中国科学院微生物研究所、中国微生物学会主办
文章信息
- 刘妮娜, 崔甜琦, 高翔, 朱德锐, 邢江娃
- LIU Nina, CUI Tianqi, GAO Xiang, ZHU Derui, XING Jiangwa
- 嗜盐微生物在生物医药领域的应用研究进展
- Advances in the biomedical application research of halophilic microorganisms
- 生物工程学报, 2022, 38(6): 2153-2168
- Chinese Journal of Biotechnology, 2022, 38(6): 2153-2168
- 10.13345/j.cjb.210928
-
文章历史
- Received: December 16, 2021
- Accepted: February 11, 2022
根据世界卫生组织(World Health Organization, WHO) 每年报告的数据,公共卫生领域对获得新分子的需求分类最多的是抗菌和抗癌化合物[1]。尽管自2018年以来,追踪抗生素耐药性问题的国家已增加了2倍,但抗生素耐药性问题仍日趋严重,亟需开发新型药物用于临床[2]。与此同时,由于人口老龄化的加剧,预计到2040年,全球的癌症负担与2020年相比将增加50%,常见的癌症类型也在不断变化,开发新型抗癌药物刻不容缓[3]。国际癌症研究中心的一项报告显示,世界上1/6的癌症是由细菌、病毒感染引起的,长期的慢性炎症会导致细胞的修复频率增加,进而增加了突变几率,提升了癌症风险,因此开发新型抗炎药物对治疗炎症和癌症预防都极其重要。嗜盐微生物(halophilic microorganisms) 是生长的最适盐浓度大于0.2 mol/L (氯化物) 的微生物,以其特殊的生理结构组成和代谢调控机制,能在高盐的极端环境中栖息繁殖[4]。嗜盐微生物主要包括嗜盐细菌、嗜盐真菌和嗜盐古菌等,其代谢多样性、较低的营养需求和适应恶劣条件(如营养缺乏、干燥、高太阳辐射和高离子强度) 的特点,使它们成为发现新型药物的希望[1]。目前的诸多研究已经发现,嗜盐微生物在抗菌、抗炎、抗肿瘤等方面均具有一定的效果,在生物医学领域具有广阔的应用前景。文中结合本课题组在嗜盐微生物资源方面的相关研究,综述了近年来嗜盐微生物在生物医药领域的相关应用进展,对嗜盐微生物中发现的一些新型物质和特有物质进行了总结,并对嗜盐微生物的相关应用前景进行了展望,为后续嗜盐微生物的开发和利用提供参考。
1 抗菌作用 1.1 抗菌活性筛选目前对嗜盐微生物的抗菌作用筛选相关文献较多,主要应用典型指示菌采用滤纸片法[5]或牛津杯法[6]进行。常见的指示菌包括副溶血性弧菌(Vibrio parahemolyticus)、枯草芽孢杆菌(Bacillus subtilis)、金黄色葡萄球菌(Staphylococcus aureus)、大肠杆菌(Escherichia coli)、黄曲霉(Aspergillus flavus)、黑曲霉(Aspergillus niger)、肺炎克雷伯菌(Klebsiella pneumoniae)、单增李斯特菌(Listeria monocytogenes)、粪肠球菌(Enterococcus faecalis)、铜绿假单胞菌(Pseudomonas aeruginosa)、蜡样芽孢杆菌(Bacillus cereus) 和白色念珠菌(Candida albicans) 等常见致病细菌和真菌。抗革兰氏阳性菌和阴性菌的主要为细菌,其还对多种人和植物病原真菌有抗性,如白色念珠菌[7]、黑曲霉[8]、马铃薯干腐病病原菌[6]等;而嗜盐古菌的相关抗菌活性研究极少。其中,在嗜盐细菌中,具有抗菌活性的主要是嗜盐放线菌门(Actinobacteria),以拟诺卡氏菌属(Nocardiopsis)[9]和链霉菌属(Streptomyces)[5]居多;其次是一些中度嗜盐细菌,如喜盐芽孢杆菌属(Halobacillus)[10]、盐单胞菌属(Halomonas)[11]、湿地丝菌属(Paludifilum)[12]、假诺卡氏菌属(Pseudonocardia)[13]、弧菌属(Vibrio)[14]和芽孢杆菌属(Bacillus)[6]等。在嗜盐真菌中,具有抗菌作用的也主要为一些中度嗜盐菌,如曲霉属(Aspergillus)[15]和节担菌属(Wallemia)[16]等。
1.2 抗菌活性物质嗜盐微生物的抗菌活性与其产生的代谢产物有关。嗜盐细菌简单芽孢杆菌(Bacillus simplex) CEH-ST79对马铃薯干腐病病原菌的抑制活性组分[6]和嗜盐细菌考克氏菌(Kocuria) rsk4对耐药性金黄色葡萄球菌的抑制活性组分[17]均为乙酸乙酯粗提物。进一步分离纯化发现,嗜盐菌产生的多肽(polypeptide)[10]、胞外多糖(extracellular polysaccharide, EPS)[18]、生物表面活性剂(biosurfactant)[8]、生物色素(biopigment)[19]等均具有不同程度的抗菌效果。
近年来在嗜盐微生物中发现了多种新型物质具有抗菌活性(表 1)。Hadj Rabia-Boukhalfa等[9]发现嗜盐放线菌Nocardiopsis sp. HR-4能够产生苯并蒽类抗生素(angucyclinones),这是首次从拟诺卡氏菌属中发现该类化合物,并从中分离出了一种新的天然化合物(−)-7-脱氧-8-氧-甲基四角霉素((−)-7-deoxy-8-O-methyltetrangomycin),该化合物对耐甲氧西林金黄色葡萄球菌ATCC 43300有抗菌活性。Kim等[20]对从高盐盐场中分离得到的Nocardiopsis sp. HYJ128进行了化学研究,发现其能产生新的具有腈官能团的十八元大环内酯类化合物疏螺旋体素(borrelidin) C–E,是罕见的疏螺旋体素类抗生素的新成员,其中疏螺旋体素C和D对革兰氏阴性病原菌肠道沙门氏菌(Salmonella enterica) 具有较强的抑制活性。从嗜盐放线菌植物内生假诺卡氏菌(Pseudonocardia endophytica) VUK-10产生的新天然产物环辛烷-1, 4-二胺(cyclooctane-1, 4- diamine) 的前体中分离得到的半合成衍生物N-(4-氨基环辛基)-3, 5-二硝基苯甲酰胺(N-(4-aminocyclooctyl)-3, 5-dinitrobenzamide) 对变形链球菌(Streptococcus mutans)、铜绿假单胞菌、白色念珠菌和黑曲霉均有较强的抑制活性[13]。链球菌单霉素(streptomonomicin, STM)是由白色链单胞菌(Streptomonospora alba) YIM 90003产生的一种新型抗菌肽,是该属首次报道的化合物[21]。STM对多种革兰氏阳性菌有抗菌活性,特别是芽孢杆菌、李斯特菌、肠球菌、分枝杆菌和葡萄球菌。嗜盐细菌士麦那盐单胞菌(Halomonas smyrnensis) K2产生的一种新型胞外多糖EPS-K2主要由甘露糖基、葡萄糖基、半乳糖基组成(摩尔分数为66︰20︰14),相对分子量为396 kDa,可以抑制病原菌生物膜的发育,对革兰氏阴性菌大肠杆菌、革兰氏阳性菌粪肠球菌和金黄色葡萄球菌均具有很强的粘附抑制作用和抗生物膜活性[11]。从巴基斯坦Khewra盐矿中分离出了8株嗜盐细菌,分别属于伸长盐单胞菌(Halomonas elongata)、卡拉季喜盐芽孢杆菌(Halobacillus karajiensis)和拉马拉哈碱芽孢杆菌(Alkalibacillus almallahensis)[8]。对其产生的生物表面活性剂进行结构表征,发现了不同的脂肪酸、糖脂衍生物和一种新型抗菌肽呋喃霉素(furanomycin)。这些生物表面活性剂对革兰氏阳性菌金黄色葡萄球菌和革兰氏阴性菌肺炎克雷伯菌以及黑曲霉和烟曲霉等多种真菌均表现出较强的生物活性,可作为病原体的有效抗菌剂。
Kingdom | Phylum | Genus | Strain | Antimicrobial effects | Novel antibacterial substance | Molecular formula | Reference |
Bacteria | Actinobacteria | Nocardiopsis | Nocardiopsis sp. HR-4 | S. aureus, methicillin-resistant S. aureus (MRSA), M. luteus, E. faecalis | (–)-7-deoxy-8-O methyltetrangomycin | C20H18O5 | [9] |
Bacteria | Actinobacteria | Nocardiopsis | Nocardiopsis sp. HYJ128 | Salmonella enterica | Borrelidin C Borrelidin D |
C28H43NO7 C28H43NO7 |
[20] |
Bacteria | Actinobacteria | Pseudonocardia | Pseudonocardia endophytica VUK-10 | Streptococcus mutans, Pseudomonas aeruginosa, Candida albicans, Aspergillus niger | N-(4-aminocyclooctyl)-3, 5-dinitroben zamide | C15H20N4O5 | [13] |
Bacteria | Actinobacteria | Streptomonospora | Streptomonospora alba YIM90003 | B. anthracis, B. halodurans, B. cereus, B. subtilis, L. monocytogenes, E. faecalis, S. sureus, M. smegmatis |
Streptomonomicin (STM) | C107H160N22O30 | [21] |
Bacteria | Proteobacteria | Halomonas | Halomonas smyrnensis K2 | E. coli, E. faecalis, S. aureus | EPS-K2 | ND | [11] |
Bacteria | Proteobacteria | Halomonas | Halomonas elongata MB590-591, MB593-596 | K. pneumoniae, S. aureus, B. subtilis, E. faecalis, A. fumigatus, A. niger |
Franomycin | C7H11NO3 | [8] |
Bacteria | Firmicutes | Alkalibacillus | Alkalibacillus almallahensis MB589 | ||||
Bacteria | Firmicutes | Halobacillus | Halobacillus karajiensis MB588 | ||||
Fungi | Ascomycotina | Aspergillus | Aspergillus flocculosus PT05-1 | E. aerogenes, P. aeruginosa, C. albicans |
Ergosteroid, (22R, 23S)-epoxy-3b, 11a, 14b, 16b-tetrahydr-oxyergosta-5, 7-dien-12-one | C28H42O6 | [22] |
Pyrrole derivate, 6-(1H-pyrrol-2-yl)hexa-1, 3, 5-trienyl-4-methoxy-2H-pyran-2-one | C16H15NO3 | ||||||
Fungi | Ascomycotina | Aspergillus | Aspergillus terreus PT06-2 | E. aerogenes, P. aeruginosa, C. albicans |
Terremide A | C21H17N3O5 | [23] |
Terremide B | C21H15N3O4 | ||||||
Terrelactone A | C24H26O8 | ||||||
Archaea | Euryarcharota | Haloferax | Haloferax sp. E106 | E. coli, S. aureus, P. aeruginosa, B. subtilis |
AgNPs | ND | [24] |
Bacteria | Proteobacteria | Halomonas | Halomonas sp. D1 | ||||
Archaea | Euryarcharota | Halogeometricum | Halogeometricum sp. E118 | SeNPs | ND | ||
Bacteria | Firmicutes | Bacillus | Bacillus sp. D54 | ||||
ND, not determined. |
除嗜盐细菌外,嗜盐真菌中也发现了一些新型抗菌物质。从福建莆田海盐沉积物中分离到的嗜盐真菌絮状曲霉(Aspergillus flocculosus) PT05-1[22]和土曲霉(Aspergillus terreus) PT06-2[23]对产气肠杆菌(Enterobacter aerogenes)、铜绿假单胞菌和白色念珠菌均显示出较强的抑菌活性。其中,菌株PT05-1能够产生11种代谢产物,其中2种是新型麦角甾醇(ergosterol) 和新吡咯(pyrrole) 衍生物;菌株PT06-2能够产生3种新型化合物,分别为丁内酯水合衍生物terrelacone A以及生物碱terremides A和B。
值得注意的是,嗜盐古菌和细菌还可以产生多种纳米颗粒,对多种病原菌均有抑菌活性。例如,纳米银颗粒(silver nanoparticle, AgNP)可由古菌富盐菌(Haloferax) E106 (AgNP-A,胞内) 和细菌Halomonas sp. D1 (AgNP-B, 胞外) 产生,而纳米硒颗粒(selenium nanoparticle, SeNP) 可由古菌盐几何形菌(Halogeometricum) E118 (SeNP-A) 和细菌Bacillus sp. D54 (SeNP-B) 产生[24]。这些纳米颗粒在尺寸、大小均匀性、稳定性、纯度和抑菌活性等方面表现出优异的性能。用能抑制50%受试菌所需的最小抑菌浓度(50% minimum inhibitory concentration,MIC50) 来衡量纳米颗粒的抗菌活性,结果显示AgNP-A对大肠杆菌、金黄色葡萄球菌、铜绿假单胞菌和枯草芽孢杆菌的MIC50值分别为20、10、40、40 mg/L,AgNP-B对大肠杆菌、金黄色葡萄球菌、铜绿假单胞菌和枯草芽孢杆菌的MIC50值分别为20、20、40、40 mg/L;SeNP-A对大肠杆菌、金黄色葡萄球菌、铜绿假单胞菌和枯草芽孢杆菌的MIC50分别为100、50、100、100mg/L,SeNP-B对大肠杆菌、金黄色葡萄球菌、铜绿假单胞菌和枯草芽孢杆菌的MIC50分别为200、100、200、200 mg/L。同时,嗜盐古菌盐矿盐古球菌(Halococcus salifodinae) BK3生产的硒纳米粒子[25]和碲纳米粒子[26]对一系列革兰氏阴性菌和革兰氏阳性菌也都有一定抗菌活性。研究结果表明,嗜盐原核生物对纳米颗粒的绿色合成具有很大的潜力,并可将纳米颗粒用于常见抗菌剂的制备。
2 抗炎作用嗜盐微生物在抗炎方面的应用主要与其产生的相容溶质有关。合成并积累相容溶质是嗜盐微生物重要的耐盐机制之一,嗜盐微生物通过此机制来克服高盐环境下的渗透压[4]。其中,四氢嘧啶(ectoine) 及羟基四氢嘧啶(5-hydroxyectoine, 5-HE) 是一类嗜盐或耐盐微生物特有的、能够在极端环境下(如高温、干旱、高pH值、高压和高盐) 协助嗜盐或耐盐微生物平衡细胞渗透压以提供抗逆作用的有机相容溶质,具有很好的抗炎效果[27]。此外,甜菜碱(betaine) 也是嗜盐微生物合成的具有抗炎作用的重要相容溶质,同时广泛分布于动物、植物和微生物中[28]。甜菜碱合成基因在典型微生物菌株或经济作物中的表达可以提高其耐盐抗逆能力,这种独特的优势引起了学者们的强烈兴趣[29]。
2.1 四氢嘧啶及衍生物四氢嘧啶最早是从嗜盐光合紫细菌盐绿需盐红螺菌(Ectothiorhodospira halochloris) 中分离出来的,目前主要在嗜盐微生物芽孢杆菌属、链霉菌属、甲烷菌属(Methylomicrobium)、盐单胞菌属、色盐杆菌属(Chromohalobacter)等种属中可以合成[30],对多种炎症具有抗炎效果。
在治疗肺部感染方面,四氢嘧啶可促进体内中性粒细胞凋亡,加快炎症部位上皮细胞的再生,从而缩短病程[31]。四氢嘧啶可通过降低多种炎症因子的表达缓解大鼠模型的结肠炎,因此可应用于小肠移植的辅助治疗[32]。在药物中添加四氢嘧啶可减轻炎症症状,如含有四氢嘧啶的药物可以治疗慢性肠道炎症疾病[33],含有四氢嘧啶的乳膏可治疗特应性皮炎[34],含有四氢嘧啶的鼻喷剂、滴眼液对于治疗过敏性鼻炎[35]和过敏性结膜炎[36]效果明显,四氢嘧啶吸入剂对急性支气管炎的治疗效果优于生理盐水吸入剂[37],四氢嘧啶含片可以显著缓解中度到重度急性病毒性咽炎的症状且比使用透明质酸含片和高渗盐水含漱液更有效[38]等。目前,德国研发的干眼症滴眼液(etoine eye drops)、过敏性鼻喷剂(ectoine allergy nasal sprays) 等四氢嘧啶相关药物已投入医药市场[39]。
口腔黏膜炎是头颈部鳞状细胞癌(head and neck squamous cell carcinoma, HNSCC) 在放疗或放化疗期间最常见的副作用之一[40],四氢嘧啶漱口水对化疗和放疗引起的口腔黏膜炎也有疗效[41-42]。尽管四氢嘧啶在水溶液中对细胞游离DNA的电离辐射有保护作用,实验表明四氢嘧啶的应用不会干扰辐射对头颈部鳞状细胞癌细胞的主要细胞毒性作用[42]。由于四氢嘧啶具有很好的抗炎和保湿效果,也被我们课题组应用于相关化妆品的研发[43]。
四氢嘧啶除了在嗜盐微生物抗炎作用方面发挥着重要作用,还可作为哺乳动物细胞、DNA和蛋白质的保护剂,且羟基四氢嘧啶比四氢嘧啶有更好的保护能力。在临床疾病治疗中,四氢嘧啶可应用于治疗蛋白质折叠疾病。在几种神经退化性疾病如阿尔茨海默氏症(Alzheimer’s disease)[44]、帕金森氏病(Parkinson’s disease)[45]和亨廷顿病(Huntington’s disease)[46]中,患者大脑中存在淀粉样蛋白的错误折叠、聚集和沉积[47],而四氢嘧啶及羟基四氢嘧啶可以减少淀粉样纤维的形成[45]。
2.2 甜菜碱甜菜碱又称三甲基甘氨酸(trimethylglycine)[48],是一种重要的渗透保护剂和甲基供体。与四氢嘧啶相同,甜菜碱可保护细胞、蛋白质和酶免受渗透压胁迫。嗜盐微生物在高盐环境下通过从外界转运获得甜菜碱及其前体物质胆碱[4],或者通过生物合成来积累该物质以用于抵抗外界高盐环境[29]。
越来越多的证据表明甜菜碱在多种疾病中具有抗炎作用[49]。从机制上讲,甜菜碱可改善含硫氨基酸代谢对抗氧化应激,抑制核因子κB (nuclear factor-κB, NF-κB) 活性和核苷酸结合寡聚化结构域样受体蛋白3 (nucleotide-binding oligomerization domain-like receptor protein 3, NLRP3) 炎性小体激活,调节能量代谢,减轻内质网应激和细胞凋亡[28]。实验结果表明,甜菜碱可以通过增强肠上皮紧密连接蛋白的表达发挥抗炎作用,维持上皮屏障的完整性,改善肠上皮屏障的功能[50],预防坏死性小肠结肠炎(necrotizing enterocolitis, NEC) 和炎症性肠病(inflammatory bowel disease, IBD)[51]的发生。高脂饮食可引起脂肪组织中肉碱和脂质代谢的明显变化,可能导致轻度炎症和肥胖相关疾病。据报道,补充甜菜碱可以缓解高脂饮食诱导的白细胞介素-6 (interleukin-6, IL-6) 的表达,显著提高肌肉和肝脏中甜菜碱及其衍生物和某些肉碱的水平,并适度减轻炎症[52]。促炎细胞因子白细胞介素-1β (interleukin-1β, IL-1β) 是炎症相关疾病的主要调节因子之一,甜菜碱通过抑制叉头家族的转录因子FOXO1和硫氧还蛋白互作蛋白TXNIP的结合来抑制活性组分诱导的糖尿病肝脏NLRP3炎性小体的激活,从而抑制IL-1β的产生,进而消除糖尿病的炎症过程[53]。
除抗炎作用外,甜菜碱对几种人类疾病如阿尔茨海默病[54]和癌症(见后文) 也均有治疗作用。
3 抗肿瘤作用 3.1 抗肿瘤活性筛选近年来,嗜盐微生物被认为是抗肿瘤代谢产物的可靠来源,一些研究集中于探索嗜盐微生物代谢产物在癌症治疗中的重要性。多数研究主要应用典型癌细胞系,采用四甲基偶氮唑盐(3-(4, 5)-dimethylthiahiazo (-z-y1)-3, 5-di- phenytetrazoliumromide, MTT) 比色法[55]或细胞增殖-毒性检测试剂盒(cell counting kit-8, CCK-8) 法[56]等检测代谢产物的细胞毒作用。常见的癌细胞系包括宫颈癌细胞(cervical cancer cells)、肝癌细胞(liver cancer cells)、乳腺癌细胞(breast cancer cells)、结肠癌细胞(colon cancer cells)、前列腺癌细胞(prostate cancer cells)、肺癌细胞(lung cancer cells)、胃癌细胞(gastric cancer cells) 等人类肿瘤细胞。在嗜盐微生物中,嗜盐细菌具有主要抗肿瘤活性,其次为嗜盐古菌和嗜盐真菌。在嗜盐细菌中,具有抗肿瘤活性的主要是变形菌门(Proteobacteria),以盐单胞菌属[57]居多;其次为放线菌门的拟诺卡氏菌属[20]和链霉菌属[56]以及厚壁菌门(Firmicutes) 的芽孢杆菌属[58]等。在嗜盐古菌中,广古菌门(Euryarchaeota) 的抗肿瘤作用占主导地位[59-60]。在嗜盐真菌中,研究显示具有抗肿瘤作用的主要为曲霉属[61]和节担菌属[16]。
3.2 抗肿瘤活性物质嗜盐微生物在抗肿瘤方面的作用也主要与其产生的生物活性物质有关。国外研究学者发现盐单胞菌(Halomonas sp.) HA1粗提物可诱导人肝癌细胞HepG2的凋亡并抑制其增殖。通过液相色谱-质谱法(liquid chromatography-mass spectrometry, LC-MS) 和核磁共振波谱法(nuclear magnetic resonance, NMR) 分析得到其粗提物中含有包括表面活性素(surfactin) C14和C15在内的多种物质[57]。中度嗜盐细菌鱼芽孢杆菌(Piscibacillus) C12A1的肉汤提取物对转移性乳腺癌细胞(MDA-MB-231) 具有明显的抑制作用[55]。近年来在嗜盐微生物中也发现了多种具有抗肿瘤活性的新型物质,且主要来自于嗜盐细菌(表 2)。在Nocardiopsis sp. HYJ128产生的疏螺旋体素C–E中,疏螺旋体素C和D对胃癌细胞SNU638和慢性粒细胞白血病癌细胞K562均具有较强的细胞毒作用[20]。从嗜盐细菌卢森坦拟诺卡氏菌(Nocardiopsis lucentensis) DSM 44048中分离得到一种新的苯并恶唑衍生物诺卡苯并恶唑(nocarbenzoxazole) G,该化合物对人肝癌细胞HepG2和人宫颈癌细胞株HeLa具有细胞毒活性,其诱导肿瘤细胞凋亡50%时的物质浓度分别为3 µmol/L和1 µmol/L[62]。从耐盐芽孢杆菌(Bacillus sp.) KCB14S006中分离得到3种新型脂肽伊枯草菌素(iturin) F1、F2和A9,能使人宫颈癌细胞株HeLa和srcts-NRK细胞活力降低约30%[63]。
Kingdom | Phylum | Genus | Strain | Cancer cell line | Novel antitumor substance | Molecular formula | Reference |
Bacteria | Actinobacteria | Nocardiopsis | Nocardiopsis sp. HYJ128 | Gastric cancer cells, leukemia carcinoma | Borrelidin C, Borrelidin D | C28H43NO7 | [20] |
Bacteria | Actinobacteria | Nocardiopsis | Nocardiopsis lucentensis DSM 44048 | Liver cancer cells, cervical cancer cells | Nocarbenzoxazole G | C15H13NO4 | [62] |
Bacteria | Firmicutes | Bacillus | Bacillus sp. KCB14S006 | Cervical cancer cells, myeloid leukemia | Iturin F1, F2 and A9 | C51H80N12O15Na (F1, F2), C51H80N12O14Na (A9) | [63] |
Bacteria | Proteobacteria | Halomonas | Halomonas stenophila B100 | Lymphoblastic leukemia | B100S, sulphated single acidic exopolysaccharide with glucose, mannose and galactose | ND | [64] |
ND, not determined. |
EPS是由微生物产生的高异质性聚合物,近年来嗜盐微生物产生的EPS因其结构和功能的多样性而备受关注。嗜盐细菌窄环境盐单胞菌(Halomonas stenophila) B100能产生一种新型EPS,当它被过度硫酸化时,能对来自急性淋巴细胞白血病(acute lymphocytic leukemia, ALL) 的T细胞系产生抗肿瘤活性,并且只有肿瘤细胞对硫酸化EPS (B100S)诱导的凋亡敏感,而原代T细胞则具有耐药性[64]。研究表明,新发现的B100S是第一个被证明对T细胞白血病(T cell leukaemia) 发挥有效和选择性促凋亡作用的细菌EPS,因此寻找新的抗肿瘤药物时也应考虑筛选嗜盐微生物中分离出来的新型EPS。此外,嗜盐古菌盐红菌(Halorubrum)TBZ112中也分离得到一种具有良好生物相容性的新型EPS,但可能由于其硫酸盐官能团的缺失以及分子量较小的缘故,并没有检测到该物质对测试癌细胞株的增殖具有明显的抑制作用[65]。
与此同时,几项体外和体内研究证实嗜盐微生物相容溶质甜菜碱也具有多种抗癌作用,如抑制致癌物活化、癌细胞增殖、血管生成和肿瘤转移等。甜菜碱可降低乳腺癌[66]、肺癌[67]、肝癌[68]、结直肠癌[69]、鼻咽癌[70]和前列腺癌[71]等癌症的发病率,且甜菜碱摄入量越高,患癌风险就越低。一些临床研究表明,饮食中类胡萝卜素的摄入量也与癌症发生呈反比关系,嗜盐微生物生产的类胡萝卜素有潜力应用于癌症治疗[72]。
3.3 酶疗法癌细胞与正常细胞相比缺乏某些氨基酸的生物合成酶,因此这些氨基酸是癌细胞生长所必需的,但对正常细胞的存活却不是至关重要的。在癌症治疗研究中,酶疗法的主要思想是使用特定的氨基酸降解酶来消耗掉癌细胞生长必需的某种氨基酸[73]。天门冬酰胺酶(l-asparaginase)、谷氨酰胺酶(l-glutaminase)、精氨酸酶(l-arginase) 和蛋氨酸酶(l-methioninase) 均为氨基酸降解酶。除蛋氨酸酶外,这些酶普遍存在于所有生物体中。由于易于生产和优化等特点,从微生物中分离这些酶成为首选,但分离出来的酶与人体的不相容性不可避免地会引发免疫反应。因生活在高盐环境中,嗜盐细菌具有经过修饰的酶结构,可能含有潜在的具有抗癌活性和新的免疫学特性的酶。Zolfaghar等随机抽取了110株从高盐环境中分离的细菌以测试这些嗜盐菌株的产酶活性;结果表明,在产天门冬酰胺酶的细菌属中,海杆菌属(Marinobacter) 和盐单胞菌属数量最多,占21.4%;在芽孢杆菌属、红球菌属(Rhodococcus)、斯塔普氏菌属(Stappia) 和盐单胞菌属中观察到了谷氨酰胺酶的产生;虽然蛋氨酸酶和精氨酸酶具有相当大的抗癌潜力,但无测试菌株产生蛋氨酸酶;同时,研究报道了2株产精氨酸酶菌株,分别为动球菌属(Planococcus) 菌株GAAy3和盐单胞菌属菌株GBPx9[74]。
4 其他应用 4.1 抗氧化作用在嗜盐微生物抗氧化作用方面,其代谢产物如生物表面活性剂、类胡萝卜素、EPS、甜菜碱和四氢嘧啶等发挥着重要作用。抗氧化剂具有扑灭自由基反应和抑制细胞损伤的能力,通过有效中和各种病理生理条件下可能发生的氧化应激,在细胞防御中发挥重要作用。嗜盐菌生产的生物表面活性剂表现出清除2, 2-二苯基-1-苦基肼(2, 2-diphenyl-1-picrylhydrazyl, DPPH) 自由基的活性,使其成为生物医学的理想选择[8]。嗜盐微生物能够产生类胡萝卜素化合物以克服强烈的紫外线辐射。菌红素(bacterioruberin, BR) 是一种C50类胡萝卜素,作为细胞膜稳定剂,可保护细胞免受高紫外线辐射的影响,具有强大的抗氧化活性[19],可与抗炎药物地塞米松抗炎药物联合做肠道修复剂[75]。嗜盐微生物生产的类胡萝卜素还可增强免疫活性,并能防止过早衰老。由于其强大的抗氧化和免疫增强性能,类胡萝卜素被广泛应用于制药和医疗领域,如抗肿瘤和心脏病预防剂[76]。国外研究学者Joulak等通过对嗜盐细菌(Halomonas smyrnensis) K2产生的胞外多糖EPS-K2的DPPH自由基清除能力、铁螯合能力和DNA保护能力进行分析后发现,其具有较强的抗氧化活性,且呈剂量依赖关系[11]。Halomonas elongata S6产生的胞外多糖EPS-S6的自由基清除活性也具有一定的剂量依赖性[18]。此外,甜菜碱的抗氧化作用也在多项研究中得到证实。例如,甜菜碱可保护大鼠睾丸免受镉诱导的氧化应激。它还通过减少氧化应激生物标志物如脂质过氧化和活性氧(reactive oxygen species, ROS) 的产生来保护大鼠免受急性和慢性肝脏毒性[77]。与此同时,四氢嘧啶也能够清除羟基自由基,保护细胞免受氧化损伤,但其具体反应机理还有待研究[78]。
4.2 生物医学材料以盐单胞菌属和富盐菌属为代表的嗜盐微生物产生的聚羟基脂肪酸酯(polyhydroxyalkanoates, PHA) 因具有良好的生物相容性、机械性能和生物可降解性,被广泛应用于生物医学材料领域[79]。PHA家族包括短链PHA、中长链PHA和不同PHA单体按照一定比例共聚得到的PHA共聚酯,总数超过上百种,目前研究和应用最多的主要是短链PHA聚羟基丁酸酯(poly (3-hydroxybutyrate), PHB) 和共聚脂聚3-羟基丁酸戊酸酯(poly (3-hydroxybutyrate-co-3- hydroxyvalerate), PHBV) 两种[80]。PHBV主要由嗜盐古菌地中海富盐菌(Haloferax mediterranei) 产生,与PHB相比柔韧性更好,热机械性能更佳,具有更广泛的应用潜力[76]。PHA可作为生物材料支架应用于组织修复与再生医学[81],如伤口愈合与血管重建[82]、重建新骨[83]、再生关节软骨及修复[84]、促进神经再生结合[85]和器官重建[86]等。PHB与PHBV因具有良好的柔韧性、热稳定性以及生物可降解性也被广泛应用于工业领域[87]。
4.3 药物载体嗜盐微生物可作为纳米粒子和水凝胶等医用材料的来源,这些材料可用于药物和基因输送、体内成像和体外诊断的临床试验等。嗜盐细菌摩尔盐单胞菌(Halomonas maura) 可以产生mauran多糖用于包裹化疗药物5-氟脲嘧啶(5-fluorouracil, 5-FU),对多种癌细胞株具有毒性[88]。Halomonas smyrnensis AAD6T产生的levan果聚糖水凝胶具有高生物相容性和pH依赖的溶胀特性,可根据微环境的变化释放活性成分,为作用部位提供所需的有效药物浓度,可用作创面敷料的良好候选材料和局部抗真菌治疗的药物释放系统[89]。嗜盐古菌和细菌产生的各类纳米颗粒因对多种病原菌均有抑菌活性,也可用于常见抗菌剂的制备[23]。与此同时,嗜盐古菌也是古细菌脂质体(archaeosomes) 的来源,后者由于其膜脂不同寻常的性质,可以作为载体在皮肤局部上进行药物和疫苗的输送[90-91]。此外,嗜盐微生物生产的PHA,尤其是PHB和PHBV,因具有良好的生物相容性和生物可降解性,可作为药物载体将药物输送到相应作用靶点,用于各类炎症性疾病和癌症等的治疗[92-94]。短链PHA因其独特的疏水性、孔隙率和结晶度,可以在不降解载体聚合物的情况下释放药物[95]。
5 总结与展望嗜盐微生物是发现新型天然化合物的潜在的重要资源,其相关产物在抗菌、抗炎、抗肿瘤、抗氧化等生物医药领域显现出极大的应用潜力。现有的研究结果表明,具有抗菌和抗肿瘤作用的嗜盐微生物多为嗜盐细菌;能够产生具有抗炎作用的四氢嘧啶和甜菜碱的嗜盐微生物也多为嗜盐细菌,以变形菌门的盐单胞菌属居多[28];产抗氧化活性物质和PHA等生物医学材料的多为嗜盐细菌和古菌。从对应的产物来看,嗜盐微生物特有的相容溶质四氢嘧啶及其衍生物在抗炎和抗氧化等方面发挥重要作用(表 3),相容溶质甜菜碱具有抗炎、抗肿瘤和抗氧化等生物活性,生物表面活性剂、类胡萝卜素和EPS等在抗菌、抗肿瘤和抗氧化等方面均发挥作用,其中类胡萝卜素在心脏病预防、免疫力提高等方面也具有很好的效果。PHA在作为生物医学材料和药物载体方面具有独特潜力。
Application | Disease | References |
Anti-inflammatory | Pulmonary infection | [31] |
Small intestinal transplantation (adjuvant therapy) | [32] | |
Chronic intestinal inflammation (Crohn’s disease) | [33] | |
Atopic dermatitis | [34] | |
Allergic rhinitis | [35] | |
Allergic conjunctivitis | [36] | |
Acute bronchitis | [37] | |
Acute viral pharyngitis | [38] | |
Oral mucositis | [41-42] | |
Protein stabilizer | Alzheimer’s disease | [44] |
Parkinson’s disease | [45] | |
Huntington’s disease | [46] | |
Antioxidant | Scavenging hydroxyl radicals | [78] |
嗜盐微生物由于其独特的嗜盐性,在生产过程中可天然排除大多数杂菌的污染,从而实现连续的长时间培养,且嗜盐微生物在底物成本方面也具有潜在优势[96],也可应用于食品加工[46]、生物塑料[80]以及化妆品等领域。目前发现嗜盐微生物较多的高盐环境类型主要包括海洋、天然盐湖、深海、盐碱地、各类盐场和红树林生态系统等[4, 56]。这些环境有着各自独特的理化环境,使得不同盐境呈现出其特有的嗜盐微生物种群的多样性[4],为新型药物的发现提供了丰富的来源。与此同时,现代提取分离技术、分子修饰技术、基因工程技术、现代有机合成以及高选择性、高效规模化制备技术等可为嗜盐微生物活性成分的提取、构效优化以及成药性评价提供途径[97]。微生物高通量培养技术的优化可以解决微生物来源化合物产量不足的问题[98],反胶束萃取技术、高效液相色谱技术等可极大地提高微生物代谢产物的分离和提取效率[99]。但是,尽管上述技术有利于加快嗜盐微生物的成药进程,目前对于嗜盐微生物代谢产物的生物医药应用研究大多还停留在实验室验证阶段。要使嗜盐微生物代谢产物能真正实现其药用价值,不仅要对其具有抗菌、抗癌等作用的代谢产物进行挖掘开发,还要设计后续完整可行的产业链,使这些具有生物医药应用价值的嗜盐微生物代谢产物能够真正投入医药市场。
[1] |
Corral P, Amoozegar MA, Ventosa A. Halophiles and their biomolecules: recent advances and future applications in biomedicine. Mar Drugs, 2019, 18(1): 33. DOI:10.3390/md18010033
|
[2] |
Mahase Elisabeth. 世界卫生组织称, 抗生素耐药性上报的国家增多, 但现状仍堪忧. 英国医学杂志中文版, 2020, 23(9): 493. Elisabeth M. More countries report on antibiotic resistance but results are "worrying", says WHO. BMJ Chin Ed, 2020, 23(9): 493 (in Chinese). |
[3] |
田艳涛, 康文哲. 全球癌症发病情况研究新进展. 中国医药, 2021, 16(10): 1446-1447. Tian YT, Kang WZ. New progress in research on global cancer incidence. China Med, 2021, 16(10): 1446-1447 (in Chinese). |
[4] |
王伟伟, 唐鸿志, 许平. 嗜盐菌耐盐机制相关基因的研究进展. 微生物学通报, 2015, 42(3): 550-558. Wang WW, Tang HZ, Xu P. Salt-tolerance related genes in halophilic bacteria and archaea. Microbiol China, 2015, 42(3): 550-558 (in Chinese). |
[5] |
李若凡, 丛丽娜, 谢定刚, 等. 海洋链霉菌HS-B34菌株抗菌活性物质的分离纯化与结构鉴定. 工业微生物, 2020, 50(5): 9-14. Li RF, Cong LN, Xie DG, et al. Isolation, purification and structural identification of antibacterial active substances from marine Steptomyces HS-B34. Ind Microbiol, 2020, 50(5): 9-14 (in Chinese). DOI:10.3969/j.issn.1001-6678.2020.05.002 |
[6] |
他永全, 沈硕. 察尔汗盐湖嗜盐菌CEH-ST79对马铃薯干腐病的抑制活性及鉴定. 青海大学学报, 2018, 36(6): 1-8. Ta YQ, Shen S. Inhibitory activity against potato dry rot and identification of halophilic bacteria CEH-ST79 isolated from Qrhan Salt Lake. J Qinghai Univ, 2018, 36(6): 1-8 (in Chinese). |
[7] |
Elyasifar B, Jafari S, Hallaj-Nezhadi S. Isolation and identification of antibiotic-producing halophilic bacteria from Dagh Biarjmand and Haj Aligholi salt deserts, Iran. Pharmaceutical Sciences, 2019.
|
[8] |
Fariq A, Yasmin A. Production, characterization and bioactivities of biosurfactants from newly isolated strictly halophilic bacteria. Process Biochem, 2020, 98: 1-10. DOI:10.1016/j.procbio.2020.07.011
|
[9] |
Hadj Rabia-Boukhalfa Y, Eveno Y, Karama S, et al. Isolation, purification and chemical characterization of a new angucyclinone compound produced by a new halotolerant Nocardiopsis sp. HR-4 strain. World J Microbiol Biotechnol, 2017, 33(6): 126. DOI:10.1007/s11274-017-2292-8
|
[10] |
倪志华, 张玉明, 周艳芬. 一株中性嗜盐菌Halobacillus dabanensis N522的分离鉴定及其抗菌活性研究. 生物技术通报, 2016, 32(5): 158-164. Ni ZH, Zhang YM, Zhou YF. Identification of a moderately halophilic bacterium Halobacillus dabanensis N522 and study of its antimicrobial activity. Biotechnol Bull, 2016, 32(5): 158-164 (in Chinese). |
[11] |
Joulak I, Finore I, Poli A, et al. Hetero-exopolysaccharide from the extremely halophilic Halomonas smyrnensis K2: production, characterization and functional properties in vitro. 3 Biotech, 2020, 10(9): 395. DOI:10.1007/s13205-020-02356-5
|
[12] |
Frikha Dammak D, Zarai Z, Najah S, et al. Antagonistic properties of some halophilic thermoactinomycetes isolated from superficial sediment of a solar saltern and production of cyclic antimicrobial peptides by the novel isolate Paludifilum halophilum. Biomed Res Int, 2017, 2017: 1205258.
|
[13] |
Mangamuri UK, Vijayalakshmi M, Poda S, et al. Isolation and biological evaluation of N-(4-aminocyclooctyl)-3, 5-dinitrobenzamide, a new semisynthetic derivative from the mangrove-associated actinomycete Pseudonocardia endophytica VUK-10. 3 Biotech, 2016, 6(2): 1-12.
|
[14] |
Conde-Martínez N, Acosta-González A, Díaz LE, et al. Use of a mixed culture strategy to isolate halophilic bacteria with antibacterial and cytotoxic activity from the manaure solar saltern in Colombia. BMC Microbiol, 2017, 17(1): 230. DOI:10.1186/s12866-017-1136-x
|
[15] |
Corral P, Esposito FP, Tedesco P, et al. Identification of a sorbicillinoid-producing Aspergillus strain with antimicrobial activity against Staphylococcus aureus: a new polyextremophilic marine fungus from Barents Sea. Mar Biotechnol (NY), 2018, 20(4): 502-511. DOI:10.1007/s10126-018-9821-9
|
[16] |
穆军, 焦炳华, 孙炳达, 等. 一株具有抗菌和细胞毒活性的海洋嗜盐菌XD20的筛选和鉴定. 第二军医大学学报, 2006, 27(1): 8-11. Mu J, Jiao BH, Sun BD, et al. Screening and identification of an anti-bacterial and cytotoxic marine halophilic strain XD20. Acad J Second Mil Med Univ, 2006, 27(1): 8-11 (in Chinese). DOI:10.3321/j.issn:0258-879X.2006.01.003 |
[17] |
Kumar RR, Jadeja VJ. Characterization and partial purification of an antibacterial agent from halophilic actinomycetes Kocuria sp. strain rsk4. Bioimpacts, 2018, 8(4): 253-261. DOI:10.15171/bi.2018.28
|
[18] |
Joulak I, Azabou S, Finore I, et al. Structural characterization and functional properties of novel exopolysaccharide from the extremely halotolerant Halomonas elongata S6. Int J Biol Macromol, 2020, 164: 95-104. DOI:10.1016/j.ijbiomac.2020.07.088
|
[19] |
Fariq A, Yasmin A, Jamil M. Production, characterization and antimicrobial activities of bio-pigments by Aquisalibacillus elongatus MB592, Salinicoccus sesuvii MB597, and Halomonas aquamarina MB598 isolated from Khewra Salt Range, Pakistan. Extremophiles, 2019, 23(4): 435-449. DOI:10.1007/s00792-019-01095-7
|
[20] |
Kim J, Shin D, Kim SH, et al. Borrelidins C-E: new antibacterial macrolides from a saltern-derived halophilic Nocardiopsis sp. Mar Drugs, 2017, 15(6): 166. DOI:10.3390/md15060166
|
[21] |
Metelev M, Tietz JI, Melby JO, et al. Structure, bioactivity, and resistance mechanism of streptomonomicin, an unusual lasso peptide from an understudied halophilic actinomycete. Chem Biol, 2015, 22(2): 241-250. DOI:10.1016/j.chembiol.2014.11.017
|
[22] |
Zheng JK, Wang Y, Wang JF, et al. Antimicrobial ergosteroids and pyrrole derivatives from halotolerant Aspergillus flocculosus PT05-1 cultured in a hypersaline medium. Extremophiles, 2013, 17(6): 963-971. DOI:10.1007/s00792-013-0578-9
|
[23] |
Wang Y, Zheng J, Liu P, et al. Three new compounds from Aspergillus terreus PT06-2 grown in a high salt medium. Mar Drugs, 2011, 9(8): 1368-1378. DOI:10.3390/md9081368
|
[24] |
Abdollahnia M, Makhdoumi A, Mashreghi M, et al. Exploring the potentials of halophilic prokaryotes from a solar saltern for synthesizing nanoparticles: the case of silver and selenium. PLoS One, 2020, 15(3): e0229886. DOI:10.1371/journal.pone.0229886
|
[25] |
Srivastava P, Braganca JM, Kowshik M. In vivo synthesis of selenium nanoparticles by Halococcus salifodinae BK18 and their anti-proliferative properties against HeLa cell line. Biotechnol Prog, 2014, 30(6): 1480-1487. DOI:10.1002/btpr.1992
|
[26] |
Srivastava P, Nikhil EVR, Bragança JM, et al. Anti-bacterial TeNPs biosynthesized by haloarcheaon Halococcus salifodinae BK3. Extremophiles, 2015, 19(4): 875-884. DOI:10.1007/s00792-015-0767-9
|
[27] |
张欣, 刘静, 朱德锐. 天然产物Ectoine与Hydroxyectoine的生物工程及医学应用研究进展. 天然产物研究与开发, 2017, 29(5): 882-887. Zhang X, Liu J, Zhu DR. Review on bioengineering and biomedical applications of natural products ectoine and hydroxyectoine. Nat Prod Res Dev, 2017, 29(5): 882-887 (in Chinese). |
[28] |
Zhao GF, He F, Wu CL, et al. Betaine in inflammation: mechanistic aspects and applications. Front Immunol, 2018, 9: 1070. DOI:10.3389/fimmu.2018.01070
|
[29] |
张英杰, 廖子亚, 赵百锁. 嗜盐菌中甘氨酸甜菜碱的合成途径及其生物学功能. 微生物学报, 2020, 60(6): 1074-1089. Zhang YJ, Liao ZY, Zhao BS. Glycine betaine: biosynthesis and biological function in halophilic microorganisms. Acta Microbiol Sin, 2020, 60(6): 1074-1089 (in Chinese). |
[30] |
张芳, 沈国平, 李永臻, 等. 相容溶质四氢嘧啶与羟基四氢嘧啶的代谢调控研究进展. 微生物学报, 2020, 60(8): 1548-1562. Zhang F, Shen GP, Li YZ, et al. Metabolic regulation of compatible solutes ectoine and 5-hydroxyectoine. Acta Microbiol Sin, 2020, 60(8): 1548-1562 (in Chinese). |
[31] |
Unfried K, Krämer U, Sydlik U, et al. Reduction of neutrophilic lung inflammation by inhalation of the compatible solute ectoine: a randomized trial with elderly individuals. Int J Chron Obstruct Pulmon Dis, 2016, 11: 2573-2583. DOI:10.2147/COPD.S115061
|
[32] |
Wedeking A, Hagen-Euteneuer N, Gurgui M, et al. A lipid anchor improves the protective effect of ectoine in inflammation. Curr Med Chem, 2014, 21(22): 2565-2572. DOI:10.2174/0929867321666131228222730
|
[33] |
Schwarz T, Lentzen G, Krutmann J. Method of using compatible solutes containing ectoine and/or hydroxyectoine: US, 9089568. 2015-07-28.
|
[34] |
Marini A, Reinelt K, Krutmann J, et al. Ectoine-containing cream in the treatment of mild to moderate atopic dermatitis: a randomised, comparator-controlled, intra-individual double-blind, multi-center trial. Skin Pharmacol Physiol, 2014, 27(2): 57-65. DOI:10.1159/000351381
|
[35] |
Casale M, Moffa A, Carbone S, et al. Topical ectoine: a promising molecule in the upper airways inflammation-a systematic review. Biomed Res Int, 2019, 2019: 7150942.
|
[36] |
Bilstein A, Heinrich A, Rybachuk A, et al. Ectoine in the treatment of irritations and inflammations of the eye surface. Biomed Res Int, 2021, 2021: 8885032.
|
[37] |
Tran BH, Dao VA, Bilstein A, et al. Ectoine-containing inhalation solution versus saline inhalation solution in the treatment of acute bronchitis and acute respiratory infections: a prospective, controlled, observational study. Biomed Res Int, 2019, 2019: 7945091.
|
[38] |
Dao VA, Overhagen S, Bilstein A, et al. Ectoine lozenges in the treatment of acute viral pharyngitis: a prospective, active-controlled clinical study. Eur Arch Otorhinolaryngol, 2019, 276(3): 775-783. DOI:10.1007/s00405-019-05324-9
|
[39] |
Kunte H, Lentzen G, Galinski E. Industrial production of the cell protectant ectoine: protection mechanisms, processes, and products. Curr Biotechnol, 2014, 3(1): 10-25. DOI:10.2174/22115501113026660037
|
[40] |
Bonomi M, Batt K. Supportive management of mucositis and metabolic derangements in head and neck cancer patients. Cancers, 2015, 7(3): 1743-1757. DOI:10.3390/cancers7030862
|
[41] |
Dao VA, Bilstein A, Overhagen S, et al. Effectiveness, tolerability, and safety of ectoine-containing mouthwash versus those of a calcium phosphate mouthwash for the treatment of chemotherapy-induced oral mucositis: a prospective, active-controlled, non-interventional study. Oncol Ther, 2018, 6(1): 59-72. DOI:10.1007/s40487-018-0060-z
|
[42] |
Rieckmann T, Gatzemeier F, Christiansen S, et al. The inflammation-reducing compatible solute ectoine does not impair the cytotoxic effect of ionizing radiation on head and neck cancer cells. Sci Rep, 2019, 9(1): 6594. DOI:10.1038/s41598-019-43040-w
|
[43] |
乔丽娟, 马雪丽, 王泽, 等. 应用相容溶质四氢嘧啶制备保湿霜及其保湿效果评价. 中国高原医学与生物学杂志, 2020, 41(3): 172-178. Qiao LJ, Ma XL, Wang Z, et al. Preparation process and effectiveness analysis of moisturizing cream based on compatible solute ectoine. Chin High Alt Med Biol, 2020, 41(3): 172-178 (in Chinese). |
[44] |
Bazazzadegan N, Dehghan Shasaltaneh M, Saliminejad K, et al. Effects of ectoine on behavior and candidate genes expression in ICV-STZ rat model of sporadic Alzheimer's disease. Adv Pharm Bull, 2017, 7(4): 629-636. DOI:10.15171/apb.2017.075
|
[45] |
Jorge CD, Borges N, Bagyan I, et al. Potential applications of stress solutes from extremophiles in protein folding diseases and healthcare. Extremophiles, 2016, 20(3): 251-259. DOI:10.1007/s00792-016-0828-8
|
[46] |
Irwin JA. Overview of extremophiles and their food and medical applications. Physiological and Biotechnological Aspects of Extremophiles. Amsterdam: Elsevier, 2020: 65-87.
|
[47] |
Knowles TPJ, Vendruscolo M, Dobson CM. The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol, 2014, 15(6): 384-396. DOI:10.1038/nrm3810
|
[48] |
Gunde-Cimerman N, Plemenitaš A, Oren A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol Rev, 2018, 42(3): 353-375. DOI:10.1093/femsre/fuy009
|
[49] |
Hagar H, Husain S, Fadda LM, et al. Inhibition of NF-κB and the oxidative stress-dependent caspase-3 apoptotic pathway by betaine supplementation attenuates hepatic injury mediated by cisplatin in rats. Pharmacol Rep, 2019, 71(6): 1025-1033. DOI:10.1016/j.pharep.2019.06.003
|
[50] |
Wu JT, He CM, Bu J, et al. Betaine attenuates LPS-induced downregulation of occludin and claudin-1 and restores intestinal barrier function. BMC Vet Res, 2020, 16(1): 75. DOI:10.1186/s12917-020-02298-3
|
[51] |
Guo SH, Nighot M, Al-Sadi R, et al. Lipopolysaccharide regulation of intestinal tight junction permeability is mediated by TLR4 signal transduction pathway activation of FAK and MyD88. J Immunol, 2015, 195(10): 4999-5010. DOI:10.4049/jimmunol.1402598
|
[52] |
Airaksinen K, Jokkala J, Ahonen I, et al. High-fat diet, betaine, and polydextrose induce changes in adipose tissue inflammation and metabolism in C57BL/6J mice. Mol Nutr Food Res, 2018, 62(23): e1800455. DOI:10.1002/mnfr.201800455
|
[53] |
Kim DH, Kim SM, Lee B, et al. Effect of betaine on hepatic insulin resistance through FOXO1-induced NLRP3 inflammasome. J Nutr Biochem, 2017, 45: 104-114. DOI:10.1016/j.jnutbio.2017.04.014
|
[54] |
Sun JY, Wen SL, Zhou J, et al. Association between malnutrition and hyperhomocysteine in Alzheimer's disease patients and diet intervention of betaine. J Clin Lab Anal, 2017, 31(5): e22090. DOI:10.1002/jcla.22090
|
[55] |
Neelam DK, Agrawal A, Tomer AK, et al. A Piscibacillus sp. isolated from a soda lake exhibits anticancer activity against breast cancer MDA-MB-231 cells. Microorganisms, 2019, 7(2): 34.
|
[56] |
Ye YH, Anwar N, Mao XM, et al. Discovery of three 22-membered macrolides by deciphering the streamlined genome of mangrove-derived Streptomyces sp. HM190. Front Microbiol, 2020, 11: 1464. DOI:10.3389/fmicb.2020.01464
|
[57] |
El-Garawani IM, El-Sabbagh SM, Abbas NH, et al. A newly isolated strain of Halomonas sp. (HA1) exerts anticancer potential via induction of apoptosis and G 2/M arrest in hepatocellular carcinoma (HepG2) cell line. Sci Rep, 2020, 10(1): 14076.
|
[58] |
Prathiba S, Jayaraman G. Evaluation of the anti-oxidant property and cytotoxic potential of the metabolites extracted from the bacterial isolates from mangrove forest and saltern regions of South India. Prep Biochem Biotechnol, 2018, 48(8): 750-758. DOI:10.1080/10826068.2018.1508038
|
[59] |
Safarpour A, Ebrahimi M, Shahzadeh Fazeli SA, et al. Supernatant metabolites from halophilic archaea to reduce tumorigenesis in prostate cancer in-vitro and in-vivo. Iran J Pharm Res, 2019, 18(1): 241-253.
|
[60] |
Hou J, Cui HL. In vitro antioxidant, antihemolytic, and anticancer activity of the carotenoids from halophilic archaea. Curr Microbiol, 2018, 75(3): 266-271. DOI:10.1007/s00284-017-1374-z
|
[61] |
Xiao L, Liu HZ, Wu N, et al. Characterization of the high cytochalasin E and rosellichalasin producing-Aspergillus sp. nov. F1 isolated from marine solar saltern in China. World J Microbiol Biotechnol, 2013, 29(1): 11-17.
|
[62] |
Sun MW, Zhang XM, Hao HL, et al. Nocarbenzoxazoles A-G, benzoxazoles produced by halophilic Nocardiopsis lucentensis DSM 44048. J Nat Prod, 2015, 78(8): 2123-2127. DOI:10.1021/acs.jnatprod.5b00031
|
[63] |
Son S, Ko SK, Jang M, et al. New cyclic lipopeptides of the iturin class produced by saltern-derived Bacillus sp. KCB14S006. Mar Drugs, 2016, 14(4): 72. DOI:10.3390/md14040072
|
[64] |
Ruiz-Ruiz C, Srivastava GK, Carranza D, et al. An exopolysaccharide produced by the novel halophilic bacterium Halomonas stenophila strain B100 selectively induces apoptosis in human T leukaemia cells. Appl Microbiol Biotechnol, 2011, 89(2): 345-355. DOI:10.1007/s00253-010-2886-7
|
[65] |
Hamidi M, Mirzaei R, Delattre C, et al. Characterization of a new exopolysaccharide produced by Halorubrum sp. TBZ112 and evaluation of its anti-proliferative effect on gastric cancer cells. 3 Biotech, 2019, 9(1): 1.
|
[66] |
Du YF, Luo WP, Lin FY, et al. Dietary choline and betaine intake, choline-metabolising genetic polymorphisms and breast cancer risk: a case-control study in China. Br J Nutr, 2016, 116(6): 961-968. DOI:10.1017/S0007114516002956
|
[67] |
Bingula R, Dupuis C, Pichon C, et al. Study of the effects of betaine and/or C-phycocyanin on the growth of lung cancer A549 cells in vitro and in vivo. J Oncol, 2016, 2016: 8162952.
|
[68] |
Zhou RF, Chen XL, Zhou ZG, et al. Higher dietary intakes of choline and betaine are associated with a lower risk of primary liver cancer: a case-control study. Sci Rep, 2017, 7(1): 679. DOI:10.1038/s41598-017-00773-w
|
[69] |
Lu MS, Fang YJ, Pan ZZ, et al. Choline and betaine intake and colorectal cancer risk in Chinese population: a case-control study. PLoS One, 2015, 10(3): e0118661. DOI:10.1371/journal.pone.0118661
|
[70] |
Zeng FF, Xu CH, Liu YT, et al. Choline and betaine intakes are associated with reduced risk of nasopharyngeal carcinoma in adults: a case-control study. Br J Cancer, 2014, 110(3): 808-816. DOI:10.1038/bjc.2013.686
|
[71] |
Kar F, Hacioglu C, Kacar S, et al. Betaine suppresses cell proliferation by increasing oxidative stress-mediated apoptosis and inflammation in DU-145 human prostate cancer cell line. Cell Stress Chaperones, 2019, 24(5): 871-881. DOI:10.1007/s12192-019-01022-x
|
[72] |
Rezaeeyan Z, Safarpour A, Amoozegar MA, et al. High carotenoid production by a halotolerant bacterium, Kocuria sp. strain QWT-12 and anticancer activity of its carotenoid. EXCLI J, 2017, 16: 840-851.
|
[73] |
Cantor JR, Panayiotou V, Agnello G, et al. Engineering reduced-immunogenicity enzymes for amino acid depletion therapy in cancer. Methods Enzymol, 2012, 502: 291-319. DOI:10.1016/B978-0-12-416039-2.00015-X
|
[74] |
Zolfaghar M, Amoozegar MA, Khajeh K, et al. Isolation and screening of extracellular anticancer enzymes from halophilic and halotolerant bacteria from different saline environments in Iran. Mol Biol Rep, 2019, 46(3): 3275-3286. DOI:10.1007/s11033-019-04787-7
|
[75] |
Higa LH, Schilrreff P, Briski AM, et al. Bacterioruberin from Haloarchaea plus dexamethasone in ultra-small macrophage-targeted nanoparticles as potential intestinal repairing agent. Colloids Surf B Biointerfaces, 2020, 191: 110961. DOI:10.1016/j.colsurfb.2020.110961
|
[76] |
Liu CL, Baffoe DK, Zhan YL, et al. Halophile, an essential platform for bioproduction. J Microbiol Methods, 2019, 166: 105704. DOI:10.1016/j.mimet.2019.105704
|
[77] |
Heidari R, Niknahad H, Sadeghi A, et al. Betaine treatment protects liver through regulating mitochondrial function and counteracting oxidative stress in acute and chronic animal models of hepatic injury. Biomed Pharmacother, 2018, 103: 75-86. DOI:10.1016/j.biopha.2018.04.010
|
[78] |
Brands S, Schein P, Castro-Ochoa KF, et al. Hydroxyl radical scavenging of the compatible solute ectoine generates two N-acetimides. Arch Biochem Biophys, 2019, 674: 108097. DOI:10.1016/j.abb.2019.108097
|
[79] |
Mitra R, Xu T, Xiang H, et al. Current developments on polyhydroxyalkanoates synthesis by using halophiles as a promising cell factory. Microb Cell Fact, 2020, 19(1): 86. DOI:10.1186/s12934-020-01342-z
|
[80] |
金琰, 蔡凡凡, 王立功, 等. 生物可降解塑料在不同环境条件下的降解研究进展. 生物工程学报, 2022, 38(5): 1784-1808. Jin Y, Cai FF, Wang LG, et al. Advance in degradation of biodegradable plastics in different environments. Chin J Biotech, 2022, 38(5): 1784-1808 (in Chinese). |
[81] |
Findrik Balogová A, Hudák R, Tóth T, et al. Determination of geometrical and viscoelastic properties of PLA/PHB samples made by additive manufacturing for urethral substitution. J Biotechnol, 2018, 284: 123-130. DOI:10.1016/j.jbiotec.2018.08.019
|
[82] |
Rodriguez-Contreras A. Recent advances in the use of polyhydroyalkanoates in biomedicine. Bioengineering, 2019, 6(3): 82. DOI:10.3390/bioengineering6030082
|
[83] |
Degli Esposti M, Chiellini F, Bondioli F, et al. Highly porous PHB-based bioactive scaffolds for bone tissue engineering by in situ synthesis of hydroxyapatite. Mater Sci Eng C Mater Biol Appl, 2019, 100: 286-296. DOI:10.1016/j.msec.2019.03.014
|
[84] |
Karbasi S, Toloue E, Salehi H, et al. Evaluation of mechanical properties and cell viability of poly (3-hydroxybutyrate)-chitosan/Al2O3nanocomposite scaffold for cartilage tissue engineering. J Med Signals Sens, 2019, 9(2): 111. DOI:10.4103/jmss.JMSS_56_18
|
[85] |
Ozer H, Bozkurt H, Bozkurt G, et al. Regenerative potential of chitosan-coated poly-3-hydroxybutyrate conduits seeded with mesenchymal stem cells in a rat sciatic nerve injury model. Int J Neurosci, 2018, 128(9): 828-834. DOI:10.1080/00207454.2018.1435536
|
[86] |
Sugappriya M, Sudarsanam D, Joseph J, et al. Applications of polyhydroxyalkanoates based nanovehicles as drug carriers. Biotechnol Appl Polyhydroxyalkanoates, 2019, 125-169.
|
[87] |
ahansaria R, Dhara A, Saha A, et al. Production enhancement and characterization of the polyhydroxyalkanoate produced by Natrinema ajinwuensis (as synonym) ≡ Natrinema altunense strain RM-G10. Int J Biol Macromol, 2018, 107(Pt B): 1480-1490.
|
[88] |
Raveendran S, Palaninathan V, Nagaoka Y, et al. Extremophilic polysaccharide nanoparticles for cancer nanotherapy and evaluation of antioxidant properties. Int J Biol Macromol, 2015, 76: 310-319. DOI:10.1016/j.ijbiomac.2015.03.001
|
[89] |
Demirci T, Hasköylü ME, Eroğlu MS, et al. Levan-based hydrogels for controlled release of amphotericin B for dermal local antifungal therapy of candidiasis. Eur J Pharm Sci, 2020, 145: 105255. DOI:10.1016/j.ejps.2020.105255
|
[90] |
Carrer DC, Higa LH, Tesoriero MVD, et al. Structural features of ultradeformable archaeosomes for topical delivery of ovalbumin. Colloids Surf B Biointerfaces, 2014, 121: 281-289. DOI:10.1016/j.colsurfb.2014.05.015
|
[91] |
Adamiak N, Krawczyk KT, Locht C, et al. Archaeosomes and gas vesicles as tools for vaccine development. Front Immunol, 2021, 12: 746235. DOI:10.3389/fimmu.2021.746235
|
[92] |
Perveen K, Masood F, Hameed A. Preparation, characterization and evaluation of antibacterial properties of epirubicin loaded PHB and PHBV nanoparticles. Int J Biol Macromol, 2020, 144: 259-266. DOI:10.1016/j.ijbiomac.2019.12.049
|
[93] |
Şahin A, Eke G, Buyuksungur A, et al. Nuclear targeting peptide-modified, DOX-loaded, PHBV nanoparticles enhance drug efficacy by targeting to Saos-2 cell nuclear membranes. J Biomater Sci Polym Ed, 2018, 29(5): 507-519. DOI:10.1080/09205063.2018.1423812
|
[94] |
Pettinelli N, Rodríguez-Llamazares S, Farrag Y, et al. Poly(hydroxybutyrate-co-hydroxyvalerate) microparticles embedded in κ-carrageenan/locust bean gum hydrogel as a dual drug delivery carrier. Int J Biol Macromol, 2020, 146: 110-118. DOI:10.1016/j.ijbiomac.2019.12.193
|
[95] |
Singh AK, Srivastava JK, Chandel AK, et al. Biomedical applications of microbially engineered polyhydroxyalkanoates: an insight into recent advances, bottlenecks, and solutions. Appl Microbiol Biotechnol, 2019, 103(5): 2007-2032. DOI:10.1007/s00253-018-09604-y
|
[96] |
郝闯, 唐兵, 唐晓峰. 嗜盐微生物的工业应用研究及进展. 生物资源, 2019, 41(4): 281-288. Hao C, Tang B, Tang XF. Recent progress in industrial application of halophiles. Biotic Resour, 2019, 41(4): 281-288 (in Chinese). |
[97] |
王成, 张国建, 刘文典, 等. 海洋药物研究开发进展. 中国海洋药物, 2019, 38(6): 35-69. Wang C, Zhang GJ, Liu WD, et al. Recent progress in research and development of marine drugs. Chin J Mar Drugs, 2019, 38(6): 35-69 (in Chinese). |
[98] |
左明星, 许言超, 王立平. 海洋微生物源活性产物的发酵条件优化研究进展. 天然产物研究与开发, 2019, 31(11): 2015-2023. Zuo MX, Xu YC, Wang LP. Research progress on the optimization of fermentation conditions for active metabolites from marine microorganisms. Nat Prod Res Dev, 2019, 31(11): 2015-2023 (in Chinese). |
[99] |
张奕婷, 迟海洋, 张丽霞, 等. 海洋微生物活性物质分离提取方法研究进展. 大庆师范学院学报, 2010, 30(6): 121-124. Zhang YT, Chi HY, Zhang LX, et al. Research progress on separation and extraction methods of marine microbial active substances. J Daqing Norm Univ, 2010, 30(6): 121-124 (in Chinese). DOI:10.3969/j.issn.2095-0063.2010.06.036 |