生物工程学报  2022, Vol. 38 Issue (6): 2169-2186
http://dx.doi.org/10.13345/j.cjb.210772
中国科学院微生物研究所、中国微生物学会主办
0

文章信息

杨加敏, 胥义, 党航宇, 韩恒鑫
YANG Jiamin, XU Yi, DANG Hangyu, HAN Hengxin
组织器官脱细胞支架的制备及研究进展
Preparation of tissue and organ decellularized scaffolds: a review
生物工程学报, 2022, 38(6): 2169-2186
Chinese Journal of Biotechnology, 2022, 38(6): 2169-2186
10.13345/j.cjb.210772

文章历史

Received: October 11, 2021
Accepted: January 17, 2022
组织器官脱细胞支架的制备及研究进展
杨加敏1,2,3 , 胥义1,2,3 , 党航宇1,2,3 , 韩恒鑫1,2,3     
1. 上海理工大学 生物系统热科学研究所, 上海 200093;
2. 上海市生物资源低温保存技术服务平台, 上海 200093;
3. 上海市肿瘤能量治疗技术与器械协同创新中心, 上海 200093
摘要:脱细胞基质(decellularized extracellular matrix, dECM) 旨在去除引起免疫排斥的细胞,保留原组织结构和成分。由于其具有与原组织器官相似的结构和成分,在组织工程和生物医学的应用上受到广泛关注,已成为一种很有前景的生物医学材料。通过适当的脱细胞方法,dECM很容易能够从组织器官中获得。文中总结了脱细胞的方法及最新研究进展,同时对脱细胞后支架灭菌、交联和保存的方式进行综述,概括了不同组织器官获得的脱细胞支架的最新应用及进展。最后对脱细胞支架目前面临的问题和挑战进行分析,并展望了未来的发展趋势。
关键词脱细胞    组织工程    再生医学    生物医学    
Preparation of tissue and organ decellularized scaffolds: a review
YANG Jiamin1,2,3 , XU Yi1,2,3 , DANG Hangyu1,2,3 , HAN Hengxin1,2,3     
1. Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China;
2. Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai 200093, China;
3. Shanghai Co-Innovation Center for Tumor Treatment with Energy, Shanghai 200093, China
Abstract: Decellularized extracellular matrix (dECM) is designed to remove cells that cause immune rejection and retain the original tissue structure and composition. Since its structure and composition are similar to the original tissues and organs, it has attracted extensive attention in tissue engineering and biomedicine applications, and has become a promising tissue engineering material. dECM can be easily obtained from tissues and organs by appropriate decellularization methods. Here, we summarized the commonly used decellularization methods and reviewed the sterilization, cross-linking and storage methods of decellularized scaffold. In addition, we summarized the latest applications and developments of dECMs obtained from different tissues/organs in tissue engineering and biomedicine. Finally, we discussed the present challenges of dECM biomaterials and prospected future perspectives. With the development of tissue engineering and regenerative medicine technology, dECM biomaterials are expected to become a gold scaffold in the field of biomedicine and will receive wide applications.
Keywords: decellularization    tissue engineering    regenerative medicine    biomedicine    

随着组织工程和生物医学技术的进步,很多研究已经开发了改善人类健康的新疗法,但是组织器官供体和体外模型短缺等问题限制了该领域技术的发展和进步[1-4]。脱细胞支架由于具有提供天然生化环境的能力、可获得性以及在宿主组织中没有免疫原性,有望解决组织器官供体和体外模型短缺的问题,成为组织工程和生物医学领域研究的热点[5]。脱细胞基质(decellularized extracellular matrix, dECM) 主要是通过物理、化学和生物等方法从动物或人的组织器官中去除引起免疫排斥反应的细胞和部分抗原成分而制备的。2008年,Ott等成功通过血管灌注洗脱剂制备了大鼠全心脏脱细胞支架,为全器官脱细胞技术打开了大门[6]。2010年Nakayama等[7]成功制备了恒河猴脱细胞肾脏支架,之后陆续有研究制备了肝脏和肺等器官的脱细胞支架[8-9]。2013年Orlando等首次利用废弃肾脏制备了人类脱细胞肾脏支架,为人源器官脱细胞奠定基础[10]

脱细胞支架在科学研究和临床应用上具有很多优势。首先,脱细胞从组织中去除了细胞核、细胞和抗原成分,降低了在体内植入时导致免疫排斥的能力。其次,脱细胞后组织器官原有的ECM结构、活性成分和一些非抗原成分如多糖、胶原蛋白、糖蛋白和纤维连接蛋白等得到保留,许多天然的细胞结合位点被保存在支架中,有助于再生过程中细胞的粘附、增殖和分化[11-14]。目前脱细胞支架已经广泛应用于全器官工程中器官再生、生物打印[15-19]、组织修复和重建[20-23]、疾病模型和药物筛选[24-26]以及细胞培养[27]等方面,为解决供体和体外模型的短缺提供了新方法。

脱细胞支架是进一步研究再生医学和组织工程的合适平台。基于此,本文总结了脱细胞支架的制备过程,包括支架的脱细胞方法、交联方法、灭菌方法和保存方法。同时对目前脱细胞支架在组织工程和生物医学中的应用进行综述,讨论了脱细胞的制备及应用所面临的问题及挑战,为脱细胞支架更恰当地应用于组织工程和生物医学领域提供参考,旨在实现脱细胞支架在更广泛范围内的应用。

1 脱细胞支架的制备和表征 1.1 脱细胞支架的制备方法

dECM的来源可以分为两类:组织器官来源的dECM和培养细胞形成的dECM。通常整个器官脱细胞包括从器官中去除所有的细胞物质,只留下细胞外基质结构。来源于器官组织的dECM具有理想组织支架的特征:复杂的成分、血管网络、大量生物活性成分和独特的组织特异性结构,这些对于复杂器官比如肾脏等尤为重要。目前常用的脱细胞方法包括物理方法、化学方法和生物方法等(表 1)。

表 1 脱细胞支架的制备方法 Table 1 Methods for preparation of decellularized scaffold
Decellularization methods Tissues/ organs Perfusion method Advantages Disadvantages Decellularization protocol References
Physical Mice brain Freeze-thaw Easy to operate Having difficulty in cell removal of some thicker tissues Soaked in liquid nitrogen for 10 min and thawed at room temperature, freeze- thawing process was done 3 times. Then, soaked in a 10 mL solution of 1% SDS, and agitated for 24 h [38]
Porcine aorta Supercritical CO2 Remove cells to a certain extent effectively Cannot completely remove cells alone scCO2 treatment, immersed and agitated for 1 h in a solution containing 0.2% (W/V) EDTA and 0.01 mol/L pH 8.0 Tris buffer, then decellularized for 48 h under mild agitation in 0.1% SDS, 0.01 mol/L Tris buffer, 0.2 mg/mL DNase and 0.02 mg/mL RNase [64]
Porcine aortic roots Pressure gradient Relatively low immune responses 0.1  mol/L NaOH, 2 h, and detergents (1% SDS, 1% triton X-100, 1% Na-deoxycholate, and 0.2% EDTA in 0.05 mol/L Tris, pH 7.5) for 16 d, incubation in 720 mU/mL DNase and 720  mU/mL Rnase in 5 mmol/L MgCl2 in 1×DPBS for 4 d [65]
Meniscal tissue Ultrasound Reduce the use of chemical
detergent
Having certain influence on ECM structure and mechanical properties 20 kHz of ultrasonic irradiation in circulated 0.3% sodium chloride constituent of 2% SDS solution [66]
Chemical Rat kidney Ionic Effectively remove cellular components Reducing the biocompatibility and increasing the rate
of negative immune response because of residual reagents
1% SDS in PBS at a flow rate of 0.4 mL/min [67]
Goat liver sections Non-ionic Poor elution of cells 2% triton X-100, 0.05 mmol/L EDTA and 0.025% ammonium hydroxide for 72 h at 4 ℃ [68]
Porcine kidneys Acid and alkali Efficient removal of
cells with less residual
cells
Reducing some
growth factors in tissue and organ and
decreasing the bioactivity of ECM in most instances
0.1 mol/L NaOH, 1% peracetic acid [69]
Combinational Rat kidneys Chemical+ biological Minimizing the damage to the mechanical properties of the ECM;
Having a better effect of removing cells compared with simple methods
The better combination to meet the specific requirements of different tissues or organs was not confirmed Nonionic (triton X-100) and ionic (SDS) detergents; 5 mmol/L calcium chloride and 5 mmol/L magnesium sulfate; 0.002 5% DNase and 1 mol/L sodium chloride and deionized water [70]
Human pancreata 1% triton X-100 with 0.1% NH4OH dissolved in PBS, the flux rate was 24, 35, 40, 50 or 120 mL/min, respectively. Then 1 L of 0.002% DNase solution was perfused for 8 h at 37 ℃ [71]
1.1.1 物理方法

物理方法包括冻融循环、超临界CO2、压力梯度、超声、振荡、电击等。这些方法通过对细胞膜产生物理破坏,引起细胞的裂解,并促进细胞碎片的运输[28-32]。近年来有很多研究尝试使用物理手段辅助脱细胞并证明了其可行性。Luo等通过冻融方法对鼠肾脱细胞可以实现血管网络及ECM成分的保留,但是脱细胞后支架内仍有细胞存在[33]。Cesur等首次通过超临界CO2结合化学洗脱剂triton X-100优化了绵羊心脏的脱细胞过程,获得了一个机械强度与天然ECM相似的脱细胞心脏组织,同时也证明了超临界CO2单独作用不能有效地去除细胞[34]。Charoensombut等尝试通过静水压力对老鼠子宫进行脱细胞,与新鲜组织相比脱细胞后组织的DNA含量降低90%,胶原和蛋白多糖含量无显著变化,利用开发的灌注生物反应器他们首次成功地再细胞化子宫组织的所有层[35]。虽然物理方法可以引起细胞死亡,但是单独使用物理方法不能实现细胞完全脱除,需要与其他技术结合以促进细胞碎片清除[36-38]

1.1.2 化学方法

化学脱细胞方法包括:使用洗脱剂、低渗或高渗溶液、酸和碱、有机溶剂等进行脱细胞。常用的洗脱剂包括离子型洗脱剂SDS和非离子型洗脱剂triton X-100。Orlando等通过灌注SDS获得了猪肾脏脱细胞支架证明了SDS的脱细胞效果,CHAPS作为一种洗脱剂可以用于角膜的脱细胞,因此单一的洗脱剂可以实现组织器官的脱细胞[39-40]。除了单一的洗脱剂外,有研究使用多种洗脱剂来达到脱细胞的效果。Peloso的结果显示1% triton X-100+1% SDS能较好地实现鼠肾脱细胞,且移植7 d后支架形态完整[41]。Kajbafzadeh等比较了两种脱细胞方法(1% SDS和1% triton X-100+0.5% SDS) 对血管完整性和体内移植效果的影响,发现1% triton X-100+ 0.5% SDS处理的羊肾支架血管结构能够完整保留[42]。这些结果表明,与单一的洗脱剂相比,多种洗脱剂共同作用可以更好地实现器官脱细胞,为了达到更好的脱细胞效果可以考虑多种洗脱剂共同作用。

高渗和低渗溶液也可以用于脱细胞,通过诱导导致细胞膨胀、收缩和溶解的渗透压休克实现脱细胞,但也需要和化学试剂一起使用[43-46]。Tondreau等通过去离子水对血管进行脱细胞,发现低渗溶液获得的脱细胞支架ECM结构和力学特性得到较好的维持[47]。Pérez等使用1 mol/L NaCl盐溶液的渗透作用促使细胞溶解开发了皮肤的脱细胞方案,与天然皮肤相比,脱细胞真皮基质的生物力学特性得以维持,胶原和糖胺聚糖数量保持不变,为患者提供了一种可行的治疗选择[48]。除了高渗和低渗溶液外,酸和碱在组织器官的脱细胞中也得到了应用。Tao等利用酸和碱优化了肌腱脱细胞方法,从同种ECM中成功制备了抗粘连膜即肌腱脱细胞基质膜(decellularized tendon matrix, DTM)。结果显示,DTM能促进细胞增殖,皮下埋植12周后DTM完全降解,没有明显的炎症反应[49]。Eivazkhani等比较了NaOH和SDS处理后的卵巢脱细胞效果,组织学和定量结果显示NaOH比SDS更适合卵巢组织的脱细胞且再细胞后更有利于卵泡重建[50]。此外有机溶剂特别是醇和丙酮是肝脏和脂肪等组织常用的脱脂剂,能够有效地去除脂类和其他非极性化合物,并通过引起脱水和细胞溶解促进细胞去除[51]。目前使用化学洗脱剂可以达到较好的脱细胞效果,但同时也存在洗脱剂毒性的问题,需要较长时间洗脱以去除其在组织器官内的残留,减小洗脱剂造成的毒性。

1.1.3 生物方法

生物方法主要使用酶类如胰酶、核酸酶、裂解酶、胶原酶等进行脱细胞,可以更有针对性地去除某些成分[52-55]。胰蛋白酶用于从组织内的基质连接中切割细胞[13],Naasani等使用胰酶进行人羊膜脱细胞,结果显示脱细胞作用并不影响其Ⅰ型和Ⅲ型胶原的含量,且脱细胞人羊膜具有作为与间充质干细胞相关的生物支架的潜力。Feng等采用DNase制备了鼠肾脱细胞支架,组织学鉴定发现ECM的关键成分和血管网络得到保留。但是单独的酶作用并不能达到完全脱细胞,细胞脱除仍然存在问题且脱细胞使用的时间长,此外酶方法还会对支架的微观结构造成不良影响[56]。Uhl等通过人肺的脉管系统和气道以恒定的流量依次灌注triton X-100、脱氧胆酸钠、DNase和过乙酸获得了脱细胞肺支架,结果显示肺脱细胞会导致特异性糖胺聚糖或侧链的丢失或功能障碍,显著影响基质相关生长因子结合,这也证实了糖胺聚糖在脱细胞支架中的重要性[57]。因此酶方法还需要与化学和物理方法结合以确保细胞失活和去除同时保留支架成分。

1.1.4 组合方法

目前单一方法仍不能较好地实现细胞脱除和ECM保留,为了达到好的脱细胞效果可以考虑几种脱细胞方法相结合。很多研究都采用物理、化学和生物方法相结合的方式进行脱细胞[58-59]。比如,通过化学和物理脱细胞方法诱导坏死,细胞内成分释放到周围环境中[60]。这一过程导致细胞碎片泄漏到周围的ECM中,因此必须采取更有效的清洗步骤来清除碎片[61]。Duarte等提出将scCO2作为辅助猪小梁骨组织脱细胞的替代方法,并首次与三(正丁基) 磷酸盐(TnBP) 相结合,脱细胞后ECM支架DNA含量至少下降了90%,证明了物理与化学方法的结合促进了支架内细胞的脱除[62]。Yüksel等采用高渗介质、紫外暴露、–80 ℃冷冻、SDS水洗等方法对大鼠羊膜进行脱细胞处理,获得了最佳的羊膜脱细胞工艺。结果显示,制备的脱细胞羊膜支架可支持细胞存活和粘附,并可以形成具有理想处理性能的柔性生物材料[63]。因此多种脱细胞方法的结合可以更好地实现脱细胞效果,这也是近年来脱细胞研究的热点问题。

虽然已经有很多研究报道了不同的脱细胞方法(表 1),但是目前对于不同组织和器官,还没有统一的脱细胞技术和验证方法,需要进一步实验以确定最佳灌注参数和工艺;对脱细胞支架灌注率和持续时间的研究较少,洗脱剂浓度和器官内部产生的压力都可能对ECM的保存产生影响;血管结构中细胞碎片的堵塞问题还未解决;总之最关键的是提供较完整的脱细胞支架,支持细胞-细胞相互作用,使细胞可以粘附、增殖和分化,并能适应复杂器官的结构要求。

1.2 脱细胞支架的表征方法

为了确定不同方法处理后的支架脱细胞效果,需要对支架进行表征,从而确定支架内ECM成分的保留和核物质的残留,尽量减少移植后宿主的免疫排斥反应。Feng等通过CT和X光观察脱细胞后支架的血管网络,证明了此方法的可行性,实现了宏观角度上对支架结构完整性的评估;他们还对脱细胞后的支架进行定性组织切片、免疫组织化学染色以及定量评估DNA含量,以确定脱细胞后支架内核物质残留和ECM的保留情况[56]。由于脱细胞后支架的力学特性会影响再细胞过程,在微观尺度上评估支架的力学行为有助于理解细胞与支架在机械传导方面的相互作用,因此Marin-Tapia等利用原子力显微镜在微尺度上评估了脱细胞过程对角膜ECM杨氏模量的影响,证明了降低SDS浓度可以减少对组织器官力学性能的不利影响,同时原子力显微镜是分析脱细胞过程对ECM微观力学影响的有用工具[40]。此外,脱细胞后支架内可能有洗脱剂残留,这也会导致移植后免疫排斥反应的发生。为了评估脱细胞后支架的生物相容性,可以通过细胞毒性试验确定生物材料中有没有可溶性毒素的存在。Tao等在脱细胞肌腱(DTM) 上接种了小鼠结缔组织成纤维细胞,通过细胞毒性试验、肌腱源细胞与DTM共培养和溶血试验对DTM的生物相容性进行评估,结果表明DTM无毒且能促进细胞增殖,具有良好的细胞相容性,不引起溶血反应。术后6周DTM及炎症细胞完全消失,肌腱周围无粘连,组织排列有序[49]

2 脱细胞支架的交联方法

脱细胞后支架的力学特性对结构完整性和再细胞化后的细胞功能调节至关重要[72]。但是脱细胞后残留的组织比原始组织更软,通常不符合医学应用的要求,特别是用于临床组织和器官的移植。通过交联可以提高支架的力学特性,目前使用的交联方法有物理交联、化学交联和天然交联等方法[73]

2.1 物理交联

物理交联法主要有光氧化交联法和热脱氢法。Lü等利用亚甲基蓝介导的光氧化交联肿瘤脱细胞支架,首次报道了光氧化交联对肿瘤脱细胞支架结构、物理和生物学特性的影响[74]。但是光氧化法不容易控制交联条件,更常用于肿瘤组织脱细胞,实现疾病建模的目的。Jang等描述了利用维生素B2诱导光交联提高dECM生物墨水机械性能的方法,证明了UVA照射可以调节其力学性能,制造出与目标组织硬度相似的生物结构[75]。但是单独的紫外光处理通常会导致支架变性,同时由于光波不能通过厚组织,所以只适用于薄壁的移植物。

2.2 化学交联

化学交联法可以通过交联剂(环氧化合物、碳二亚胺、戊二醛、六亚甲基二胺氨基甲酸酯等) 达到交联的目的,但是大部分化学交联剂都存在毒性问题。Wang等通过戊二醛对脱细胞猪肝进行交联,结果发现戊二醛的加入容易导致脱细胞猪肝的免疫原性。因此在通过化学方法进行组织交联提高力学性能的同时,也可能会在体内产生严重的免疫排斥反应和钙化等结果[76]。Gao等使用不同浓度的碳二亚胺和戊二醛探索了脱细胞半月板支架的交联条件以提高支架的力学性能。降解实验和细胞毒性实验结果表明EDAC是一种较好的交联试剂。同时由于胶原纤维和组织块间的连接融合,交联过程有效地增强了支架的抗降解性能和力学性能。虽然交联方法可以显著提高抗压和抗拉性能,但支架的力学性能仍然低于完好的半月板[77]。因此大多数物理和化学交联方法都在一定程度上对生物材料产生不利影响,还需要继续探索更好的交联方法。

2.3 生物交联

与物理和化学方法相比,生物交联剂是理想的交联剂,它可以使脱细胞支架交联材料具有更好的力学性能、抗酶能力、抗钙化能力和最小的毒性,能协同促进组织再生。单宁酸、原花青素和北二氢愈疮酸都是最常用的天然交联剂。Zhai等研究了原花青素对猪心脏瓣膜基质的交联作用,发现原花青素能有效地交联猪心脏瓣膜且无毒性,体外酶解结果显示交联基质具有较强的抗酶解能力。此外原花青素交联瓣膜基质的抗拉强度高于戊二醛交联的瓣膜基质,这也证明了与化学交联相比时生物交联法的优越性[78]。Wang等通过天然来源的京尼平交联提高脱细胞后猪肝的力学性质,发现天然来源的京尼平可以降低全肝脱细胞支架移植物的免疫原性[76]。再次证明了生物交联剂不仅可以解决化学交联剂的毒性问题,还降低了由交联剂导致的免疫反应,是提高支架力学性质的较优选择。

2.4 其他方式

此外,有研究采用物理交联与化学交联相结合的方式来克服脱细胞后的生物力学强度损失和胶原纤维暴露问题。Schneider等通过核黄素介导的UV (RUV) 交联方法对移植物的胶原ECM进行均匀交联,结果表明RUV交联是改善dECM导管接枝特性的一种较好的工具[79]。这在一定程度上说明了组合交联方式是提高力学特性的另一种选择。

3 脱细胞支架的灭菌方法

理想的脱细胞支架灭菌或消毒既能有效去除微生物又能保证灭菌后的材料无毒,有利于支架成功再细胞。灭菌往往影响生物材料的理化性质和生物活性,因此杀菌方法的选择非常重要[80-82]。目前常用的灭菌方法有照射、环氧乙烷(EO) 和过氧化物(包括过氧乙酸、过氧化氢和过氧化氢低温等离子体)。还可以采用酒精、紫外线、超临界CO2和抗生素等[83-84]。目前ScCO2灭菌的机制还不完全清楚,酸化可能是主要原因[85]。Yaldiz等采用ScCO2、UV照射和EO对脱细胞绵羊脑皮层切片进行无菌处理,探讨了灭菌方法对脱细胞脑组织机械稳定性和ECM成分的影响,证明了不同原理的灭菌方法的灭菌效果不同;他们认为6%乙醇与ScCO2对ECM蛋白的保存效果较好,但是组织形态测定结果显示ECM的细胞核含量没有显著变化[86]。Moradi等采用4种灭菌方法对脱细胞兔肾片进行灭菌,结果发现兔肾片在pH值为7.2–7.4的0.5% PAA溶液中浸泡2 h能被有效地灭菌,并保持组织的力学性能和基质主要成分;兔肾片在抗生素混合物(由青霉素G、两性霉素B和庆大霉素组成) 中孵育30 min,也能实现有效的灭菌并保持组织机械性能,但是在肾片上种植兔脂肪间充质干细胞时未见有细胞粘附;肾片浸泡于无菌PBS中并在320–480 nm紫外照射2 h不能实现有效灭菌;5 kGy伽马辐照3–5 min后,肾片的机械强度降低,组织结构发生变化[87]。Poornejad等获得了4种常用的猪脱细胞全肾灭菌方法的最佳条件,发现辐照后胶原蛋白的含量下降了50%以上,样品孔隙率增大,在1mol/L NaCl中加入过氧乙酸的样品最接近正常组织[88]。由于生物材料涉及的细胞实验、动物实验和临床应用等都需要灭菌过程,其理化性质和生物活性会受到影响,脱细胞生物材料在灭菌过程中如何保留活性成分和组织结构等问题仍然是限制其应用的主要问题。此外,考虑到dECM材料的组成、结构、体积和要实现的功能不同,灭菌的方法也不同,因此需要根据具体组织器官的特性以及需求选择合适的灭菌手段[89]

4 脱细胞支架的保存方法

目前常用的脱细胞支架保存方式为低温保存和冷冻干燥。不同保存方式各有其优缺点,可以根据需求确定使用的保存方式,从而减少支架因保存造成的损伤。

4.1 低温保存

脱细胞组织器官具有再生的潜力,但供体移植物和受者之间缺乏有效的匹配性,因此需要开发合适的方法对脱细胞支架进行保存[90]。为了满足临床器官移植的需要,已经使用多种保存方法延长器官的保质期,从而实现器官随用随取,为未来器官库的构建提供基础。研究显示传统的低温保存和玻璃化保存可以实现脱细胞支架的长期保存[91]。传统的低温保存可能会形成冰破坏ECM,而玻璃化冷冻保存可以避免冷却和复温过程中冰的结晶,是很好的组织器官保存方法,已经广泛用于活细胞和组织的长期保存[92]。Narine等评估了低温保存猪主动脉瓣膜基质的可行性,发现低温保存没有显著改变猪主动脉瓣膜基质的生物化学特性,但是低温保存会对其结构和力学特性有显著的负面影响[93]。Theodoridis等比较了低温保存前后脱细胞猪肺瓣膜的生物力学特性、结构和生物化学特性,认为脱细胞后再低温保存支架比低温保存后再脱细胞效果好[94]。低温保存过程中还可以通过添加保护剂减少降温过程中冰晶的产生来提高支架的保存效果。Brockbank等认为VS83保存的心脏瓣膜可以在−80 ℃附近的温度下储存和运输,并保留了细胞外基质的完整性和材料特性[95]。Feng等通过添加高浓度低温保护剂VS83实现了对脱细胞肾脏支架的低温保存,CT结果显示低温处理后的支架血管网络得到较好的保存,组织结构能够保留,证明了低温保存肾脏脱细胞支架的可行性[56] (图 1)。因此低温保存对组织器官的影响是有限的,低温保存后的脱细胞组织器官结构得到保存且具有再生潜力,脱细胞后的组织器官可以通过低温保存延长货架期,从而更好地实现其临床应用。

图 1 脱细胞支架低温保存后CT扫描及三维重构图[56] Fig. 1 CT scan (A–D) and 3D reconstruction (E–H) images of the decellularized scaffold after cryopreservation[56]. (A, E) Control. (B, F) Without the addition of cryoprotectants. (C, G) With the addition of 10% DMSO+6% HES. (D, H) With the addition of VS83.
4.2 冷冻干燥

冷冻干燥可以作为保存组织器官的另一种方式,与低温保存相比,冷冻干燥保存具有储存和运输方便的优势且有助于节约成本,同时冷冻干燥可以降低由低温保护剂导致的毒性问题。Goecke等以海藻糖为冻干保护剂评估了冻干脱细胞心脏瓣膜在幼年绵羊体内的性能,证实了冷冻干燥不会改变脱细胞移植物在体内的早期血流动力学性能和再聚集潜力且早期功能良好[96]。Sun等首次报道了使用海藻糖和DMSO冷冻干燥保存3D组织工程皮肤移植物的方法,评估了其对小鼠皮肤缺损的修复作用。体内实验表明,冻干的组织工程皮肤在保存4周后能有效促进皮肤缺损愈合[97]

5 脱细胞支架的应用

目前脱细胞支架已经实现了其生物医学应用(图 2),主要用于解决两方面的问题:一是有助于解决移植供体短缺的问题,二是为体外模型的建立提供新平台[5]

图 2 脱细胞支架在生物医学中的应用 Fig. 2 Biomedical applications of decellularized scaffold.
5.1 脱细胞支架有助于解决移植供体短缺的问题

脱细胞支架的使用可以避免临床移植过程中的免疫排斥问题,且保留了与原器官组织相似的结构和成分,目前已经用于全器官工程中以解决移植供体短缺的问题,比如将患者的细胞植入脱细胞组织(再细胞化) 用于移植,但仍处于临床前阶段[14]。另一种方式是通过基于脱细胞组织的产品,比如水凝胶3D打印再造器官或组织有望实现再生目的,缓解供体短缺的问题[15-19]。此外将脱细胞组织植入体内可以促进损伤后再生和创面愈合[20-23]

5.1.1 再生和移植

对于终末期器官疾病来说,器官移植是目前有效的治疗方法,但是由于供体的短缺导致很多患者在等待器官中死亡。组织工程和再生医学的出现为器官短缺提供了新的解决办法。脱细胞后的支架具有原组织器官的结构和成分,以及特定的活性因子,能够为细胞黏附、增殖和分化提供特有的微环境,因此可以通过将种子细胞接种到支架内实现组织的再生, 从而解决器官和组织供体不足的难题。Alexanian等尝试通过脱细胞支架实现心脏的再生,他们将诱导的心脏祖细胞重新填充至脱细胞小鼠心脏支架并分化成心脏组织,结果发现诱导的心脏祖细胞能够分化成包含心肌细胞、平滑肌和内皮细胞的组织结构[98]。Ott等将上皮细胞和内皮细胞植入脱细胞肺支架中,在模拟肺发育生理环境的生物反应器中灌注细胞种子构建物以建立器官功能,结果显示肺构建物产生的气体交换与分离的原生肺相当,移植后可以实现长达6 h的体内气体交换[99]。他们的结果证明再生肺实现了短暂的功能恢复,在猪模型上用人类细胞工程和原位移植生物人工肺在技术上是可行的,但需要进一步优化移植物再生和成熟以达到其功能更好的恢复。

对于脱细胞支架来说,组织器官的血管化是目前难以解决的问题。由于脱细胞过程导致内皮层的破坏,血液再灌注时与ECM胶原的接触会导致血栓等并发症的产生,最终产生器官衰竭,因此再细胞过程需要解决血管化问题。Agarwal等在获得了脱细胞羊肝后在支架上种植了HepG2细胞,增强了支架中成熟和功能性肝细胞标志物的表达,证明了支架具有促进血管生成的作用[68]。为了达到更好的血管化效果,Caires-Júnio等探究了使用HepG2条件培养基预包被来改善肝支架再细胞化的可能性,证实了HepG2-CM预包覆可显著改善肝细胞再细胞化,揭示了肝脏ECM与条件培养基组分关联的积极作用[100]。此外,为了解决胰岛供体短缺和血管供应不足限制移植后胰岛存活的效率和寿命的问题,Citro等将胰岛细胞接种至肺脱细胞支架内开发了生物制造功能性、血管化胰岛器官的新方法。经过7 d的培养,胰岛在解剖学和功能上与周围的生物工程血管系统融合,产生了一个功能性的可灌注内分泌器官[101]。血管化方案的成功是实现组织器官再生的关键,因此增强脱细胞支架血管化至关重要。可以通过CD31抗体偶联改善用于全肾工程的肾脱细胞支架的血管化,利用REDV细胞结合域可改善脱细胞肝支架的再内皮化,此外肝素-明胶混合物也可提高生物工程肝脏的血管重建效率和肝功能[102-104]

器官的再生可以解决供体短缺的问题,但是目前支架再细胞所使用的最佳种子细胞类型还未确定,细胞在支架上的粘附性和分化效率都很低,尤其对于组成结构复杂的器官,其再生不能通过一种种子细胞实现,因此研究者们开始灌注多种细胞促进支架的再生,比如肾脏可以通过动脉和输尿管进行灌注细胞,肺还可以通过气道灌注细胞。再生后的器官在移植过程及移植后也可能存在移植后的感染、免疫反应、组织坏死、细胞增殖抑制甚至细胞毒性的问题。此外,血管化的方法还需要优化以提高再细胞的成功率,目前还缺少评价血管化效率的规范以实现标准化和保证质量。整个实体器官血管化还可以研究已经用于诱导纳米、金属支架和薄组织(如心脏瓣膜和血管) 内皮化的方法,包括岩藻聚糖、层粘连蛋白、透明质酸、硫酸软骨素、Ⅰ型胶原和血管内皮生长因子。

5.1.2 3D打印

3D打印能够控制组织的内部形状和微观结构,即使用磨碎的脱细胞支架粉末制造水凝胶,将水凝胶进行3D打印以创建支撑细胞生长和分化的结构(图 3)。3D生物打印能够开发用于研究疾病和药物筛选的体外模型,以及生成组织和器官用于未来的移植。脱细胞基质水凝胶作为3D打印生物墨水具有巨大的潜力,比传统生物墨水更好地支持细胞分化和存活。Lee等提出了一种利用骨组织中甲基丙烯酸(Ma)-dECM获得具有生物活性海藻酸盐基生物墨水的新方法,证明了适当的处理和Ma-dECM浓度为3D细胞负载结构的制造提供了合理的打印条件,而且为打印的细胞负载结构提供了细胞活力[105]。研究显示3D打印有助于组织器官的重建和功能恢复。Mao等发现脱细胞肝脏可以提高GelMA生物墨水的打印性和细胞活力,采用该生物墨水制造了一种具有内齿轮状结构的新型肝组织,该组织具有更大的体表面积,以促进肝脏功能的恢复[106]。另一项研究显示,患者特异性耳软骨结构的3D生物打印可以帮助创伤性损伤或先天性畸形耳软骨的重建。Visscher等对猪耳软骨组织进行脱细胞获得dECM后使用甲基丙烯酸基化(cdECMMA)加工成可光交联的水凝胶,并与软骨细胞混合形成可打印的生物墨水。研究显示,打印出来的cdECMMA水凝胶结构中的耳软骨细胞维持了活力和增殖能力,证明了利用软骨特异性dECMMA生物墨水进行细胞生物打印是耳软骨重建的一种选择[107]。此外,人骨髓间充质干细胞的微阵列分析通过不同的dECM生物墨水打印,揭示了组织特异性成分变化在细胞水平上对MSC多能性的影响,为dECM生物墨水的组织特异性功能提供了有力的证据[108]。目前3D打印还不能实现较大结构组织器官的打印,且打印过程中容易导致细胞活力下降甚至凋亡。但是在不久的将来,3D打印将促进基于支架或无支架的组织和器官结构、微型组织和芯片上的器官模型系统的应用,以大规模地生成功能性人体器官如心脏、肾脏、皮肤和肝脏。

图 3 脱细胞支架在3D打印中的应用 Fig. 3 Application of decellularized scaffold in 3D printing. (A) Composite hydrogels are synthesized using a parallel process. dECM (top) is produced by first isolating and mincing left ventricular myocardium from freshly-harvested porcine hearts. Minced tissue is decellularized using a combination of detergents before being lyophilized. Graphene oxide (GO, bottom) is produced by reducing GO with NaBH4 for 1 h before filtration and resuspension in dH2O. The two components are combined with HCl and pepsin to form a pre-gel solution that can then be formed into hydrogels by incubation at 37 ℃[109]. (B) Directed differential behaviors of multipotent adult stem cells from decellularized tissue/organ extracellular matrix bioinks[108]. (C) Decellularized scaffold bioinks and their application in skin tissue engineering[110]. (D) Preparation of dECM from porcine bone and its methacrylated form (Ma-dECM)[105].
5.1.3 组织工程修复与重建

脱细胞生物材料已广泛应用于组织重建和修复,并取得了巨大的成功。研究显示,胎儿组织中普遍存在的ECM分子如纤维连接蛋白、透明质酸和胶原,对创伤愈合相关细胞行为具有调控作用,能够在空间和时间上触发组织再生。通常细胞与ECM相互作用的方式决定了受伤组织的愈合反应。脱细胞的人胎盘结缔组织基质(connective tissue matrix, CTM) 含有对细胞粘附重要的关键细胞外蛋白,Brigido等认为CTM能实现伤口更快和完全愈合,支持内皮细胞迁移,促进内皮细胞附着,最终促进内皮管形成[111]。CTM作为一种支架,可以替代受损组织中异常的ECM,使内源性细胞加速愈合和再生。Milan等用脱细胞真皮基质和人脐带血管周围细胞加速糖尿病大鼠模型创面愈合,证实了脱细胞真皮支架是输送人脐带血管周围细胞和将细胞移植到伤口部位的合适平台,该方法也显示了人脐带血管周围细胞在促进血管生成、再上皮化和肉芽组织方面的潜在优势[112]。此外,壳聚糖、脱细胞肠基质、间充质干细胞和生长因子对大鼠烧伤创面具有修复作用[113]。Dhasmana等也通过在不同浓度丝素蛋白中修饰脱细胞山羊皮肤支架,制备了丝素蛋白修饰的杂交脱细胞山羊皮肤支架,以促进创面愈合过程,其效果优于未修饰的脱细胞支架,表明了丝素蛋白与脱细胞支架的协同作用有助于创面的愈合[114]。但是目前脱细胞生物材料在组织再生修复方面还存在一些问题,比如移植初期的免疫排斥和组织再生过程中的降解平衡等。

5.2 脱细胞支架为体外模型的建立提供新平台

除了用于解决器官供体短缺的问题外,近年来科学家们也积极推动脱细胞生物材料的其他应用,比如构建细胞、药物和其他治疗药物的生物相容性传递系统。很多类型的生物材料支架有望用于体外模型的研究,天然脱细胞支架因其独特的优势,可以用于开发相关的2D或3D体外模型来培养细胞,研究健康或病变组织,同时为药物的筛选提供良好平台。

5.2.1 细胞培养

脱细胞支架具有良好的生物相容性和力学性能、无毒,能为细胞提供特殊的生理条件以产生所需的细胞反应,因此可以用于某些细胞的培养。Brancato等将癌细胞(胰腺、乳腺和黑色素瘤细胞) 接种至脱细胞绵羊皮肤,发现脱细胞皮肤支架维持了原组织结构,为细胞提供了一个仿生环境以支持不同癌细胞的粘附和生长,同时可以根据组织和病理/生理状态调节细胞的增殖、迁移和分化行为,因此未来它将成为由生物材料制成的传统多孔支架的低成本竞争者[115]。Ganjibakhsh等利用人脱细胞羊膜(decellularized amnion membrane, DAM) 支架建立了人诱导多能干细胞(induced pluripotent stem cell, iPSC) 生成雄性生殖细胞的3D细胞培养模型,并将iPSC通过常规2D培养和3D-DAM支架培养研究雄性生殖细胞的分化效率。结果显示,在雄性生殖细胞分化过程中,细胞在2D和3D条件下都有聚集形成菌落样结构的趋势,但3D条件下VASA、DAZL、PLZF、STELLA和NANOS3标记显著表达,单倍体雄性生殖细胞产生效率更高[116]。此外细胞源性脱细胞支架可以支持间充质干细胞的生长和分化,研究显示干细胞dECM在维持干细胞多能性和诱导特定谱系方面具有巨大潜力。脱细胞支架为细胞的培养和生长提供了新的方式和平台,有助于研究细胞-细胞、细胞-ECM间的相互作用,但该技术最关键的是提供一个保存良好的脱细胞支架,证明了脱细胞成功的重要性,目前细胞种植到支架后的存活率也是有待解决的问题。

5.2.2 疾病模型与药物筛选

近年来器官疾病的病理受到人们的广泛关注,生物制药市场的扩大导致疾病和药物治疗及毒性模型短缺。目前疾病和药物治疗及毒性模型都是将从病人身上获得的细胞在体外2D培养,缺少3D培养所具有的组织结构和体内相互作用。由于脱细胞支架能够维持组织3D结构和血管网络的完整性,可以保持病理或纤维化状态,因此人们尝试使用其建立疾病模型以模拟人类疾病的病理和研究药物毒理。

对于肾脏疾病来说,肾纤维化是慢性肾功能衰竭的常见病理过程,为了确定脱细胞后的支架是否维持病理状态,Zhang等对纤维化肾脏脱细胞以评估其是否有潜力成为探究组织纤维化细胞机制的模型或成为组织工程的供体,结果表明脱细胞纤维化肾支架模型可以用于研究纤维化形成机制,且具有成为工程供体和正常支架的潜力[117]。工程肾脏支架可以通过个性化药物促进药物开发,还可能在药物毒理学方面发挥作用[118]。经动脉化疗栓塞(transarterial chemoembolization, TACE) 是不能切除的中期肝癌患者的首选治疗方法,但目前开发的TACE栓塞剂缺乏能准确反映器官和血管系统复杂特征的体外模型。Gao等通过对大鼠肝脏器官进行脱细胞处理,保留肝脏特异性血管,并将整个肝脏在550 nm处的透光率提高至23%,建立了离体肝脏模型来评估TACE栓塞剂[119]。Hussein等制备了可降解的无异种抗原大鼠肝支架,再细胞化后可以保留其天然组织结构和功能使其能够用于药物筛选[120]

此外,在脱细胞支架上接种癌细胞可以建立模拟癌细胞与周围ECM相互作用的肿瘤模型。当前用于研究结直肠癌的3D培养模型缺乏可能影响细胞行为和癌症进展的组织ECM提供的结构支持和信号蛋白,因此需要在与生理学更相关的基质背景下研究癌细胞的能力,了解ECM如何影响癌症的进展。Alabi等开发了由完整野生型和结肠癌易感脱细胞小鼠结肠提供的体外3D系统,以支持人类癌细胞的生长。证实了在肿瘤微环境中大量表达的蛋白可能参与了结直肠癌的进展[121]。基质刚度与肿瘤细胞行为的调控有关,为了探究dECM刚度对人乳腺癌细胞活力和凋亡的影响,Lv等制备了不同刚度的3D dECM支架以模拟人乳腺肿瘤组织的微环境,在接种了MDA-MB-231细胞10 d后评估了细胞的存活和凋亡,并探讨了基质刚度对人类乳腺癌细胞耐药的影响。证明了刚度合适的多功能3D肿瘤模型可以作为生物工程肿瘤支架研究其在肿瘤进展中的作用,对临床前的药物筛选有一定的指导作用[122]。目前脱细胞支架在体外建模中仍未被充分利用,未来脱细胞支架将成为理解疾病和细胞功能机制基础的有用工具,越来越多的研究者会使用脱细胞支架来模拟健康和疾病,以增强对各种病理和创伤条件的理解,开发新的组织微环境靶向治疗策略。

6 总结与展望

dECM是一个复杂而独特的支架,包括结构蛋白和糖胺聚糖,这些对其传导内在的物理和化学信号至关重要,从而影响细胞行为、组织再生、血管重建和调节稳态。脱细胞支架生物材料的巨大发展,证明了其在临床前和临床应用中的诸多优势和潜力,但是目前脱细胞支架的研究和应用还存在很多问题和挑战。随着组织工程和再生医学的发展以及新兴技术的兴起,脱细胞及再生的方法将进一步优化,具有更好的生物相容性和功能重建的脱细胞支架材料将逐步出现。在解决了这些问题和挑战后,脱细胞支架将能实现其在组织工程和生物医学领域的应用,在临床和预临床上发挥更大的价值,因此脱细胞支架材料在各个领域的应用前景是广阔的。

参考文献
[1]
Takami Y, Yamaguchi R, Ono S, et al. Clinical application and histological properties of autologous tissue-engineered skin equivalents using an acellular dermal matrix. J Nippon Med Sch, 2014, 81(6): 356-363. DOI:10.1272/jnms.81.356
[2]
Ahmedbeyli C, Ipci SD, Cakar G, et al. Laterally positioned flap along with acellular dermal matrix graft in the management of maxillary localized recessions. Clin Oral Investig, 2019, 23(2): 595-601. DOI:10.1007/s00784-018-2475-1
[3]
Geng G, Xiao Y, Shang Y, et al. Naphthalenephenylalanine-phenylalanine-glycine-arginine-glycine-aspartic promotes self-assembly of nephron progenitor cells in decellularized scaffolds to construct bioengineered kidneys. Mater Sci Eng C Mater Biol Appl, 2021, 112590.
[4]
McCrary MW, Bousalis D, Mobini S, et al. Decellularized tissues as platforms for in vitro modeling of healthy and diseased tissues. Acta Biomater, 2020, 111: 1-19. DOI:10.1016/j.actbio.2020.05.031
[5]
Acun A, Oganesyan R, Uygun K, et al. Liver donor age affects hepatocyte function through age-dependent changes in decellularized liver matrix. Biomaterials, 2021, 270: 120689. DOI:10.1016/j.biomaterials.2021.120689
[6]
Ott HC, Matthiesen TS, Goh SK, et al. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat Med, 2008, 14(2): 213-221. DOI:10.1038/nm1684
[7]
Nakayama KH, Batchelder CA, Lee CI, et al. Decellularized rhesus monkey kidney as a three-dimensional scaffold for renal tissue engineering. Tissue Eng Part A, 2010, 16(7): 2207-2216. DOI:10.1089/ten.tea.2009.0602
[8]
Uygun BE, Soto-Gutierrez A, Yagi H, et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med, 2010, 16(7): 814-820. DOI:10.1038/nm.2170
[9]
Petersen TH, Calle EA, Zhao LP, et al. Tissue-engineered lungs for in vivo implantation. Science, 2010, 329(5991): 538-541. DOI:10.1126/science.1189345
[10]
Orlando G, Booth C, Wang Z, et al. Discarded human kidneys as a source of ECM scaffold for kidney regeneration technologies. Biomaterials, 2013, 34(24): 5915-5925. DOI:10.1016/j.biomaterials.2013.04.033
[11]
Mousavi MS, Amoabediny G, Mahfouzi SH, et al. Enhanced articular cartilage decellularization using a novel perfusion-based bioreactor method. J Mech Behav Biomed, 2021, 119: 104511. DOI:10.1016/j.jmbbm.2021.104511
[12]
Watanabe T, Asawa Y, Watanabe M, et al. The usefulness of the decellularized matrix from three-dimensional regenerative cartilage as a scaffold material. Regen Ther, 2020, 15: 312-322. DOI:10.1016/j.reth.2020.11.005
[13]
Ergün C, Parmaksiz M, Vurat MT, et al. Decellularized liver ECM-based 3D scaffolds: compositional, physical, chemical, rheological, thermal, mechanical, and in vitro biological evaluations. Int J Biol Macromol, 2022, 100: 110-123.
[14]
Fu RH, Wang YC, Liu SP, et al. Decellularization and recellularization technologies in tissue engineering. Cell Transplant, 2014, 23(4/5): 621-630.
[15]
Theocharis AD, Skandalis SS, Gialeli C, et al. Extracellular matrix structure. Adv Drug Deliv Rev, 2016, 97: 4-27. DOI:10.1016/j.addr.2015.11.001
[16]
Theocharis AD, Manou D, Karamanos NK. The extracellular matrix as a multitasking player in disease. FEBS J, 2019, 286(15): 2830-2869. DOI:10.1111/febs.14818
[17]
Hou CX, Zheng JH, Li ZK, et al. Printing 3D vagina tissue analogues with vagina decellularized extracellular matrix bioink. Int J Biol Macromol, 2021, 180: 177-186. DOI:10.1016/j.ijbiomac.2021.03.070
[18]
Shin YJ, Shafranek RT, Tsui JH, et al. 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix. Acta Biomater, 2021, 119: 75-88. DOI:10.1016/j.actbio.2020.11.006
[19]
Zhao F, Cheng J, Zhang J, et al. Comparison of three different acidic solutions in tendon decellularized extracellular matrix bio-ink fabrication for 3D cell printing. Acta Biomater, 2021, 131: 262-275. DOI:10.1016/j.actbio.2021.06.026
[20]
Wainwright DJ. Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns, 1995, 21(4): 243-248. DOI:10.1016/0305-4179(95)93866-I
[21]
Mancuso LA, Lassaline M, Scherrer NM. Porcine urinary bladder extracellular matrix grafts (ACell Vet® Corneal Discs) for keratomalacia in 17 equids (2012–2013). Vet Ophthalmol, 2016, 19(1): 3-10. DOI:10.1111/vop.12240
[22]
Vrankovic D, Mrcela T, Mursic B, et al. Physical and histologic properties of substitutes used for the anterior Fossa region dural repair. Skull Base Surg, 1999, 9(1): 9-13. DOI:10.1055/s-2008-1058167
[23]
Ortiz JA. Clinical outcomes in breast reconstruction patients using a sterile acellular dermal matrix allograft. Aesthetic Plast Surg, 2017, 41(3): 542-550. DOI:10.1007/s00266-017-0817-z
[24]
Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol, 2014, 15(12): 786-801.
[25]
Ganjibakhsh M, Mehraein F, Koruji M, et al. Three-dimensional decellularized amnion membrane scaffold as a novel tool for cancer research: cell behavior, drug resistance and cancer stem cell content. Mat Sci Eng C Mater Biol Appl, 2019, 100: 330-340. DOI:10.1016/j.msec.2019.02.090
[26]
Cox TR, Erler JT. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech, 2011, 4(2): 165-178. DOI:10.1242/dmm.004077
[27]
Porzionato A, Stocco E, Barbon S, et al. Tissue-engineered grafts from human decellularized extracellular matrices: a systematic review and future perspectives. Int J Mol Sci, 2018, 19(12): 4117. DOI:10.3390/ijms19124117
[28]
Chaschin IS, Britikov DV, Khugaev GA, et al. Decellularization of the human donor aortic conduit by a new hybrid treatment in a multicomponent system with supercritical CO2 and Tween-80. J Supercrit Fluids, 2022, 180: 105452. DOI:10.1016/j.supflu.2021.105452
[29]
Yang J, Xu Y, Luo S, et al. Effect of cryoprotectants on rat kidney decellularization by freeze-thaw process. Cryobiology, 2021.
[30]
Hoshiba T, Tanaka M. Decellularized matrices as in vitro models of extracellular matrix in tumor tissues at different malignant levels: mechanism of 5-fluorouracil resistance in colorectal tumor cells. Biochim Biophys Acta, 2016, 1863(11): 2749-2757. DOI:10.1016/j.bbamcr.2016.08.009
[31]
Hoshiba T. An extracellular matrix (ECM) model at high malignant colorectal tumor increases chondroitin sulfate chains to promote epithelial-mesenchymal transition and chemoresistance acquisition. Exp Cell Res, 2018, 370(2): 571-578. DOI:10.1016/j.yexcr.2018.07.022
[32]
Castelló-Cros R, Khan DR, Simons J, et al. Staged stromal extracellular 3D matrices differentially regulate breast cancer cell responses through PI3K and beta1-integrins. BMC Cancer, 2009, 9: 94. DOI:10.1186/1471-2407-9-94
[33]
罗嗣昌, 胥义. 不同保护剂对大鼠肾脏冻融法脱细胞的影响. 中国医学物理学杂志, 2021, 38(7): 877-882.
Luo SC, Xu Y. Effects of different cryoprotective agents on decellularization of rat kidney by freeze-thaw method. Chin J Med Phys, 2021, 38(7): 877-882 (in Chinese). DOI:10.3969/j.issn.1005-202X.2021.07.017
[34]
Cesur NP, Laçin NT. Decellularization of ram cardiac tissue via supercritical CO2. J Supercrit Fluids, 2022, 180: 105453. DOI:10.1016/j.supflu.2021.105453
[35]
Charoensombut N, Kawabata K, Kim J, et al. Internal radial perfusion bioreactor promotes decellularization and recellularization of rat uterine tissue. J Biosci Bioeng, 2021.
[36]
Sansing HA, Sarkeshik A, Yates JR, et al. Integrin αβ1, αvβ, α6β effectors p130Cas, Src and talin regulate carcinoma invasion and chemoresistance. Biochem Biophys Res Commun, 2011, 406(2): 171-176. DOI:10.1016/j.bbrc.2011.01.109
[37]
Hoshiba T. Cultured cell-derived decellularized extracellular matrix (cultured cell-derived dECM): future applications and problems—a mini review. Curr Opin Biomed Eng, 2021, 17: 100256. DOI:10.1016/j.cobme.2020.100256
[38]
Granato AEC, Da Cruz EF, Rodrigues-Junior DM, et al. A novel decellularization method to produce brain scaffolds. Tissue Cell, 2020, 67: 101412. DOI:10.1016/j.tice.2020.101412
[39]
Orlando G, Farney AC, Iskandar SS, et al. Production and implantation of renal extracellular matrix scaffolds from porcine kidneys as a platform for renal bioengineering investigations. Ann Surg, 2012, 256(2): 363-370. DOI:10.1097/SLA.0b013e31825a02ab
[40]
Marin-Tapia HA, Romero-Salazar L, Arteaga-Arcos JC, et al. Micro-mechanical properties of corneal scaffolds from two different bio-models obtained by an efficient chemical decellularization. J Mech Behav Biomed Mater, 2021, 119: 104510. DOI:10.1016/j.jmbbm.2021.104510
[41]
Peloso A, Ferrario J, Maiga B, et al. Creation and implantation of acellular rat renal ECM-based scaffolds. Organogenesis, 2015, 11(2): 58-74. DOI:10.1080/15476278.2015.1072661
[42]
Kajbafzadeh AM, Khorramirouz R, Nabavizadeh B, et al. Whole organ sheep kidney tissue engineering and in vivo transplantation: effects of perfusion-based decellularization on vascular integrity. Mater Sci Eng C Mater Biol Appl, 2019, 98: 392-400. DOI:10.1016/j.msec.2019.01.018
[43]
Gilbert TW. Strategies for tissue and organ decellularization. J Cell Biochem, 2012, 113(7): 2217-2222. DOI:10.1002/jcb.24130
[44]
Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials, 2006, 27(19): 3675-3683.
[45]
Prasertsung I, Kanokpanont S, Bunaprasert T, et al. Development of acellular dermis from porcine skin using periodic pressurized technique. J Biomed Mater Res B Appl Biomater, 2008, 85(1): 210-219.
[46]
Reing JE, Brown BN, Daly KA, et al. The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds. Biomaterials, 2010, 31(33): 8626-8633. DOI:10.1016/j.biomaterials.2010.07.083
[47]
Tondreau MY, Laterreur V, Gauvin R, et al. Mechanical properties of endothelialized fibroblast-derived vascular scaffolds stimulated in a bioreactor. Acta Biomater, 2015, 18: 176-185. DOI:10.1016/j.actbio.2015.02.026
[48]
Pérez ML, Castells-Sala C, López-Chicón P, et al. Fast protocol for the processing of split-thickness skin into decellularized human dermal matrix. Tissue Cell, 2021, 72: 101572. DOI:10.1016/j.tice.2021.101572
[49]
Tao MH, Liang F, He J, et al. Decellularized tendon matrix membranes prevent post-surgical tendon adhesion and promote functional repair. Acta Biomater, 2021, 134: 160-176. DOI:10.1016/j.actbio.2021.07.038
[50]
Eivazkhani F, Abtahi NS, Tavana S, et al. Evaluating two ovarian decellularization methods in three species. Mater Sci Eng C Mater Biol Appl, 2019, 102: 670-682. DOI:10.1016/j.msec.2019.04.092
[51]
Ventura RD, Padalhin AR, Park CM, et al. Enhanced decellularization technique of porcine dermal ECM for tissue engineering applications. Mater Sci Eng C Mater Biol Appl, 2019, 104: 109841. DOI:10.1016/j.msec.2019.109841
[52]
Peloso A, Citro A, Corradetti V, et al. In-lab manufacturing of decellularized rat renal scaffold for kidney bioengineering. Methods Mol Biol, 2018, 1577: 103-110.
[53]
Yang D, Fang Z, Kang R, et al. Composite electrospun scaffold containing decellularized amniotic matrix for pelvic organ prolapse. Mater Design, 2021, 210: 110106. DOI:10.1016/j.matdes.2021.110106
[54]
Du LQ, Wu XY, Pang KP, et al. Histological evaluation and biomechanical characterisation of an acellular porcine cornea scaffold. Br J Ophthalmol, 2011, 95(3): 410-414. DOI:10.1136/bjo.2008.142539
[55]
Zambon JP, Ko IK, Abolbashari M, et al. Comparative analysis of two porcine kidney decellularization methods for maintenance of functional vascular architectures. Acta Biomater, 2018, 75: 226-234. DOI:10.1016/j.actbio.2018.06.004
[56]
Feng HK, Xu Y, Luo SC, et al. Evaluation and preservation of vascular architectures in decellularized whole rat kidneys. Cryobiology, 2020, 95: 72-79. DOI:10.1016/j.cryobiol.2020.06.003
[57]
Uhl FE, Zhang FM, Pouliot RA, et al. Functional role of glycosaminoglycans in decellularized lung extracellular matrix. Acta Biomater, 2020, 102: 231-246. DOI:10.1016/j.actbio.2019.11.029
[58]
Bakhtiar H, Rajabi S, Pezeshki-Modaress M, et al. Optimizing methods for bovine dental pulp decellularization. J Endod, 2021, 47(1): 62-68. DOI:10.1016/j.joen.2020.08.027
[59]
Ahmed E, Saleh T, Yu LN, et al. Micro and ultrastructural changes monitoring during decellularization for the generation of a biocompatible liver. J Biosci Bioeng, 2019, 128(2): 218-225. DOI:10.1016/j.jbiosc.2019.02.007
[60]
Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun, 2005, 73(4): 1907-1916. DOI:10.1128/IAI.73.4.1907-1916.2005
[61]
White LJ, Taylor AJ, Faulk DM, et al. The impact of detergents on the tissue decellularization process: a ToF-SIMS study. Acta Biomater, 2017, 50: 207-219. DOI:10.1016/j.actbio.2016.12.033
[62]
Duarte MM, Ribeiro N, Silva IV, et al. Fast decellularization process using supercritical carbon dioxide for trabecular bone. J Supercrit Fluids, 2021, 172: 105194. DOI:10.1016/j.supflu.2021.105194
[63]
Yüksel S, Aşık MD, Aydin HM, et al. Fabrication of a multi-layered decellularized amniotic membranes as tissue engineering constructs. Tissue Cell, 2022, 74: 101693. DOI:10.1016/j.tice.2021.101693
[64]
Casali DM, Handleton RM, Shazly T, et al. A novel supercritical CO2-based decellularization method for maintaining scaffold hydration and mechanical properties. J Supercrit Fluids, 2018, 131: 72-81. DOI:10.1016/j.supflu.2017.07.021
[65]
Sierad LN, Shaw EL, Bina A, et al. Functional heart valve scaffolds obtained by complete decellularization of porcine aortic roots in a novel differential pressure gradient perfusion system. Tissue Eng Part C Methods, 2015, 21(12): 1284-1296. DOI:10.1089/ten.tec.2015.0170
[66]
Azhim A, Takahashi T, Muramatsu K, et al. Decellularization of meniscal tissue using ultrasound chemical process for tissue-engineered scaffold applications. 6th World Congr Biomech WCB 2010 August 1-6 2010 Singapore, 2010: 915-918.
[67]
Bonandrini B, Figliuzzi M, Papadimou E, et al. Recellularization of well-preserved acellular kidney scaffold using embryonic stem cells. Tissue Eng Part A, 2014, 20(9/10): 1486-1498.
[68]
Agarwal T, Maiti TK, Ghosh SK. Decellularized caprine liver-derived biomimetic and pro-angiogenic scaffolds for liver tissue engineering. Mater Sci Eng C Mater Biol Appl, 2019, 98: 939-948. DOI:10.1016/j.msec.2019.01.037
[69]
Poornejad N, Schaumann LB, Buckmiller EM, et al. The impact of decellularization agents on renal tissue extracellular matrix. J Biomater Appl, 2016, 31(4): 521-533. DOI:10.1177/0885328216656099
[70]
Ross EA, Abrahamson DR, St John P, et al. Mouse stem cells seeded into decellularized rat kidney scaffolds endothelialize and remodel basement membranes. Organogenesis, 2012, 8(2): 49-55. DOI:10.4161/org.20209
[71]
Berman A, Klak M, Adamiok A, et al. The influence of the flow of detergent and donor characteristics on the extracellular matrix composition after human pancreas decellularization. Transplant Proc, 2020, 52(7): 2043-2049. DOI:10.1016/j.transproceed.2020.03.053
[72]
Sant S, Wang D, Abidi M, et al. Mechanical characterization of native and sugar-modified decellularized kidneys. J Mech Behav Biomed Mater, 2021, 114: 104220. DOI:10.1016/j.jmbbm.2020.104220
[73]
Ma B, Wang XY, Wu CT, et al. Crosslinking strategies for preparation of extracellular matrix-derived cardiovascular scaffolds. Regen Biomater, 2014, 1(1): 81-89. DOI:10.1093/rb/rbu009
[74]
Lü WD, Sun RF, Hu YR, et al. Photooxidatively crosslinked acellular tumor extracellular matrices as potential tumor engineering scaffolds. Acta Biomater, 2018, 71: 460-473. DOI:10.1016/j.actbio.2018.03.020
[75]
Jang J, Kim TG, Kim BS, et al. Tailoring mechanical properties of decellularized extracellular matrix bioink by vitamin B2-induced photo-crosslinking. Acta Biomater, 2016, 33: 88-95. DOI:10.1016/j.actbio.2016.01.013
[76]
Wang YJ, Bao J, Wu XJ, et al. Genipin crosslinking reduced the immunogenicity of xenogeneic decellularized porcine whole-liver matrices through regulation of immune cell proliferation and polarization. Sci Rep, 2016, 6: 24779. DOI:10.1038/srep24779
[77]
Gao S, Yuan ZG, Guo WM, et al. Comparison of glutaraldehyde and carbodiimides to crosslink tissue engineering scaffolds fabricated by decellularized porcine menisci. Mater Sci Eng C Mater Biol Appl, 2017, 71: 891-900. DOI:10.1016/j.msec.2016.10.074
[78]
Zhai WY, Chang J, Lin KL, et al. Crosslinking of decellularized porcine heart valve matrix by procyanidins. Biomaterials, 2006, 27(19): 3684-3690. DOI:10.1016/j.biomaterials.2006.02.008
[79]
Schneider KH, Rohringer S, Kapeller B, et al. Riboflavin-mediated photooxidation to improve the characteristics of decellularized human arterial small diameter vascular grafts. Acta Biomater, 2020, 116: 246-258. DOI:10.1016/j.actbio.2020.08.037
[80]
Hussein KH, Park KM, Teotia PK, et al. Sterilization using electrolyzed water highly retains the biological properties in tissue-engineered porcine liver scaffold. Int J Artif Organs, 2013, 36(11): 781-792. DOI:10.5301/ijao.5000246
[81]
Gosztyla C, Ladd MR, Werts A, et al. A comparison of sterilization techniques for production of decellularized intestine in mice. Tissue Eng Part C Methods, 2020, 26(2): 67-79. DOI:10.1089/ten.tec.2019.0219
[82]
Hussein KH, Park KM, Kang KS, et al. Biocompatibility evaluation of tissue-engineered decellularized scaffolds for biomedical application. Mater Sci Eng C Mater Biol Appl, 2016, 67: 766-778. DOI:10.1016/j.msec.2016.05.068
[83]
Sun WQ, Leung P. Calorimetric study of extracellular tissue matrix degradation and instability after gamma irradiation. Acta Biomater, 2008, 4(4): 817-826. DOI:10.1016/j.actbio.2008.02.006
[84]
Freytes DO, Stoner RM, Badylak SF. Uniaxial and biaxial properties of terminally sterilized porcine urinary bladder matrix scaffolds. J Biomed Mater Res, 2008, 84B(2): 408-414. DOI:10.1002/jbm.b.30885
[85]
Kim SR, Rhee MS, Kim BC, et al. Modeling the inactivation of Escherichia coli O157: H7 and generic Escherichia coli by supercritical carbon dioxide. Int J Food Microbiol, 2007, 118(1): 52-61. DOI:10.1016/j.ijfoodmicro.2007.05.014
[86]
Yaldiz B, Saglam-Metiner P, Cam SB, et al. Effect of sterilization methods on the mechanical stability and extracellular matrix constituents of decellularized brain tissues. J Supercrit Fluids, 2021, 175: 105299. DOI:10.1016/j.supflu.2021.105299
[87]
Moradi L, Mohammadi Jobania B, Jafarnezhad- Ansariha F, et al. Evaluation of different sterilization methods for decellularized kidney tissue. Tissue Cell, 2020, 66: 101396. DOI:10.1016/j.tice.2020.101396
[88]
Poornejad N, Nielsen JJ, Morris RJ, et al. Comparison of four decontamination treatments on porcine renal decellularized extracellular matrix structure, composition, and support of human renal cortical tubular epithelium cells. J Biomater Appl, 2016, 30(8): 1154-1167. DOI:10.1177/0885328215615760
[89]
Hennessy RS, Jana S, Tefft BJ, et al. Supercritical carbon dioxide-based sterilization of decellularized heart valves. JACC Basic Transl Sci, 2017, 2(1): 71-84. DOI:10.1016/j.jacbts.2016.08.009
[90]
Wolkers W. Dry preservation of decellularized cardiovascular scaffolds. Cryobiology, 2018, 80: 177.
[91]
Sharma A, Rao JS, Han Z, et al. Vitrification and nanowarming of kidneys. Adv Sci, 2021, 8(19): 2101691. DOI:10.1002/advs.202101691
[92]
Solanki PK, Rabin Y. Thermomechanical stress analysis of rabbit kidney and human kidney during cryopreservation by vitrification with the application of radiofrequency heating. Cryobiology, 2021, 100: 180-192. DOI:10.1016/j.cryobiol.2021.01.002
[93]
Narine K, Ing EC, Cornelissen M, et al. Readily available porcine aortic valve matrices for use in tissue valve engineering. Is cryopreservation an option?. Cryobiology, 2006, 53(2): 169-181.
[94]
Theodoridis K, Müller J, Ramm R, et al. Effects of combined cryopreservation and decellularization on the biomechanical, structural and biochemical properties of porcine pulmonary heart valves. Acta Biomater, 2016, 43: 71-77. DOI:10.1016/j.actbio.2016.07.013
[95]
Brockbank KGM, Wright GJ, Yao H, et al. Allogeneic heart valve storage above the glass transition at −80 ℃. Ann Thorac Surg, 2011, 91(6): 1829-1835. DOI:10.1016/j.athoracsur.2011.02.043
[96]
Goecke T, Theodoridis K, Tudorache I, et al. In vivo performance of freeze-dried decellularized pulmonary heart valve allo- and xenografts orthotopically implanted into juvenile sheep. Acta Biomater, 2018, 68: 41-52. DOI:10.1016/j.actbio.2017.11.041
[97]
Sun M, Jiang M, Cui JH, et al. A novel approach for the cryodesiccated preservation of tissue-engineered skin substitutes with trehalose. Mater Sci Eng C Mater Biol Appl, 2016, 60: 60-66. DOI:10.1016/j.msec.2015.10.057
[98]
Alexanian RA, Mahapatra K, Lang D, et al. Induced cardiac progenitor cells repopulate decellularized mouse heart scaffolds and differentiate to generate cardiac tissue. Biochim Biophys Acta Mol Cell Res, 2020, 1867(3): 118559.
[99]
Ott HC, Clippinger B, Conrad C, et al. Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med, 2010, 16(8): 927-933. DOI:10.1038/nm.2193
[100]
Caires-Júnior LC, Goulart E, Telles-Silva KA, et al. Pre-coating decellularized liver with HepG2- conditioned medium improves hepatic recellularization. Mater Sci Eng C Mater Biol Appl, 2021, 121: 111862. DOI:10.1016/j.msec.2020.111862
[101]
Citro A, Moser PT, Dugnani E, et al. Biofabrication of a vascularized islet organ for type 1 diabetes. Biomaterials, 2019, 199: 40-51. DOI:10.1016/j.biomaterials.2019.01.035
[102]
Jackson JR, Ko IK, Abolbashari M, et al. mp72-20 Cd31 antibody conjugation improves re-endothelialization of acellular kidney scaffolds for whole kidney engineering. J Am Coll Sergeons, 2014, 219(3): s141.
[103]
Devalliere J, Chen YB, Dooley K, et al. Improving functional re-endothelialization of acellular liver scaffold using REDV cell-binding domain. Acta Biomater, 2018, 78: 151-164. DOI:10.1016/j.actbio.2018.07.046
[104]
Hussein KH, Park KM, Kang KS, et al. Heparin-gelatin mixture improves vascular reconstruction efficiency and hepatic function in bioengineered livers. Acta Biomater, 2016, 38: 82-93. DOI:10.1016/j.actbio.2016.04.042
[105]
Lee J, Hong J, Kim W, et al. Bone-derived dECM/alginate bioink for fabricating a 3D cell-laden mesh structure for bone tissue engineering. Carbohydr Polym, 2020, 250: 116914. DOI:10.1016/j.carbpol.2020.116914
[106]
Mao QJ, Wang YF, Li Y, et al. Fabrication of liver microtissue with liver decellularized extracellular matrix (dECM) bioink by digital light processing (DLP) bioprinting. Mater Sci Eng C Mater Biol Appl, 2020, 109: 110625. DOI:10.1016/j.msec.2020.110625
[107]
Visscher DO, Lee H, Van Zuijlen PPM, et al. A photo-crosslinkable cartilage-derived extracellular matrix bioink for auricular cartilage tissue engineering. Acta Biomater, 2021, 121: 193-203. DOI:10.1016/j.actbio.2020.11.029
[108]
Han W, Singh NK, Kim JJ, et al. Directed differential behaviors of multipotent adult stem cells from decellularized tissue/organ extracellular matrix bioinks. Biomaterials, 2019, 224: 119496. DOI:10.1016/j.biomaterials.2019.119496
[109]
Tsui JH, Leonard A, Camp ND, et al. Tunable electroconductive decellularized extracellular matrix hydrogels for engineering human cardiac microphysiological systems. Biomaterials, 2021, 272: 120764. DOI:10.1016/j.biomaterials.2021.120764
[110]
Khoshnood N, Zamanian A. Decellularized extracellular matrix bioinks and their application in skin tissue engineering. Bioprinting, 2020, 20: e00095. DOI:10.1016/j.bprint.2020.e00095
[111]
Brigido SA, Carrington SC, Protzman NM. The use of decellularized human placenta in full-thickness wound repair and periarticular soft tissue reconstruction: an update on regenerative healing. Clin Podiatr Med Surg, 2018, 35(1): 95-104. DOI:10.1016/j.cpm.2017.08.010
[112]
Milan PB, Lotfibakhshaiesh N, Joghataie MT, et al. Accelerated wound healing in a diabetic rat model using decellularized dermal matrix and human umbilical cord perivascular cells. Acta Biomater, 2016, 45: 234-246. DOI:10.1016/j.actbio.2016.08.053
[113]
Palakkara S, Maiti SK, Mohan D, et al. Healing potential of chitosan and decellularized intestinal matrix with mesenchymal stem cells and growth factor in burn wound in rat. Wound Med, 2020, 30: 100192. DOI:10.1016/j.wndm.2020.100192
[114]
Dhasmana A, Singh L, Roy P, et al. Silk fibroin protein modified acellular dermal matrix for tissue repairing and regeneration. Mater Sci Eng C Mater Biol Appl, 2019, 97: 313-324. DOI:10.1016/j.msec.2018.12.038
[115]
Brancato V, Ventre M, Reis RL, et al. Decellularized matrices for tumor cell modeling. Methods Cell Biol, 2020, 157: 169-183. DOI:10.1016/bs.mcb.2019.11.015
[116]
Ganjibakhsh M, Mehraein F, Koruji M, et al. Three-dimensional decellularized amnion membrane scaffold promotes the efficiency of male germ cells generation from human induced pluripotent stem cells. Exp Cell Res, 2019, 384(1): 111544. DOI:10.1016/j.yexcr.2019.111544
[117]
Zhang R, Jiang JQ, Yu YL, et al. Analysis of structural components of decellularized scaffolds in renal fibrosis. Bioact Mater, 2021, 6(7): 2187-2197. DOI:10.1016/j.bioactmat.2020.12.028
[118]
Lin YQ, Wang LR, Pan LL, et al. Kidney bioengineering in regenerative medicine: an emerging therapy for kidney disease. Cytotherapy, 2016, 18(2): 186-197. DOI:10.1016/j.jcyt.2015.10.004
[119]
Gao YN, Li ZH, Hong Y, et al. Decellularized liver as a translucent ex vivo model for vascular embolization evaluation. Biomaterials, 2020, 240: 119855. DOI:10.1016/j.biomaterials.2020.119855
[120]
Hussein KH, Park KM, Teotia PK, et al. Fabrication of a biodegradable xenoantigen-free rat liver scaffold for potential drug screening applications. Transplant Proc, 2013, 45(8): 3092-3096. DOI:10.1016/j.transproceed.2013.08.016
[121]
Alabi BR, LaRanger R, Shay JW. Decellularized mice colons as models to study the contribution of the extracellular matrix to cell behavior and colon cancer progression. Acta Biomater, 2019, 100: 213-222. DOI:10.1016/j.actbio.2019.09.033
[122]
Lv YG, Wang HJ, Li G, et al. Three-dimensional decellularized tumor extracellular matrices with different stiffness as bioengineered tumor scaffolds. Bioact Mater, 2021, 6(9): 2767-2782. DOI:10.1016/j.bioactmat.2021.02.004