. Genome-wide investigation of WRKY transcription factors involved in terminal drought stress response in common bean. Front Plant Sci, 2017, 8: 380.
[6]
Wan Y, Mao M, Wan D, et al. Identification of the WRKY gene family and functional analysis of two genes in Caragana intermedia. BMC Plant Biol, 2018, 18(1): 31. DOI:10.1186/s12870-018-1235-3
[7]
Kaliyappan R, Viswanathan S, Suthanthiram B, et al. Evolutionary expansion of WRKY gene family in banana and its expression profile during the infection of root lesion nematode, Pratylenchus coffeae. PLoS One, 2016, 11(9): e0162013. DOI:10.1371/journal.pone.0162013
[8]
Song YN, Cui HL, Shi Y, et al. Genome-wide identification and functional characterization of the Camelina sativa WRKY gene family in response to abiotic stress. BMC Genomics, 2020, 21(1): 786. DOI:10.1186/s12864-020-07189-3
[9]
He Y, Mao S, Gao Y, et al. Genome-wide identification and expression analysis of WRKY transcription factors under multiple stresses in Brassica napus. PLoS One, 2016, 11(6): e0157558. DOI:10.1371/journal.pone.0157558
[10]
Zhang Y, Wang L. The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evol Biol, 2005, 5: 1. DOI:10.1186/1471-2148-5-1
[11]
Jiang J, Ma S, Ye N, et al. WRKY transcription factors in plant responses to stresses. J Integr Plant Biol, 2017, 59(2): 86-101. DOI:10.1111/jipb.12513
[12]
Jiang Y, Duan Y, Yin J, et al. Genome-wide identification and characterization of the Populus WRKY transcription factor family and analysis of their expression in response to biotic and abiotic stresses. J Exp Bot, 2014, 65(22): 6629-6644. DOI:10.1093/jxb/eru381
[13]
Eulgem T, Rushton PJ, Robatzek S, et al. The WRKY superfamily of plant transcription factors. Trends Plant Sci, 2000, 5(5): 199-206. DOI:10.1016/S1360-1385(00)01600-9
[14]
Yu F, Huaxia Y, Lu W, et al. GhWRKY15, a member of the WRKY transcription factor family identified from cotton (Gossypium hirsutum L.), is involved in disease resistance and plant development. BMC Plant Biol, 2012, 12: 144. DOI:10.1186/1471-2229-12-144
[15]
Singh D, Debnath P, Roohi, et al. Expression of the tomato WRKY gene, SlWRKY23, alters root sensitivity to ethylene, auxin and JA and affects aerial architecture in transgenic Arabidopsis. Physiol Mol Biol Plants, 2020, 26(6): 1187-1199. DOI:10.1007/s12298-020-00820-3
[16]
Li C, Liu X, Ruan H, et al. GmWRKY45 enhances tolerance to phosphate starvation and salt stress, and changes fertility in transgenic Arabidopsis. Front Plant Sci, 2019, 10: 1714.
[17]
Shi WY, Du YT, Ma J, et al. The WRKY transcription factor GmWRKY12 confers drought and salt tolerance in soybean. Int J Mol Sci, 2018, 19(12): 4087. DOI:10.3390/ijms19124087
[18]
Vernon W. Some controlling factors in the distribution of Haematococcus pluvialis. Ecology, 1957, 38(3): 457-462. DOI:10.2307/1929890
[19]
Zhang CH, Zhang LT, Liu JG. Exogenous sodium acetate enhances astaxanthin accumulation and photoprotection in Haematococcus pluvialis at the non-motile stage. J Appl Phycol, 2019, 31(2): 1001-1008. DOI:10.1007/s10811-018-1622-z
[20]
Ren Y, Deng J, Huang J, et al. Using green alga Haematococcus pluvialis for astaxanthin and lipid co-production: advances and outlook. Bioresour Technol, 2021, 340: 125736. DOI:10.1016/j.biortech.2021.125736
[21]
Sandesh Kamath B, Vidhyavathi R, Sarada R, et al. Enhancement of carotenoids by mutation and stress induced carotenogenic genes in Haematococcus pluvialis mutants. Bioresour Technol, 2008, 99(18): 8667-8673. DOI:10.1016/j.biortech.2008.04.013
[22]
Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol, 1990, 215(3): 403-410. DOI:10.1016/S0022-2836(05)80360-2
[23]
Finn RD, Clements J, Arndt W, et al. HMMER web server: 2015 update. Nucleic Acids Res, 2015, 43(W1): W30-W38. DOI:10.1093/nar/gkv397
[24]
Letunic I, Doerks T, Bork P. SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res, 2012, 40(database issue): D302-D305.
[25]
Finn RD, Bateman A, Clements J, et al. Pfam: the protein families database. Nucl Acids Res, 2014, 42(D1): D222-D230. DOI:10.1093/nar/gkt1223
[26]
Artimo P, Jonnalagedda M, Arnold K, et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res, 2012, 40(web server issue): W597-W603.
[27]
崔红利, 许文鑫, 崔玉琳, 等. 光诱导雨生红球藻虾青素积累的信号通路转录组分析. 生物工程学报, 2021, 37(4): 1260-1276.
Cui HL, Xu WX, Cui YL, et al. Transcriptome analysis of signal transduction pathway involved in light inducing astaxanthin accumulation in Haematococcus pluvialis. Chin J Biotech, 2021, 37(4): 1260-1276 (in Chinese).
[28]
Rinerson CI, Rabara RC, Tripathi P, et al. The evolution of WRKY transcription factors. BMC Plant Biol, 2015, 15: 66. DOI:10.1186/s12870-015-0456-y
[29]
Fernández MB, Tossi V, Lamattina L, et al. A comprehensive phylogeny reveals functional conservation of the UV-B photoreceptor UVR8 from green algae to higher plants. Front Plant Sci, 2016, 7: 1698.
[30]
Li C, Li D, Shao F, et al. Molecular cloning and expression analysis of WRKY transcription factor genes in Salvia miltiorrhiza. BMC Genomics, 2015, 16: 200. DOI:10.1186/s12864-015-1411-x
[31]
Brand LH, Fischer NM, Harter K, et al. Elucidating the evolutionary conserved DNA-binding specificities of WRKY transcription factors by molecular dynamics and in vitro binding assays. Nucleic Acids Res, 2013, 41(21): 9764-9778. DOI:10.1093/nar/gkt732
[32]
Wu KL, Guo ZJ, Wang HH, et al. The WRKY family of transcription factors in rice and Arabidopsis and their origins. DNA Res, 2005, 12(1): 9-26. DOI:10.1093/dnares/12.1.9
[33]
Shah MM, Liang Y, Cheng JJ, et al. Astaxanthin- producing green microalga Haematococcus pluvialis: from single cell to high value commercial products. Front Plant Sci, 2016, 7: 531.
[34]
Mularczyk M, Michalak I, Marycz K. Astaxanthin and other nutrients from Haematococcus pluvialis— multifunctional applications. Mar Drugs, 2020, 18(9): 459. DOI:10.3390/md18090459
[35]
Butler TO, McDougall GJ, Campbell R, et al. Media screening for obtaining Haematococcus pluvialis red motile macrozooids rich in astaxanthin and fatty acids. Biology (Basel), 2017, 7(1): 2.
[36]
Cui H, Yu X, Wang Y, et al. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae. BMC Genomics, 2013, 14: 457. DOI:10.1186/1471-2164-14-457
[37]
Luo Q, Bian C, Tao M, et al. Genome and transcriptome sequencing of the astaxanthin-producing green microalga, Haematococcus pluvialis. Genome Biol Evol, 2019, 11(1): 166-173. DOI:10.1093/gbe/evy263
[38]
Jing Z, Liu Z. Genome-wide identification of WRKY transcription factors in kiwifruit (Actinidia spp.) and analysis of WRKY expression in responses to biotic and abiotic stresses. Genes Genomics, 2018, 40(4): 429-446. DOI:10.1007/s13258-017-0645-1
[39]
Zhang M, Chen Y, Nie L, et al. Transcriptome-wide identification and screening of WRKY factors involved in the regulation of taxol biosynthesis in Taxus chinensis. Sci Rep, 2018, 8(1): 5197. DOI:10.1038/s41598-018-23558-1
[40]
Guo C, Guo R, Xu X, et al. Evolution and expression analysis of the grape (Vitis vinifera L.) WRKY gene family. J Exp Bot, 2014, 65(6): 1513-1528. DOI:10.1093/jxb/eru007
[41]
Zhu QL, Zeng DC, Yu SZ, et al. From golden rice to aSTARice: bioengineering astaxanthin biosynthesis in rice endosperm. Mol Plant, 2018, 11(12): 1440-1448. DOI:10.1016/j.molp.2018.09.007